
Reuse Signature Analysis and 

Optimization

Tom Cauchois <tcauchois@gmail.com> 

15-745 S07



Storage latencies can't keep up with processor utilization; 

SRAM too expensive

Solution: memory hierarchy and caching

Motivations



Feeding the Cache

Taking advantage of spatial locality:

− Loop reordering, loop body alignment, struct and spill 

allocation on the stack

Taking advantage of temporal locality:

− More loop reordering, code motion, register allocation

But we need to know what memory access patterns will be...



Determining Locality

Easy at the basic block level; use compile-time information 

about variable accesses and array accesses in loops

What about indirection/inter-procedural locality?

− Not enough control flow data to do it statically

− Profiling results only give you access patterns for the 

tested input



Global Locality Analysis

New concept: data reuse distance

− The number of intervening memory accesses between two 

accesses of the same variable

− We can develop a model of reuse distance distribution of 

a given variable/instruction

− This lets us predict L2 miss rate

− Which opens the door to a variety of optimizations



Global Locality Analysis

To compute reuse distance, we need a compact way to store the 

last time a memory transaction happened.

Lots of literature; Ding proposes an approximate tree-based 

datastructure that coalesces nodes.



Global Locality Analysis

Instrument the code; for each memory transaction, record the 

reuse distance in a histogram and update the last-use time

Gives us a statistical distribution of reuse distance over a 

particular program input, but how do we generalize?



Global Locality Analysis

Transpose the histogram; find average reuse distance of the 

top k% of variables, and define:

− dn,i = avg reuse distance of ith percentile on iteration n

− sn = program data size on iteration n

Need to do a regression on

dn,i = ci + ei * fi(sn)

Since reuse distance is bounded by program size, fi is linear or 

sub-linear; one of x1, x0.5, or x0 will usually work.



Global Locality Analysis

A fully associative cache of size C kicks a line out after C other 

lines have been accessed.

For a given instruction, if we can predict the percentage of 

reuses with distance less than C, that gives us the L2 cache hit

rate.



Applications of this data

Reuse analysis gives the instructions with the highest 

probability of generating an L2 miss

Since most programs are memory bound, and the CPU only 

talks to memory on an L2 miss, these instructions are critical 

performance bottlenecks

Miss-rate prediction is still relatively accurate for set-

associative caches; can also model L1 hit/miss



Applications of this data

If we know an instruction will cache miss, there are a variety of 

ways to deal with it:

− hardware and software prefetching; for example, IA-64's 

speculative execution mechanism

− feedback-directed memory reorganization

− smarter scheduling



Questions?


