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Topic: Exotic Architectures
• Doug Burger et.al., "Scaling to the End of Silicon with EDGE 

Architectures", IEEE Computer July 2004.
• Jan Hoogerbrugge, et al., ``Software pipelining for transport-

triggered architectures'', MICRO 24 (1991). 

• Steve Swanson, et al. “WaveScalar” , MICRO-36, December 2003
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Its not about computing after all!
• What is the fundamental operation in a 

computer?

15-745 © Seth Copen Goldstein 2005-7 3

It’s not about computing after all!
• What is the fundamental operation in a 

computer?
– It is not the add, the multiply, the xor, etc.
– It is the move

• Typical (read x86,etc.) architectures don’t 
ALLOW this to be expressed!

• All three papers share a common goal:
Represent the data movement involved in 

computation explicitly

BTW: Really bad slide, why?
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What is Exotic?
• ISA

– An abstraction provided by computer 
designer
E.g., no change in programs when

• transistor shrinks by factor of 2 or even 10!
• start using aluminum to transmit info (and then copper!)
• voltage changes by factor of 5x!
• change from micro-coded engine to risc core!
• 10x registers introduced (internal ones)

– Limits what can be expressed
• no “move”s
• what else?
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• Scaling Drawbacks?
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• Scaling Drawbacks?
– Bypass complexity
– Register file complexity
– Register file design 

restricts FU flexibility
– Operation encoding 

format restricts FU 
flexibility
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Transport-Triggered Arch
• Only 1 instruction: 

MOVE
• Don’t specify 

operations,
specify register mov’t
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Function UnitsFunction Units
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ILP ILP ArchitecturesArchitectures
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TTA Characteristics: HWTTA Characteristics: HW

Modular
Can be constructed with standard building blocks

Very flexible and scalable
FU functionality can be arbitrary
Supports user defined  Special Function Units (SFU)

Lower complexity
Reduction on # register ports
Reduced bypass complexity
Reduction in bypass connectivity
Reduced register pressure
Trivial decoding (implies long instructions)
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TTA Characteristics: SWTTA Characteristics: SW

Traditional operation-triggered instruction:

Transport-triggered instruction:

Reminds dataflow and time-stationary coding

mul r1,r2,r3;

r1→mul.o; 
r2→mul.t; 
mul.r→r3;

r1→mul.o, r2→mul.t; 
mul.r→r3;

or
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TTA Specific OptimizationsTTA Specific Optimizations
TTA allows extra scheduling optimizations
E.g., software bypassing

Bypassing can eliminate the need of RF access

However, more difficult to schedule !

Example: r1 → add.o, r2 → add.t;
add.r → r3;
r3→ sub.o, r4 → sub.t
sub.r → r5;

Translates to: r1 → add.o, r2 → add.t;
add.r→ sub.o, r4 → sub.t;
sub.r → r5;
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Registers aren’t everything
• TRIPS

– operand-based dataflow architecture
• Wavescalar

– (operand-based?) dataflow architecture
– Makes memory dependencies explicit

• Pegasus
– dataflow, operand/wires explicit
– Memory dependencies explicit

• All Three
– basic unit is a hyperblock
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TRIPS
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TRIPS: Program Representation
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TRIPS: Compiling
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Wavescalar
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Wavescalar: Memory Dependencies
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SP on TTA
• Extends LAM’s modular scheduling to TTA
• Recall: 

– d(u,v): intra-iter delay between u and v
– p(u,v): inter-iter distance between u and v
– σ(v)-σ(u) ≥ d(u,v)-s*p(u,v)
– Find min S, s.t.

• ∀(u,v) ∈ E, σ(v)-σ(u) ≥ d(u,v)-s*p(u,v)
• ∀(t), ∑ r(i,t) < R(i)

15-745 © Seth Copen Goldstein 2005-7 22

Changes to algorithm
• Introduce lower and upper bound for each op
• New priority metric for list scheduler:

Priority(v) = 
• add edges so graph is SC
• Include all RAW and WAR dependencies
• Explicitly model pipelines in FUs
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Additional freedom?
• Compare SP for various constraints

– VLIW
– VLIW w/software bypassing
– OTR-1, OTR-2 (do approriate opts for above)
– operand freedom
– operand and result freedom
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Results

32 54 6 87
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Discussion
• Does TTA address the scaling problem?
• What other opts may be possible?
• What other ways are there to overcome limited 

registers and ports?
• What about cache misses?
• Are EDGE/WAVESCALAR/CASH decendants of 

TTA?
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Mechanics of slides
• Provide focus
• Reduce distraction

• Make legible
• Label axis, describe graph (axis, top-level bit)
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Presentation Mechanics
• 30 minutes with questions
• promote (provoke?) discussion
• Assume your classmates have read the primary 

paper
• Try and develop a thesis/viewpoint


