
1

Lecture 10
Lazy Code Motion

I. Forms of redundancy (quick review)
• global common subexpression elimination
• loop invariant code motion
• partial redundancy

II. Lazy Code Motion Algorithm
• Mathematical concept: a cut set

B i h i (i i i)

Carnegie Mellon

• Basic technique (anticipation)
• 3 more passes to refine algorithm

Reading: Chapter 9.5

Todd C. Mowry 15745: Lazy Code Motion 1

Overview

• Eliminates many forms of redundancy in one fell swoop

• Originally formulated as 1 bi-directional analysis

• Lazy code motion algorithm
– formulated as 4 separate uni-directional passes

• backward, forward, forward, backward

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 2

I. Common Subexpression Elimination

a = b + c a = b + c a = b + c

• A common expression may have different values on different paths!

d = b + c

b = 7

d = b + c

b = 7
f = b + c

d = b + c

a = b + c

Carnegie Mellon

• On every path reaching p,
– expression b+c has been computed
– b, c not overwritten after the expression

Todd C. Mowry15745: Lazy Code Motion 3

Loop Invariant Code Motion

a = b + c a = b + c

a = t

t = b + c

a = b + c a = b + c

b = read() a = b + c
exit

Carnegie Mellon

• Given an expression (b+c) inside a loop,
– does the value of b+c change inside the loop?
– is the code executed at least once?

Todd C. Mowry15745: Lazy Code Motion 4

2

Partial Redundancy

a = b + c

• Can we place calculations of b+c
such that no path re-executes the same expression

• Partial Redundancy Elimination (PRE)

d = b + c

Carnegie Mellon

• Partial Redundancy Elimination (PRE)
– subsumes:

• global common subexpression (full redundancy)
• loop invariant code motion (partial redundancy for loops)

M. LamCS243: Partial Redundancy Elimination 5

II. Lazy Code Motion
• Key observation:

– A bi-directional (!) data flow problem can be replaced with several
unidirectional data flow problems  much easier

– Better result as well!Better result as well!

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 6

Preparing the Flow Graph

a = b + c a = b + c

• Definition: Critical edges
– source basic block has multiple successors
– destination basic block has multiple predecessors

• Modify the flow graph: (treat every statement as a basic block)

d = b + c
d = b + c

Carnegie Mellon

y g p (y)
– To keep algorithm simple: restrict placement of instructions to the

beginning of a basic block
– Add a basic block for every edge that leads to a basic block with

multiple predecessors (not just on critical edges)

Todd C. Mowry15745: Lazy Code Motion 7

Full Redundancy: A Cut Set in a Graph
Key mathematical concept

… = a+b

entry

… a+b

… = a+b

… = a+b… = a+b

a = …
b = …

cut set

p:

Carnegie Mellon

• Full redundancy at p: expression a+b redundant on all paths
– a cut set: nodes that separate entry from p
– a cut set contains calculation of a+b
– a, b, not redefined

Todd C. Mowry15745: Lazy Code Motion 8

3

Partial Redundancy: Completing a Cut Set

… = a+b

entry

• Partial redundancy at p: redundant on some but not all paths
– Add operations to create a cut set containing a+b
– Note: Moving operations up can eliminate redundancy

… = a+b

… = a+b… = a+b

a = …
b = …

cut set

p:

Carnegie Mellon

• Constraint on placement: no wasted operation
– a+b is “anticipated” at B if its value computed at B will be used along

ALL subsequent paths
– a, b not redefined, no branches that lead to exit without use

• Range where a+b is anticipated  Choice

Todd C. Mowry15745: Lazy Code Motion 9

Pass 1: Anticipated Expressions

• Backward pass: Anticipated expressions
Anticipated[b].in: Set of expressions anticipated at the entry of b

• An expression is anticipated if its value computed at point p
will be used along ALL subsequent paths

This pass does most of the heavy lifting in eliminating redundancy

will be used along ALL subsequent paths

Anticipated Expressions
Domain Sets of expressions
Direction backward
Transfer Function fb(x) = EUseb  (x -EKillb)

EUse: used exp, EKill: exp killed
 

Boundary in[exit] = 

Carnegie Mellon

• First approximation:
• place operations at the frontier of anticipation

(boundary between not anticipated and anticipated)

Todd C. Mowry15745: Lazy Code Motion 10

Boundary in[exit] 
Initialization in[b] = {all expressions}

Examples (1)
See the algorithm in action

x = a + b

z = a + b

y = a + b

x = a + b r = a + b a = 10

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 11

Examples (2)

z = a + b

x = a + b

Carnegie Mellon

• Cannot eliminate all redundancy

Todd C. Mowry15745: Lazy Code Motion 12

4

Examples (3)

x = a+b x = a+bx = a+b

y = a+b

a = 10

x = a+b

y = a+b

a = 10

Carnegie Mellon

• Do you know how the algorithm works without simulating it?

