CS 745, Spring 2011
Homework Assignment 2

Assigned: Thursday, January 27
Due: Thursday, February 10, 9:00AM

Introduction

In class, we discussed many interesting data flow analyses like Liveness, Reaching Definitions,
and Available Expressions. Although these analyses are different in certain ways, for example
they compute different program properties and analyze the program in different directions (for-
wards, backwards), they share some common properties such as iterative algorithms, transfer
functions, and meet operators (Slide 23 in Lecture notes 4). These commonalities make it worth-
while to write a generic framework that can be parameterized appropriately for solving a specific
data flow analysis. In this assignment, you and your partner will implement such an iterative
data flow analysis framework in LLVM, and use it to implement a foward data flow analysis
(Reaching Definitions) and a backward data flow analysis (Liveness). Although Liveness and
Reaching Definitions implementations are available in some form in LLVM, they are not of the
iterative flavor, and the objective of this assignment is to create a generic framework for solving
iterative bit-vector dataflow analysis problems, and use it to implement Liveness and Reaching
Definitions analysis.

Policy

You will work in groups of two people to solve the problems for this assignment. Turn in a single
writeup per group, indicating all group members.

Logistics

Any clarifications and revisions to the assignment will be posted on the “assignments” page on
the class web page.

In the following, HOMEDIR refers to the directory:
/afs/cs.cmu.edu/academic/class/15745-s11/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst2.

1 TIterative Data Flow Analysis Framework

A well written iterative data flow analysis framework significantly reduces the burden of imple-
menting new data flow passes, the developer only writes pass specific details such as the meet
operator, transfer function, analysis direction e.t.c. In particular, the framework should solve
any unidirectional data flow analysis as long the analysis supplies the following;:

1. Domain including the semi-lattice

2. Direction (forwards or backwards)
3. Transfer function

4. Meet operation

5. Boundary condition

6. Initial interior points

To simplify the design process, the domain of values should be represented as bit vectors so that
the semi-lattice and set operations (union, intersection) are easy to implement. Careful thought
should be given to how the analysis parameters are represented. For example, direction could
reasonably be represented as a boolean, while function pointers may seem more appropriate for
representing transfer functions.

2 Data Flow Analyses

You will now use your iterative data flow analysis framework to implement Liveness and Reaching
Definitions. As explained below in more details, each analysis should perform computation at
program points. As defined in class, program points are assumed to lie between instructions (not
in the middle of instructions).

Liveness On convergence, your Liveness pass should report all variables that are “live” at
each program point. A useful debugging strategy might be to use results of the LLVM Liveness
pass as a reference.

Reaching Definitions On convergence, your Reaching Definitions pass should report all the
definition sites that “reach” each program point.

define i32 @sum(i32 %a, 132 %b) nounwind readnone ssp {
entry:

%0 = icmp slt i32 %a, %b

br il %0, label %bb.nph, label %bb2

bb.nph: ; preds = %entry
$tmp = sub i32 %b, %a
br label %bb

bb: ; preds = %bb, $bb.nph
%$indvar = phi i32 [0, %bb.nph], [%indvar.next, %bb]
$res.05 = phi i32 [1, %bb.nph], [%1, %bb]

int sum (int a, int b) %1.04 = add i32 %indvar, %a

{ %1 = mul nsw i32 %res.05, %i.04

int i; $indvar.next = add i32 %indvar, 1

int res = 1; %exitcond = icmp eq i32 %indvar.next, %$tmp

br il %exitcond, label %bb2, label %bb
for (i = a; i < b; i++)

{ bb2: ; preds = %bb, $entry
res *= i; $res.0.lcssa = phi i32 [1, %entry], [%1, %bb]
} ret i32 3%res.0.lcssa
return res;
}
(a) (b)

Figure 1: (a) Simple loop code, and (b) corresponding optimized (-O) LLVM bytecode.

