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Background: Pointer Analysis

e Goal: Determine the set of storage locations that a
pointer might reference

e Related techniques:

e Alias Analysis — Determine if 2 pointers alias the same
mutable memory location

e Flow-insensitive vs. flow-sensitive
e May-alias vs. must-alias
e Escape Analysis — Determine the dynamic scope and
lifetime of a pointer
e Pointer analysis is hard, but essential for enabling
compiler optimizations.



Example Optimizations

e CSE needs info on what is read/written:
a + b;
+ b:

e Reaching definitions nstant propagation:

p =
X = a
s and co
X = 5,
*p = 42
y = X:
e Register variable promotlon:
Int *p

s. b

*(p +1)

&S. a
0;
1:
S. b;

e Scheduling optlmlzatlons to hide memory latency
e Improves IA-64 data speculation



Practical Considerations

e Alias problem is undecidable [Landi 1992]

e Simplest assumption not very useful:
“Everything may alias”
e Andersen vs. Steensgaard: points-to analysis
e Both are flow-insensitive and context-insensitive
e Differ in points-to set construction
e Andersen: many out edges, one variable per node
e Steensgaard: one out edge, many variables per node

Andersen Steensgaard



Memory Disambiguation

e Pointer analysis Is just one component of a
compiler’'s memory disambiguator

e Little published on complete framework:

e How do optimizations interact with and benefit
from memory disambiguation?

e How does this affect program performance?

e \What are the most effective disambiguation
techniques?
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Disambiguation Framework

e DISAM: DISambiguation using Abstract
Memory locations
e Maintains high-level symbolic representation

e LOC represents global/local vars, registers, etc.

e All LOCs independent
e Set of possible memory locations = LOC set
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Disambiguation Methods

e Intraprocedural (local) methods

Direct memory analysis (direct)

e Includes symbol structure type analysis
Simple base and offset analysis (sbo)
Indirect memory analysis (indirect)
Local points-to analysis (Ipt)

Array data-dependence analysis (array)

e Interprocedural methods

Global address-taken analysis (global)
Whole-program points-to analysis (wpt)

e Requiring user assertion for compliance with ANSI C

Type-based disambiguation (type)



WPT Framework

e WPT implements Andersen algorithm
e Standard optimizations to reduce cubic complexity:

e More precise structure handling to distinguish fields, but not
Instances

struct foo (int *p; int *q;} sl, s2;

int Xx,vy;
sl.p = &; __ sl.p&s2.p po?nttox
s2.q = &; sl.q & s2.q pointtoy

e I|dentification of malloc-like functions
e Determine if malloc is unconditional

e Determine that address is not taken/stored elsewhere
e Assignment statements visited in sorted topological order



LPT Framework

e Uses same analysis engine as WPT
e Conservative assumptions necessary for
global vars and function call effects

e Symbolic location nloc represents all address-
escaped vars




Experiments

e 12 C/C++ benchmarks run on IA-64 hardware
e Highest-optimization level compilation
e Data speculation turned off!

e Data collected:
e Memory reference characteristics and points-to sets
e Disambiguation queries (number and type)
e Hash duplicate disambiguation gqueries
e Incremental results for each disambiguation method




Query Results
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Independent queries by method
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Conclusions

e Suite of disambiguation methods provides different
tools effective in different situations

e Optimizations to Andersen points-to analysis make
algorithm runtime acceptable in practice

e 85% of queries found independent with
disambiguation framework

e 14% maybe independent references leave some
room for improvement
e unrecognizable malloc wrappers
e indirect calls with many possible targets
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Motivation

e “...given a million+ lines of C code, and a
proposed change of the form ‘change the
type of this object from typel to type?2’, find
all the other objects whose type may need to
be changed to ensure ‘type consistency’...”
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short *p, v,
y = X,
Z = y+1;
P = &v;
*p:Z;




Complications

e Requires analysis of pointers
e Based on points-to analysis of Andersenl!

e Must deal with vast amounts of code

e Modular analysis
e Defer work to preserve memory and time



Points-to Analysis

e Unification based (Steensgaard)

e Assignment unifies graph nodes
e X =Y, /[ unifies nodes for x and y

e Less accurate, faster

e Subset-relationship based (Andersen)

e Assignment creates subset relationship
e X =Y, // creates constraint x 1y

e More accurate, slower



Deduction Rules

EXp:=X|*X|&X Asn:=Xx=EXp|*Xx=EXp
Program::= Asn| p; Asn
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st ruct handling

e Field-independent
e Struct istreated as unstructured memory region

e Field-based
e Struct Istreated as separate variables



st ruct Example

Statement |Field-independent |Field-based
A. X=&z; |assignto A assign to x
pP=A. X; p gets &z p gets &z
q=A. Y, q gets &z
r=B. Xx; r gets &z

s=B. y;




How to scale?

e These analyses are easy to implement for
small programs

e Large programs are considerably more
difficult

e Time constraints
e Memory constraints




Nailve Approach

e Paste all source files together
e Load information from large pasted file
e Analyze information

e Doesn’t scale beyond few thousand LOC




3-phase approach

e Compile
e parse source files
e extract assignments, function calls/returns/defns
e write object file (database)
e Link
e Merge all object files

e Analyze

e Use points-to analysis contained in merged object
file



Analysis

e Graph algorithm for Andersen’s method

e Graph contains node for every variable In
program

e Edges of graph show possible sources
(dependence) between nodes.
o If X =y appears, then there is an edge x>y
e Graph remains in pre-transitive form!

e Edge x>z may not appear, even if x>y and y—>z
do appear.



Results

e Uncovered many serious new errors in
existing Lucent code. (original goal)

e Capable of analyzing over 1M lines of code In
less than 1 second.

e Misleading: lines of code are not a good indicator
of runtime or space
e Lucent code: 1.3M LOC :: 0.38s 8.8MB
e GIMP: 440K LOC :: 1.00s 12MB

e Adaptable framework capable of different
analyses



Questions?
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Memory Characteristics

Table 1 Program Memory Reference Characteristics

Program Local | Global | Ind Avg Total
%o %o %o Set Size Queries
164.gzip 7 84 9 2.4 26118
175.vpr 16 39 45 1.3 40093
176.gcc 8 31 61 22.1 | 1237456
181.mcf 8 11 80 1.3 10195
186.crafty 4 87 9 371 321026
197 .parser 7 39 5 6.9 67642
252.eon 27 40 33 147.7 | 507662
253.perl 6 36 58 427.3 | 1192815
254.gap 4 22 74 196.3 286053
255.vortex 34 22 44 39.3 405790
256.bzip2 15 67 18 1.00 13544
300.twolf 2 46 52 3.4 443028




