
15-745 © Seth Copen Goldstein 2005-7 1

15-745

Topic: Exotic Architectures
• Doug Burger et.al., "Scaling to the End of Silicon with EDGE

Architectures", IEEE Computer July 2004.
• Jan Hoogerbrugge, et al., ``Software pipelining for transport-

triggered architectures'', MICRO 24 (1991).

• Steve Swanson, et al. “WaveScalar” , MICRO-36, December 2003

15-745 © Seth Copen Goldstein 2005-7 2

Its not about computing after all!
• What is the fundamental operation in a

computer?

15-745 © Seth Copen Goldstein 2005-7 3

It’s not about computing after all!
• What is the fundamental operation in a

computer?
– It is not the add, the multiply, the xor, etc.
– It is the move

• Typical (read x86,etc.) architectures don’t
ALLOW this to be expressed!

• All three papers share a common goal:
Represent the data movement involved in

computation explicitly

BTW: Really bad slide, why?
15-745 © Seth Copen Goldstein 2005-7 4

What is Exotic?
• ISA

– An abstraction provided by computer
designer
E.g., no change in programs when

• transistor shrinks by factor of 2 or even 10!
• start using aluminum to transmit info (and then copper!)
• voltage changes by factor of 5x!
• change from micro-coded engine to risc core!
• 10x registers introduced (internal ones)

– Limits what can be expressed
• no “move”s
• what else?

15-745 © Seth Copen Goldstein 2005-7 5

One view on compiler/Arch Divide

FrontendFrontend

Application

sequential
(superscalar)

dependence
(dataflow)

independence
(EPIC)

independence
(VLIW)

Compilation time
(Software)

Determine DependenciesDetermine Dependencies

Determine IndependenciesDetermine Independencies

Bind Function UnitsBind Function Units

Determine DependenciesDetermine Dependencies

Determine IndependenciesDetermine Independencies

Bind Function UnitsBind Function Units

Bind Datapaths & ExecuteBind Datapaths & Execute

Run time
(Hardware)

ILP Architectures

Slides Adapted/From: J.Takala/TUT 15-745 © Seth Copen Goldstein 2005-7 6

VLIW

Register File

Instruction Fetch

Instruction Decode

Data Memory

Instruction Memory

Bypassing Network

C
PU

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

Register File

Instruction Fetch

Instruction Decode

Data Memory

Instruction Memory

Bypassing Network

C
PU

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

• Scaling Drawbacks?

Slides Adapted/From: J.Takala/TUT

15-745 © Seth Copen Goldstein 2005-7 7

VLIW

Register File

Instruction Fetch

Instruction Decode

Data Memory

Instruction Memory

Bypassing Network

C
PU

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

Register File

Instruction Fetch

Instruction Decode

Data Memory

Instruction Memory

Bypassing Network

C
PU

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

• Scaling Drawbacks?
– Bypass complexity
– Register file complexity
– Register file design

restricts FU flexibility
– Operation encoding

format restricts FU
flexibility

Slides Adapted/From: J.Takala/TUT 15-745 © Seth Copen Goldstein 2005-7 8

Transport-Triggered Arch
• Only 1 instruction:

MOVE
• Don’t specify

operations,
specify register mov’t

Register File

Bypassing Network

VLIW

Instruction Fetch

Instruction Decode

Instruction Memory

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

Data Memory

Instruction Fetch

Instruction Decode

Bypassing Network

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

R
egister
File

TTA

Register File

Bypassing Network

VLIW

Instruction Fetch

Instruction Decode

Instruction Memory

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

Data Memory

Instruction Fetch

Instruction Decode

Bypassing Network

Instruction Fetch

Instruction Decode

Bypassing Network

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

FU
-1

FU
-2

FU
-3

FU
-4

FU
-5

R
egister
File

R
egister
File

TTA

Slides Adapted/From: J.Takala/TUT

J.Takala/TUT Berkeley – Finland Day, Oct.18, 2002

TTA DatapathTTA Datapath

Integer
ALU

Integer
ALU

Float
ALU

Boolean
RF

Float
RF

Integer
RF

Socket

Instruction Memory

Data Memory

Load/Store
Unit

Load/Store
Unit

Immediate
Unit

Instruction
Unit

J.Takala/TUT Berkeley – Finland Day, Oct.18, 2002

Function UnitsFunction Units

Operands written to
operand registers (O)
Operation performed
when last operand written
to trigger register (T)
Pipeline synchronized with
control bits (C)
Standard interface

FU_ready
Result_ready
Global_lock

T

optional

Optional shadow register

O

logic

logic

R

logic

C

C

C

C

J.Takala/TUT Berkeley – Finland Day, Oct.18, 2002

ILP ILP ArchitecturesArchitectures

FrontendFrontend

Application

sequential
(superscalar)

dependence
(dataflow)

independence
(EPIC)

independence
(VLIW)