2.1 Implementation Issues'

The Single Static Assignment (SSA) form of LLVM intermediate representation presents some
unique challenges when performing iterative data flow analysis.

1. Values in LLVM are represented by the Value class. In SSA every value is guaranteed to
have only a single definition point point, so instead of representing values as some distinct
variable or pseudo register class, LLVM represents values defined by instructions by the
defining instruction. That is, Instruction is a subclass of Value. There are other subclasses
of Value, such as basic blocks, constants, and function arguments. For this assignment,
we will only track the liveness of instruction-defined values and function arguments. That
is, when determining what values are used by an instruction, you will use code like this:

User::op_iterator 0I, OE;
for (0I = insn->op_begin(), OE = insn->op_end(); 0I != OE; ++0I)
{

Value *val = *0I;

if (isa<Instruction>(val) || isa<Argument>(val)) {

// val is used by insn

}

}

2. ¢ instructions are pseudo instructions that are used in the SSA representation and need
to be handled specially by both Liveness and Reaching Definitions. Although SSA will
be covered in more details in class, a brief description is appropriate here, especially with
regards to ¢ instructions. Since SSA requires that values have a unique definition at any

!Based on earlier editions of the class. Credits to Seth Goldtein and David Koes.

define i32 @sum(i32 %a, 132 %b) nounwind readnone ssp {

entry:
{%a,%b}
%0 = icmp slt i32 %a, %b
{%a,3%b, 30}
br il %0, label %bb.nph, label %bb2
bb.nph: ; preds = %entry
{%a,%b}
$tmp = sub i32 %b, %a
{%a,%tmp}
br label %bb
bb: ; preds = %bb, %bb.nph
¢indvar = phi i32 [0, %bb.nph], [%indvar.next, %bb]
$res.05 = phi i32 [1, %bb.nph], [%1, %bb]

{%a,%tmp,%indvar,%res.05}
%1i.04 = add i32 %indvar, %a

{%a,%tmp, %indvar, $res.05,%1i.04}
%1 = mul nsw i32 %res.05, %i.04

{%a,%tmp, $indvar, 31}
%indvar.next = add i32 %indvar, 1

{%a,%tmp,%1,%indvar.next}
%exitcond = icmp eq i32 %indvar.next, %tmp

{%a,%tmp,%1,%indvar.next, %exitcond}
br il %exitcond, label %bb2, label %bb
bb2: ; preds = %bb, %entry
$res.0.lcssa = phi i32 [1, %entry], [%1, %bb]

{%res.0}
ret i32 %res.0.lcssa

{}

Figure 2: Output of Liveness on the bytecode in Figure 1(b).

program program point (P), it is natural to wonder how a value that is live at P, but has
different definitions on the paths leading to is handled. The SSA solution is to introduce ¢
instructions at the begining of the basic block containing P, to “combine” all the different
definitions, so that all the uses in the block (including at P), see only the definition by the
phi instruction. Consider the uses of ¢(phi) instructions in Figure 1(b) as illustrations.
You should carefully consider how your analysis passes are affected by ¢ instructions. For
example, your passes should not output results for the program point preceding a phi
instruction since they are pseudo instructions which will not appear in the executable. To
guide you in formatting the output of your passes, the expected output of running Liveness
analysis on the bytecode from Figure 1(b) is shown in Figure 2.

3 Hand In

Electronic submission:

e The source code for your framework and passes, the associated Makefiles, and a
README describing how to build and run them. Do this by creating a tar file with the
last name of at least one of your group members in the filename, and copying this tar
file into the directory

ASSTDIR/handin

Include as comments near the beginning of your source files the identities of all
members of your group. Also remember to do a good job of commenting your code.

Hard-copy submission:

1. A report that briefly describes the design and implementation of your framework
and passes. In particular, describe the interface of your framework clearly, so that
someone else (e.g the grader) could write a pass that will work with it.

2. A listing of your source code.

