CS 745, Spring 2011
Homework Assignment 1

Assigned: Thursday, January 13
Due: Thursday, January 27, 9:00AM

Welcome to the Spring 2011 edition of Optimizing Compilers (15-745). We will be using the
Low Level Virtual Machine (LLVM) Compiler infrastructure from University of Illinois Urbana-
Champagin (UIUC) for our programming assignments. While LLVM is currently supported on
a number of hardware platforms, we expect the assignments to be completed on x86 machines,
since that is where they will be graded. Although LLVM works quite well on both Mac OS X
and Windows, it is recommended that assignments be done in Linux, to increase the chances of
getting technical support from the teaching staff.

The objective of this first assignment is to introduce you to LLVM and some ways that it could
be used to make your programs run faster. In particular, you will use LLVM to learn interesting
properties about your program and to perform local optimizations.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

Any clarifications and revisions to the assignment will be posted on the “assignments” page on
the class web page.

In the following, HOMEDIR refers to the directory:
/afs/cs.cmu.edu/academic/class/15745-s11/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst1.

1 Install LLVM

First download, install, and build LLVM 2.8 source code from http:://llvm.org. Do not get
the source from SVN, instead get the 2.8 release. To get started, follow the instructions at
http://llvm.org/docs/GettingStarted.html for your particular machine configuration. You do
not need to build the gcc and g++ frontends from source, instead follow the provided instructions
to install prebuilt binaries. Be careful not to overwrite the current gec install on your system
(either /usr/bin/gcc or /usr/local/bin/gcee), rather install your LLVM gec in a private directory
and update your PATH environment variable appropriately so that you have llvm-gcc, llvm-
g+, opt, etc., in your PATH. Note that in order to use a debugger on the LLVM binaries you
will need to pass —enable-debug-runtime —disable-optimized to the configure script.

Peruse through the documentation at http://llvm.org/docs. The LLVM Programmer’s Man-
ual (http://llvim.org/docs/ProgrammersManual.html) and Writing an LLVM Pass Tutorial
(http://llvm.org/docs/WritingAnLLVMPass.html) are particularly useful.

@g = common global i32 O

define i32 @g_incr(i32 2%c) nounwind {
entry:

200 = load i32* @g, align 4

%1 = add nsw i32 260, %cC

store i32 %01, i32* @g, align 4

ret i32 undef
}

int g;
int g_incr (int c) define i32 @loop(i32 %oa, iI32 %26b, i32 2%c) nounwind {
{ - entry:

g +=cC; 260 = icmp slt i32 %a, 2%b

int loop (int a, int b, int c)

%261 = load i32* @g, align 4
br il 260, label %cbb.nph, label %bb2

int i; bb.nph: ; preds = %entry
int ret = O; 2%tmp = sub i32 %b, %ca
for (i=a;i<b;i++) { 2tmp7 = mul i32 2tmp, %c
g_incr (c); 2%tmp8 = add i32 %1, 2tmp7
store i32 2otmp8, i32* @g, align 4
return ret + g; ret i32 2%tmp8
¥ bb2: ; preds = 2%%entry
@) ret i32 %1
}
(b)

Figure 1: (a) A simple loop source code, and (b) its optimized LLVM bytecode.

2 Create a Pass

Assuming the installation directory of your LLVM source is 11vm/, create a directory (e.g, named
FunctionInfo) within the 11vm/1lib/Analysis directory. Copy FunctionInfo.cpp (provided
with the assignment) into the new directory. FunctionInfo.cpp contains a dummy LLVM
pass for analyzing the functions in a program. Currently it only prints out “15-745 Functions
Information Pass”. In the next section, you will extend FunctionsInfo.cpp to print out more
interesting information. For now, we will use the dummy LLVM pass to demonstrate how to build
and run run LLVM passes on programs. First, create a Makefile to build the FunctionsInfo
pass as follows:

LEVEL =../../../

LIBRARYNAME = FunctionInfo
LOADABLE_MODULE = 1

include $(LEVEL)/Makefile.common

(Note: you can also copy this code from ASSTDIR/FunctionInfo/Makefile.) Before moving
on to the next section, make sure you can run this dummy pass properly. Copy the loop.c source
code (shown in Figure 1(a)) from ASSTDIR/FunctionInfo/loop.c into your local directory.
Compile it to an optimized LLVM bytecode (loop.o) as follows:

llvm-gcc -0 -emit-1lvm -c loop.c

Inspect the generated bytecode using 11lvm-dis as follows:

1llvm-dis loop.o

This will create a disassembly of the testcase named loop.o.ll that should look very similar to
Figure 1(b).

