
1

Lecture 16
Intro to Instruction Scheduling

Carnegie Mellon

Reading: Chapter 10.3 – 10.4

Todd C. Mowry 15745: Intro to Scheduling 1

Optimization: What’s the Point? (A Quick Review)

Machine-Independent Optimizations:
– e.g., constant propagation & folding, redundancy elimination, dead-

code elimination, etc.
G l li i t k– Goal: eliminate work

Machine-Dependent Optimizations:
– register allocation

• Goal: reduce cost of accessing data
– instruction scheduling

• Goal: ???

Carnegie Mellon

– …

Todd C. Mowry15745: Intro to Scheduling 2

The Goal of Instruction Scheduling

• Assume that the remaining instructions are all essential
– (otherwise, earlier passes would have eliminated them)

• How can we perform this fixed amount of work in less time?
– Answer: execute the instructions in parallel

a = 1 + x;

b = 2 + y;

c = 3 + z;

Time
a = 1 + x; b = 2 + y; c = 3 + z;a = 1 + x; b = 2 + y; c = 3 + z;

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 3

Hardware Support for Parallel Execution

• Three forms of parallelism are found in modern machines:
– Pipelining
– Superscalar Processing } Instruction Scheduling

 P ll l– Multiprocessing Automatic Parallelization
(covered later in class)

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 4

2

Pipelining

Basic idea:
– break instruction into stages that can be overlapped

Example: simple 5-stage pipeline from early RISC machines

Time

1 instruction

IF RF EX ME WB
IF = Instruction Fetch
RF = Decode & Register Fetch
EX = Execute on ALU
ME = Memory Access
WB = Write Back to Register File

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 5

Time WB = Write Back to Register File

Pipelining Illustration

IF RF EX MEWB

IF RF EX MEWBIF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 6

Time

Pipelining Illustration

IF RF EX MEWB

F F E E BIF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

Carnegie Mellon

• In a given cycle, each instruction is in a different stage

Todd C. Mowry15745: Intro to Scheduling 7

Time

Beyond 5-Stage Pipelines: Even More Parallelism

• Should we simply make pipelines deeper and deeper?

te
r

te
r

st
er te
r

– registers between pipeline stages have fixed overheads
• hence diminishing returns with more stages (Amdahl’s Law)

– value of pipe stage unclear if < time for integer add
• However, many consumers think “performance = clock rate”

IF RF EX ME WB

Pi
pe

 R
eg

is

Pi
pe

 R
eg

is

Pi
pe

 R
eg

is

Pi
pe

 R
eg

is

Carnegie Mellon

y p
– perceived need for higher clock rates -> deeper pipelines
– e.g., Pentium 4 processor had a 20-stage pipeline

Todd C. Mowry15745: Intro to Scheduling 8

3

Beyond Pipelining: “Superscalar” Processing

• Basic Idea:
– multiple (independent) instructions can proceed simultaneously

through the same pipeline stages
R i s dditi l h d• Requires additional hardware
– example: “Execute” stage

EX

Pi
pe

 R
eg

is
te

r

Pi
pe

 R
eg

is
te

r

Pi
pe

 R
eg

is
te

r

Pi
pe

 R
eg

is
te

r

Pi
pe

 R
eg

is
te

r

Pi
pe

 R
eg

is
te

r

r1+r2 r1+r2

r3+r4

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 9

Abstract
Representation

Hardware for
Scalar Pipeline:

1 ALU

Hardware for
2-way Superscalar:

2 ALUs

Superscalar Pipeline Illustration

Original (scalar) pipeline:
• Only one instruction in a given pipe stage at a given time

IF RF EX MEWB

IF RF EX MEWBSuperscalar pipeline:
• Multiple instructions in the same pipe stage at the same timeIF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 10

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

IF RF EX MEWB

Time

The Ideal Scheduling Outcome

• What prevents us from achieving this ideal?

Ti

Before

1 cycle

After

Time

N cycles

1 cycle

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 11

Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 12

4

Limitation #1: Hardware Resources

• Processors have finite resources, and there are often constraints on
how these resources can be used.

