
Points-To Analysis and
Memory Disambiguation

Cody Hartwig
Elie Krevat

Background: Pointer Analysis

� Goal: Determine the set of storage locations that a
pointer might reference

� Related techniques:
� Alias Analysis – Determine if 2 pointers alias the same

mutable memory location
� Flow-insensitive vs. flow-sensitive
� May-alias vs. must-alias

� Escape Analysis – Determine the dynamic scope and
lifetime of a pointer

� Pointer analysis is hard, but essential for enabling
compiler optimizations.

Example Optimizations

� CSE needs info on what is read/written:
*p = a + b;
x = a + b;

� Reaching definitions and constant propagation:
x = 5;

*p = 42;
y = x;

� Register variable promotion:
int *p = &s.a;

s.b = 0;
*(p + i) = 1;

... = s.b;

� Scheduling optimizations to hide memory latency
� Improves IA-64 data speculation

Practical Considerations

� Alias problem is undecidable [Landi 1992]
� Simplest assumption not very useful:

“Everything may alias”
� Andersen vs. Steensgaard: points-to analysis

� Both are flow-insensitive and context-insensitive
� Differ in points-to set construction
� Andersen: many out edges, one variable per node
� Steensgaard: one out edge, many variables per node

a = &b;
b = &c;
a = &d;
d = &e;

Andersen Steensgaard

a
a

b c
b c

d e

(b,d) (c,e)

Memory Disambiguation

� Pointer analysis is just one component of a
compiler’s memory disambiguator

� Little published on complete framework:
� How do optimizations interact with and benefit

from memory disambiguation?
� How does this affect program performance?
� What are the most effective disambiguation

techniques?

On the Importance of Points-To
Analysis and Other Memory
Disambiguation Methods For C
Programs

Rakesh Ghiya, Daniel Lavery, and David Sehr
PLDI 2001

Disambiguation Framework

� DISAM: DISambiguation using Abstract
Memory locations
� Maintains high-level symbolic representation
� LOC represents global/local vars, registers, etc.

� All LOCs independent
� Set of possible memory locations � LOC set

Disambiguation Framework

Disambiguation Methods

� Intraprocedural (local) methods
� Direct memory analysis (direct)

� Includes symbol structure type analysis
� Simple base and offset analysis (sbo)
� Indirect memory analysis (indirect)
� Local points-to analysis (lpt)
� Array data-dependence analysis (array)

� Interprocedural methods
� Global address-taken analysis (global)
� Whole-program points-to analysis (wpt)

� Requiring user assertion for compliance with ANSI C
� Type-based disambiguation (type)

WPT Framework
� WPT implements Andersen algorithm
� Standard optimizations to reduce cubic complexity:
� More precise structure handling to distinguish fields, but not

instances
struct foo (int *p; int *q;} s1, s2;

int x,y;

s1.p = &x;

s2.q = &y;

� Identification of malloc-like functions
� Determine if malloc is unconditional
� Determine that address is not taken/stored elsewhere

� Assignment statements visited in sorted topological order

s1.p & s2.p point to x
s1.q & s2.q point to y

LPT Framework

� Uses same analysis engine as WPT
� Conservative assumptions necessary for

global vars and function call effects
� Symbolic location nloc represents all address-

escaped vars

Experiments

� 12 C/C++ benchmarks run on IA-64 hardware
� Highest-optimization level compilation
� Data speculation turned off!
� Data collected:

� Memory reference characteristics and points-to sets
� Disambiguation queries (number and type)
� Hash duplicate disambiguation queries
� Incremental results for each disambiguation method

Query Results

85% of queries independent, 14% maybe

Independent queries by method

Each technique useful for some benchmark

Perf Improvement per method

Overall program performance improvement of 12%

Conclusions

� Suite of disambiguation methods provides different
tools effective in different situations

� Optimizations to Andersen points-to analysis make
algorithm runtime acceptable in practice

� 85% of queries found independent with
disambiguation framework

� 14% maybe independent references leave some
room for improvement
� unrecognizable malloc wrappers
� indirect calls with many possible targets

Ultra-fast Aliasing Analysis
using CLA: A Million Lines of

C a Second

Nevin Heintze
Olivier Tardieu

Motivation

� “…given a million+ lines of C code, and a
proposed change of the form ‘change the
type of this object from type1 to type2’, find
all the other objects whose type may need to
be changed to ensure ‘type consistency’…”

Example

short x;

short y, z;

short *p, v, w;

y = x;

z = y+1;

p = &v;

*p = z;

w = 1;

Example

int x;

short y, z;

short *p, v, w;

y = x;

z = y+1;

p = &v;

*p = z;

w = 1;

Complications

� Requires analysis of pointers
� Based on points-to analysis of Andersen[1]

� Must deal with vast amounts of code
� Modular analysis
� Defer work to preserve memory and time

Points-to Analysis

� Unification based (Steensgaard)
� Assignment unifies graph nodes

� x = y; // unifies nodes for x and y

� Less accurate, faster

� Subset-relationship based (Andersen)
� Assignment creates subset relationship

� x = y; // creates constraint x ⊇⊇⊇⊇ y

� More accurate, slower

Deduction Rules

yxyx

ee

eeee
Pee

ee

P*x e
ye

&yx
Pex

ey

yx

eeeP

p

xxxxx

→

→
→→=

→

=
→

→=
→

→
∈∈

=
====

 derivecan weif point tocan

)in (if

)in (if)in * (if
&

:,, and When

Asn;|Asn::

 Exp*|Exp:: &|*|::

31

3221
21

21

21 ExpProgram

Program

AsnExp

struct handling

� Field-independent
� struct is treated as unstructured memory region

� Field-based
� struct is treated as separate variables

struct Example

------s=B.y;

r gets &z---r=B.x;

---q gets &zq=A.y;

p gets &zp gets &zp=A.x;

assign to xassign to AA.x=&z;

Field-basedField-independentStatement

How to scale?

� These analyses are easy to implement for
small programs

� Large programs are considerably more
difficult
� Time constraints
� Memory constraints

Naïve Approach

� Paste all source files together
� Load information from large pasted file
� Analyze information

� Doesn’t scale beyond few thousand LOC

3-phase approach

� Compile
� parse source files
� extract assignments, function calls/returns/defns
� write object file (database)

� Link
� Merge all object files

� Analyze
� Use points-to analysis contained in merged object

file

Analysis

� Graph algorithm for Andersen’s method
� Graph contains node for every variable in

program
� Edges of graph show possible sources

(dependence) between nodes.
� If x = y appears, then there is an edge x�y

� Graph remains in pre-transitive form!
� Edge x�z may not appear, even if x�y and y�z

do appear.

Results

� Uncovered many serious new errors in
existing Lucent code. (original goal)

� Capable of analyzing over 1M lines of code in
less than 1 second.
� Misleading: lines of code are not a good indicator

of runtime or space
� Lucent code: 1.3M LOC :: 0.38s 8.8MB
� GIMP: 440K LOC :: 1.00s 12MB

� Adaptable framework capable of different
analyses

Questions?

References
1. L. Anderson, “Program Analysis and Specialization for the C

Programming Language”, PhD. thesis, DIKU report 94/19, 1994

Extra Slides

Memory Characteristics