Name | # Args | # Calls | # Blocks | # Insts
g_incr 1 0 1 4
loop 3 0 3 9

Table 1: Expected FunctionInfo output for the optimized bytecode of loop.c

Now try running the dummy FunctionInfo pass on the bytecode using the opt command. (If
you did not compile with debug information, the shared library (FunctionInfo.so) will be in
the Release directory). Note the use of the command line flag “~function-info” to enable
this pass. (See if you can locate the declaration of this flag in FunctionInfo.cpp).

opt -load 1llvm/Debug/lib/FunctionInfo.so -function-info loop.o -o out

If all goes well, “15745 Functions Information Pass” should be printed to stderr.

3 Meet The Functions

Program analysis is an important prerequisite to applying correct optimizations: i.e. without
breaking the code. For example, before the optimizer can remove some piece of code to make a
program run faster, it must examine other parts of the program to determine whether the code
is truly redundant. A compiler pass is the standard mechanism for analyzing and optimizing
programs.

You will now extend the dummy FunctionInfo pass from the previous section to learn in-
teresting properties about the functions in a program. Your pass should report the following
information about all functions that are used in a program:

1. Name.

2. Number of arguments.

3. Number of call sites (i.e. locations where this function is called).
4. Number of basic blocks.

5. Number of instructions.

To assist you in writing this pass, the expected output of running FunctionInfo on the optimized
bytecode (Figure 1(b)) is shown in Figure 1. As you can see, the output in Figure 1 is not
interesting, since loop.c is a trivial piece of code. It is therefore recommended that you debug
your pass with more complex source files, as you can imagine grading will be done with complex
programs.

3.1 Using FunctionInfo Results

Examine the results of your pass across different programs and explain any interesting observa-
tions.

1. You should notice that some functions have zero basic blocks: why is that?

2. Describe how the results could be used by an optimizer to determine which functions
should be inlined.

3. What other ways can your pass results be used?

4 Optimize The Block (New Dragon Book 8.5)

Now that you are an expert writing LLVM passes, it is time to write a pass for making programs
faster. You will implement optimizations on basic blocks as discussed in class. More details on
local optimizations are available in Chapter 8.5 of the new Dragon book. While there are many
types of local optimizations, we will keep things quite simple in this section and focus only on the
algebraic optimizations discussed in Section 8.5.4 of the book. Specifically, you will implement
the following local optimizations:

1. Algebraic identities: eg,x + 0 = 0 + x = x

2. Constant folding: e.g, 2 * 4 => 8

3. Strength reductions: e.g, 2 * x => (x + x) or (x << 1)

4.1 Implementation Detalils

You should create a new LLVM pass named LocalOpts.cpp following the steps in Section 2.
While it is possible to implement more than one pass in the same directory or file, it is probably
much easier at this point to simply create a new LocalOpts directory in 11vm/lib/Analysis.
Since the 11vm-gcc optimizer performs local optimizations, your LocalOpts pass should be run
on unoptimized LLVM bytecodes. Unoptimized bytecode of loop.c can be prepared as follows:

1llvm-gcc -00 -emit-1lvm -c loop.c

Now assuming the command line flag for enabling your local optimization pass is
-my-local-opts, then you can run your pass as follows:

opt -load 1llvm/Debug/lib/LocalOpts.so -my-local-opts loop.o -o out

In addition to transforming the bytecode, your pass should also print out a summary of the
optimizations it performed: e.g., how many constants were folded. We will provide toy source
files with unrealistic amounts of local optimization opportunities for you to debug your pass
in: ASSTDIR/LocalOpts/test-inputs. In addition to using these test inputs, we recommend
that you test your pass on more realistic programs.

5 Hand In

Electronic submission:

e The source code for your passes (FunctionInfo and LocalOpts), the associated
Makefiles, and a README describing how to build and run them. Do this by cre-
ating a tar file with the last name of at least one of your group members in the
filename, and copying this tar file into the directory

/afs/cs.cmu.edu/academic/class/15745-s11/public/asst/asstl/handin

Include as comments near the beginning of your source files the identities of all
members of your group. Also remember to do a good job of commenting your code.

Hard-copy submission:

1. A report that briefly describes the implementations of both passes.
2. A listing of your source code.

3. Answers to the short questions in 3.1.

