

Leveraging SIMD Architectures

“Vectorization for SIMD Architectures with
Alignment Constraints”

-A. Eichenberger, P. Wu, & K O'Brien

“Efficient SIMD Code Generation for Runtime
Alignment and Length Conversion”

- P. Wu, A. Eichenberger, & A. Wang

Presented by Peter Nelson and Dave Borel
February 27, 2007

“Simdization”

● Vectors:
– Data-level parallel

sequences of scalars

● Implementations
● Supercomputing
● MMX, 3DNow!, SSEx,

AltiVec
● CELL

● SIMD:
– Single Instruction,

Multiple Data

● Things to consider
● Data type, packing
● Vector Length
● Memory alignment

Classic Approach

● SIMD registers
– V bytes each

– V-byte aligned

– D = sizeof(element)

– Vector length B = V / D

– Example: SSE – 16x8'b, 8x16'b, 4x32'b, 2x64'b

● Operations
– parallel arithmetic (C = A .* B)

– vector algebra (cross, dot, ...)

– permute/shuffle/swizzle ({x,y,z,w} => {x,z,y,w}, ...)

CELL's Approach

“Virtual Vectors”/Streams

● Capture overall mathematical effect
– Combine stride-one accesses

– Support generic vector operations

– Align sequence as a whole

– Sign-extend

...defer SIMD instruction selection

Virtual Vector Aggregation

● Merge operations on contiguous data
● Pack “isomorphic” computations

● Basic block-level
– Seed virtual vectors

● “Short” loop-level
– Unroll static loops

● “Loop”-level
– Block (partially unroll) dynamic loops

Problems

● Strided access
● Alignment constraints
● Length/type conversion effects
● Compile-time knowledge
● Tension with ILP

Data Reorganization Graph

● Tree of vector expressions
– Leaves: stream loads

– Interior nodes: stream operations
● vector ops
● pack/unpack
● stream shift

– Root: stream store

● Transformations
– Goal: minimize instruction count

– Alignment, type conversion, simplification, ...

Stream Shifting Policies

● (Zero):
– Shift every load to

offset zero

– Shift every store to
target offset

● Eager:
– Shift every load to

target offset

● Lazy:
– Shift to target offset as

late as possible

● (Dominant):
– Shift intermediate

expressions to
dominant offset

– Shift result to target
offset

Basic Alignment

● Load from register-aligned memory
● Different left / right shifting code
● Forces only zero-shift for runtime alignment

Improved Alignment

● Make everything into a left shift
● Prepend placeholder values and shift those to 0
● Allows any runtime policy

Length Conversion

Length Conversion

● System has real hardware vector size V
● Create “virtual vector size” W and scale it

across Un/Packs
● Problems:

– ShiftStream only works if W <= V

– Loading requires an extra shift if W < V

Devirtualization/Code Generation

● Select SIMD/scalar intrinsics
– “Mixed-mode simdization”

– Replace (un)pack, shift, and generic vector ops

– Special case stores

● Balance DLP/ILP
– Heuristically evaluate local decisions

– Revert SIMD to scalar code where cheaper

Simdization Overview

Questions?

Thank you!

Backup: Performance Impact

● Speedup: (oracle shift, actual) vs. scalar code
– numerical.saxpy: (2.24, 1.08)

– numerical.swim: (_, 1.38)

– tcp/ip.checksum: (3.13, 2.92)

– video.alphablending: (8.25, 6.14)

– linpack: (_, 1.41)

– Autocor: (_, 2.16)

Backup: Benchmark Results