Todd C. Mowry15745: Lazy Code Motion 13

Pass 2: Place As Early As Possible

• First approximation: frontier between “not anticipated” & “anticipated”
• Complication: anticipation may oscillate

There is still some redundancy left!

a = 1

x = a+b

• Pretend we calculate expression e whenever it is anticipated
• e will be available at p if e has been “anticipated but not subsequently

killed” on all paths reaching p

y = a+b

Available Expressions
Domain Sets of expressions

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 14

Direction forward
Transfer Function fb(x) = (Anticipated[b].in  x) - EKillb
 

Boundary out[entry] = 
Initialization out[b] = {all expressions}

Early Placement

• earliest(b)
– set of expressions added to block b under early placement

• Place expression at the earliest point anticipated and not already
il blavailable

– earliest(b) = anticipated[b].in - available[b].in

• Algorithm
– For all basic block b, if x+y  earliest[b]

• at beginning of b:
create a new variable t
t = x+y,
replace every original x+y by t

Carnegie Mellon

replace every original x y by t

Todd C. Mowry15745: Lazy Code Motion 15

Pass 3: Lazy Code Motion
Let’s be lazy without introducing redundancy.

• Delay creating redundancy to reduce register
pressure x = b+c

b = 1

• An expression e is postponable at a program point p if
– all paths leading to p have seen the earliest placement of e but not a

subsequent use
Postponable Expressions

Domain Sets of expressions

y = b+c

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 16

Direction forward
Transfer Function fb(x) = (earliest[b]  x) - EUseb

 

Boundary out[entry] = 
Initialization out[b] = {all expressions}

5

Latest: frontier at the end of “postponable” cut set

• latest[b] = (earliest[b]  postponable.in[b]) 
(EUseb  (s  succ[b](earliest[s]  postponable.in[s])))

• OK to place expression: earliest or postponable
N d l b f h• Need to place at b if either

– used in b, or
– not OK to place in one of its successors

• Works because of pre-processing step (an empty block was introduced
to an edge if the destination has multiple predecessors)

• if b has a successor that cannot accept postponement,
b has only one successor

• The following does not exist:

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion

OK to place

OK to place not OK to place

17

Pass 4: Cleaning Up
Finally… this is easy, it is like liveness

x = a + b

not used afterwards

• Eliminate temporary variable assignments unused beyond current block
• Compute: Used.out[b]: sets of used (live) expressions at exit of b.

Used Expressions
Domain Sets of expressions
Direction backward

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 18

Direction backward
Transfer Function fb(x) = (EUse[b]  x) - latest[b]

 

Boundary in[exit] = 
Initialization in[b] = 

Code Transformation

• For all basic blocks b,

if (x+y)  (latest[b]  used.out[b])

at beginning of b: at beginning of b:

add new t = x+y

replace every original x+y by t

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 19

4 Passes for Partial Redundancy Elimination

• Heavy lifting: Cannot introduce operations not executed originally
– Pass 1 (backward): Anticipation: range of code motion
– Placing operations at the frontier of anticipation gets most of the

d dredundancy
• Squeezing the last drop of redundancy:

An anticipation frontier may cover a subsequent frontier
– Pass 2 (forward): Availability
– Earliest: anticipated, but not yet available

• Push the cut set out -- as late as possible
To minimize register lifetimes
– Pass 3 (forward): Postponability: move it down provided it does not

Carnegie Mellon

Pass 3 (forward): Postponability: move it down provided it does not
create redundancy

– Latest: where it is used or the frontier of postponability
• Cleaning up

– Pass 4: Remove temporary assignment

Todd C. Mowry15745: Lazy Code Motion 20

6

Remarks

• Powerful algorithm
– Finds many forms of redundancy in one unified framework

• Illustrates the power of data flow• Illustrates the power of data flow
– Multiple data flow problems

Carnegie Mellon
Todd C. Mowry15745: Lazy Code Motion 21