Compilation time

independence
(TTA)

Determine DependenciesDetermine Dependencies

Determine IndependenciesDetermine Independencies

Bind Function UnitsBind Function Units

Bind DatapathsBind Datapaths

ExecuteExecute

Determine DependenciesDetermine Dependencies

Determine IndependenciesDetermine Independencies

Bind Function UnitsBind Function Units

Bind DatapathsBind Datapaths

Run time
J.Takala/TUT Berkeley – Finland Day, Oct.18, 2002

TTA Characteristics: HWTTA Characteristics: HW

Modular
Can be constructed with standard building blocks

Very flexible and scalable
FU functionality can be arbitrary
Supports user defined Special Function Units (SFU)

Lower complexity
Reduction on # register ports
Reduced bypass complexity
Reduction in bypass connectivity
Reduced register pressure
Trivial decoding (implies long instructions)

J.Takala/TUT Berkeley – Finland Day, Oct.18, 2002

TTA Characteristics: SWTTA Characteristics: SW

Traditional operation-triggered instruction:

Transport-triggered instruction:

Reminds dataflow and time-stationary coding

mul r1,r2,r3;

r1→mul.o;
r2→mul.t;
mul.r→r3;

r1→mul.o, r2→mul.t;
mul.r→r3;

or

J.Takala/TUT Berkeley – Finland Day, Oct.18, 2002

TTA Specific OptimizationsTTA Specific Optimizations
TTA allows extra scheduling optimizations
E.g., software bypassing

Bypassing can eliminate the need of RF access

However, more difficult to schedule !

Example: r1 → add.o, r2 → add.t;
add.r → r3;
r3→ sub.o, r4 → sub.t
sub.r → r5;

Translates to: r1 → add.o, r2 → add.t;
add.r→ sub.o, r4 → sub.t;
sub.r → r5;

15-745 © Seth Copen Goldstein 2005-7 15

Registers aren’t everything
• TRIPS

– operand-based dataflow architecture
• Wavescalar

– (operand-based?) dataflow architecture
– Makes memory dependencies explicit

• Pegasus
– dataflow, operand/wires explicit
– Memory dependencies explicit

• All Three
– basic unit is a hyperblock

15-745 © Seth Copen Goldstein 2005-7 16

TRIPS

15-745 © Seth Copen Goldstein 2005-7 17

TRIPS: Program Representation

15-745 © Seth Copen Goldstein 2005-7 18

TRIPS: Compiling

15-745 © Seth Copen Goldstein 2005-7 19

Wavescalar

15-745 © Seth Copen Goldstein 2005-7 20

Wavescalar: Memory Dependencies

15-745 © Seth Copen Goldstein 2005-7 21

SP on TTA
• Extends LAM’s modular scheduling to TTA
• Recall:

– d(u,v): intra-iter delay between u and v
– p(u,v): inter-iter distance between u and v
– σ(v)-σ(u) ≥ d(u,v)-s*p(u,v)
– Find min S, s.t.

• ∀(u,v) ∈ E, σ(v)-σ(u) ≥ d(u,v)-s*p(u,v)
• ∀(t), ∑ r(i,t) < R(i)

15-745 © Seth Copen Goldstein 2005-7 22

Changes to algorithm
• Introduce lower and upper bound for each op
• New priority metric for list scheduler:

Priority(v) =
• add edges so graph is SC
• Include all RAW and WAR dependencies
• Explicitly model pipelines in FUs

))()(()(vlvu
s
vr

−− βα

b->add.i c->add.t int1 int2 add.r->c
0,0 1,0

1,1

1,0 1,0

0,10,10,1

15-745 © Seth Copen Goldstein 2005-7 23

Additional freedom?
• Compare SP for various constraints

– VLIW
– VLIW w/software bypassing
– OTR-1, OTR-2 (do approriate opts for above)
– operand freedom
– operand and result freedom

15-745 © Seth Copen Goldstein 2005-7 24

Results

32 54 6 87

Fl
op

s/
cy

cl
e

of Move buses

15-745 © Seth Copen Goldstein 2005-7 25

Discussion
• Does TTA address the scaling problem?
• What other opts may be possible?
• What other ways are there to overcome limited

registers and ports?
• What about cache misses?
• Are EDGE/WAVESCALAR/CASH decendants of

TTA?

15-745 © Seth Copen Goldstein 2005-7 26

Mechanics of slides
• Provide focus
• Reduce distraction

• Make legible
• Label axis, describe graph (axis, top-level bit)

15-745 © Seth Copen Goldstein 2005-7 27

Presentation Mechanics
• 30 minutes with questions
• promote (provoke?) discussion
• Assume your classmates have read the primary

paper
• Try and develop a thesis/viewpoint

