
IA-64 / VLIW from a Compiler
Optimization Perspective

Frédéric de Mesmay

Theodoros Strigkos

03/01/2007

Papers

� “OS and Compiler Considerations in the

Design of the IA-64 Architecture”
Rumi Zahir, Jonathan Ross, Dale Morris and Drew Hess

ASPLOS 2000

� “A Comparison of Full and Partial Predicated

Execution Support for ILP Processors”
Scott A. Mahlke, Richard E. Hank, James E. McCormick,

David I. August and Wen-Mei W. Hwu

ISCA 22

What makes VLIW tick?

� Speculation

– Control Speculation

– Data Speculation

� Predication

What can the compiler do to make the

hardware simpler and faster?

Control Speculation

� Issue long-latency instructions before we
now for sure that we need them
– e.g. loads

� Example
if (x == 0) {

load r1, a;

use r1;

}

else r1 = 0;

Speculative Load

Figure from B. Falsafi

Control Speculation
Eager Deferral – With Recovery Code

� Recovery Model

ld4.s r1,A

...

cmp Rcondition,0;

bne somewhere_else

chk.s r1,fixup_code1

reenter1:

st4 [r2] = r1

...

fixup_code1:

ld4 r1,A

br reenter1;

TLB

L1

CacheR1 = NaTR1 = ?R1 = data

O/S
TLB miss

Control Speculation
Minimal Deferral – No Recovery Code

� No Recovery Model

ld4.s r1,A

add r1,7

...

cmp Rcondition,0;

bne somewhere_else

st4 [r2] = r1

...

TLB

L1

Cache
R1 = ?R1 = data

O/S

OK

CHK

MISS

Data Speculation

� Issue long-latency loads fast without knowing

if a conflicting store follows (aliasing problem)

� Example:
foo (char *a, int *p) {

*a = 1;

b = *p + 5; // p probably != a

...

}

– Load p before calculating the target of a.

– Upon mis-speculation, re-load p

Data Speculation

Figure from B. Falsafi

Data Speculation
IA-64 Advance Load Address Table

� When an advanced load is issued, add target

in the ALAT

� All stores delete conflicting ALAT records

� The chk.a instruction searches for the ALAT

record

– If found, speculation was correct; otherwise, reload

� Easy to implement and handle context-switch

– If ALAT full, or context-switch, drop entries and

cause recovery

Advanced Load Example

ld4.a rt,A

add rs = rt, 5

...

st1 [ra],1 //ra=A

chk.a rt, fixup_code2

reenter2:

...

fixup_code2:

ld4 rt,A;;

add rs = rt, 5

br reenter2;;

ALATAdd A

Del A

A?

Speculation Failed

NO

A

Predication

� Execute both paths and decide which is

correct

– Reduces control hazards

� Comes in two flavors:

– Chocolate: Full predication

– Vanilla: Partial predication

Predication

Figure from B. Falsafi

Full Predication

� All instructions may have a predication input
– add rdest,r1,r2 (Pin)

� Predicate Define instructions
pred <cmp> Pout1<type>, Pout2<type>, src1, src2 (Pin)

– Type = U, U_bar, OR, NOR, AND, NAND

Partial Predication

� Only conditional moves or selects
– CMOV dest,src,cond → if (cond) dest = src;

– Select dest,src1,src2,cond →

dest = cond?src1:src2

� Usually combined with predicate promotion

– Execute most instructions with no predicate and
conditionally move final results

Chocolate or Vanilla?

Full Predication
+ Fewer instructions

+ Faster Program

+ Decreases register
pressure

- Significant ISA changes

- More register file ports
required

Partial Predication
+ Easier to adapt ISA

+ Few instructions have 3rd

source operand

- Predicate Promotion

→ useless instructions
are executed

→ register pressure
increased

Is it worth it?

� VLIW appeared as the opposite pole of OoO

cores: Complicated S/W to relax H/W.

– Predicates in all instructions instead of prediction

– ALAT instead of load-store queue

– Speculative instructions instead of OoO issue

– Register Stack Engine as opposed to renaming

– …

Questions?

� Thank you!

