1. Defending 1. Defining the field of Silican with EDSE Architectures", IEEE Computer July 2004. 2. Orabogerbrugge, et al., <u>Software pipelining for transportation</u>, MICRO-36, December 2003 2. Stevenson, et al. <u>WaveScalar</u>, MICRO-36, December 2003

3

It's not about computing after all!

- What is the fundamental operation in a computer?
 - It is not the add, the multiply, the xor, etc.
 - It is the move
- Typical (read x86,etc.) architectures don't ALLOW this to be expressed!
- All three papers share a common goal: Represent the data movement involved in computation explicitly

BTW: Really bad slide, why?

What is Exotic?

- ISA
 - An abstraction provided by computer designer
 - E.g., no change in programs when
 - transistor shrinks by factor of 2 or even 10!
 - $\cdot\,$ start using aluminum to transmit info (and then copper!)
 - voltage changes by factor of 5x!
 - change from micro-coded engine to risc core!
 - 10x registers introduced (internal ones)
 - Limits what can be expressed
 - no "move"s
 - what else?

One view on compiler/Arch Divide

VLIW

VLIW

Scaling Drawbacks?

- Bypass complexity
- Register file complexity
- Register file design restricts FU flexibility
- Operation encoding format restricts FU flexibility

7

Transport-Triggered Arch

- Only 1 instruction: MOVE
- Don't specify operations, specify register mov't

Slides Adapted/From: J. Takala/TUT

Copen Goldstein 2005-7

Slides Adapted/From: J. Takala/TUT

TTA Characteristics: HW

Modular

OCan be constructed with standard building blocks

- □ Very flexible and scalable
 - ○FU functionality can be arbitrary
 - OSupports user defined Special Function Units (SFU)

Lower complexity

OReduction on # register ports

- OReduced bypass complexity
- OReduction in bypass connectivity
- OReduced register pressure
- OTrivial decoding (implies long instructions)

TTA Characteristics: SW

Traditional operation-triggered instruction: mul r1,r2,r3;

Transport-triggered instruction:

r1→mul.o; r2→mul.t; mul.r→r3; r1→mul.o, r2→mul.t; mul.r→r3;

Reminds dataflow and time-stationary coding

J.Takala/TUT

or

Berkeley – Finland Day, Oct.18, 2002

15

Å.

TTA Specific Optimizations

TTA allows extra scheduling optimizations

E.g., software bypassing

OBypassing can eliminate the need of RF access

Example:	$r1 \rightarrow add.o, r2 \rightarrow add.t;$ $add.r \rightarrow r3;$ $r3 \rightarrow sub.o, r4 \rightarrow sub.t$ $sub.r \rightarrow r5;$
Translates to:	$r1 \rightarrow add.o, r2 \rightarrow add.t;$ $add.r \rightarrow sub.o, r4 \rightarrow sub.t;$ $sub.r \rightarrow r5;$

□ However, more difficult to schedule !

J.Takala/TUT

Berkeley – Finland Day, Oct.18, 2002

Registers aren't everything

• TRIPS

- operand-based dataflow architecture

- Wavescalar
 - (operand-based?) dataflow architecture

15-745 © Seth Copen Goldstein 2005-7

- Makes memory dependencies explicit
- Pegasus
 - dataflow, operand/wires explicit
 - Memory dependencies explicit
- All Three
 - basic unit is a hyperblock

TRIPS: Program Representation

(a) C code snippet // y, z in registers x - y*2: of (x> 7)(y + - 7; z - 5;) x + - y; // x, z are live registers	(b) RISC assembly // R0 contains 0 // R1 contains y // R4 contains 7 muli R2, R1, 2 // R3 contains 7 muli R2, R1, 2 bl R2, R3, L1 dl R1, R1, 77 // Y + 7 add R1, R0, #5 L1: add R5, R2, R1 // X + y	(e) Datatiow graph (e) Datatiow graph (c) Da
(d) TRIPS Instruction placen read r4 write r4 w	ent ead r3 rile r5 (e) TRIPS Instru	etton block (2 x 2 x 2)
	read r4, [1,0,0] w0: write r4	reader read r3, [0,1,1] [1,0,1] w1: write r5
(mov) (m	ov Instru	ction block
Corresponding Instruction po	add w1 addi #7 (0,0,1]	mul #2 [0,0,1] [0,1,0] tgti #7 [1,0,0] [0,0,0] [1,1,0] [1,1,1]
[0,0,1] [0, [0,0,0] [0,	(.1] 1.0] NOP mov [0,0,1]	movi#5 w0 mov w0
[1,0,1] [1,1	[,1]	

TRIPS: Compiling

Wavescalar

Wavescalar: Memory Dependencies

15-745 © Seth Copen Goldstein 2005-7

17

18

SP on TTA

- Extends LAM's modular scheduling to TTA
- Recall:
 - d(u,v): intra-iter delay between u and v
 - p(u,v): inter-iter distance between u and v
 - $\sigma(v)$ - $\sigma(u) \ge d(u,v)$ -s*p(u,v)
 - Find min S, s.t.
 - $\forall (u,v) \in \mathsf{E}, \, \sigma(v) \text{-} \sigma(u) \geq d(u,v) \text{-} s^* p(u,v)$
 - ∀(†), ∑ r(i,†) < R(i)

Changes to algorithm

- Introduce lower and upper bound for each op
- New priority metric for list scheduler: Priority(v) = $\alpha \frac{r(v)}{s} - \beta(u(v) - l(v))$
- add edges so graph is SC
- $\cdot\,$ Include all RAW and WAR dependencies
- Explicitly model pipelines in FUs

Additional freedom?

15-745 © Seth Copen Goldstein 2005-7

- Compare SP for various constraints
 - VLIW
 - VLIW w/software bypassing
 - OTR-1, OTR-2 (do approriate opts for above)
 - operand freedom
 - operand and result freedom

23

21

22

Discussion

- Does TTA address the scaling problem?
- What other opts may be possible?
- What other ways are there to overcome limited registers and ports?
- What about cache misses?
- Are EDGE/WAVESCALAR/CASH decendants of TTA?

Mechanics of slides

- Provide focus
- Reduce distraction
- Make legible
- Label axis, describe graph (axis, top-level bit)

15-745 © Seth Copen Goldstein 2005-7

26

Presentation Mechanics

15-745 © Seth Copen Goldstein 2005-7

- 30 minutes with questions
- promote (provoke?) discussion
- Assume your classmates have read the primary paper
- Try and develop a thesis/viewpoint

25