E l sExamples:
– Finite issue width
– Limited functional units (FUs) per given instruction type
– Limited pipelining within a given functional unit (FU)

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 13

Finite Issue Width

• Prior to superscalar processing:
– processors only “issued” one instruction per cycle

• Even with superscalar processing:
– limit on total # of instructions issued per cycle

Issue Width = infinite Issue Width = 4
Time

1

≥ N/4

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 14

Limited FUs per Instruction Type

• e.g., a 4-way superscalar might only be able to issue up to 2 integer, 1
memory, and 1 floating-point insts per cycle

More Realistic
Unconstrained

3

12

Time
Original Code Int Mem FP

More Realistic

5

Bottleneck

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 15

Integer

Memory
Floating-Point

Empty Slot
Bottleneck

Limited Pipelining within a Functional Unit

• e.g., only 1 new floating-point division once every 2 cycles

Original Code FP
Schedule with Limited Pipelining

12

Time
Original Code

Integer

Int Mem FP

9

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 16

Integer

Memory
Floating-Point

Empty Slot

5

Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 17

Limitation #2: Data Dependences

• If we read or write a data location “too early”, the program may behave
incorrectly.

(h ll)

y = x;
x = 1;

x = 1;
x = 2;

x = 1;
y = x;

(Assume that initially, x = 0.)

x = 1;
y = x;

x = 1;
x = 2;

y = x;
x = 1;

Read-after-Write
(“True” dependence)

Write-after-Write
(“Output” dependence)

Write-after-Read
(“Anti” dependence)

??? ??? ???
1 1

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 18

Can potentially fix through renaming.Fundamental
(no simple fix)

Why Data Dependences are Challenging

x = a[i];
*p 1

• which of these instructions can be reordered?

• ambiguous data dependences are very common in practice

*p = 1;
y = *q;
*r = z;

Carnegie Mellon

ambiguous data dependences are very common in practice
– difficult to resolve, despite fancy pointer analysis

Todd C. Mowry15745: Intro to Scheduling 19

Given Ambiguous Data Dependences, What To Do?

x = a[i];
*p 1

• Conservative approach: don’t reorder instructions
– ensures correct execution

but may suffer poor performance

*p = 1;
y = *q;
*r = z;

Carnegie Mellon

– but may suffer poor performance
• Aggressive approach?

– is there a way to safely reorder instructions?

Todd C. Mowry15745: Intro to Scheduling 20

6

Hardware Limitations: Multi-cycle Execution Latencies

• Simple instructions often “execute” in one cycle
– (as observed by other instructions in the pipeline)
– e.g., integer addition

• More complex instructions may require multiple cycles
– e.g., integer division, square-root
– cache misses!

• These latencies, when combined with data dependencies, can result in
non-trivial critical path lengths through code

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 21

Limitations Upon Scheduling

1. Hardware Resources
2. Data Dependences
3. Control Dependences

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 22

Limitation #3: Control Dependences

Carnegie Mellon

• What do we do when we reach a conditional branch?
– choose a “frequently-executed” path?
– choose multiple paths?

Todd C. Mowry15745: Intro to Scheduling 23

Scheduling Constraints: Summary

• Hardware Resources
– finite set of FUs with instruction type, bandwidth, and latency

constraints
h hi h ls h s st i ts– cache hierarchy also has many constraints

• Data Dependences
– can’t consume a result before it is produced
– ambiguous dependences create many challenges

• Control Dependences
– impractical to schedule for all possible paths
– choosing an “expected” path may be difficult

 t b t i i l if

Carnegie Mellon

• recovery costs can be non-trivial if you are wrong

Todd C. Mowry15745: Intro to Scheduling 24

7

Hardware- vs. Compiler-Based Scheduling

• The hardware can also attempt to reschedule instructions (on-the-fly)
to improve performance

• What advantages/disadvantages would hardware have (vs. the compiler)
when trying to reason about:when trying to reason about:
– Hardware Resources
– Data Dependences
– Control Dependences

• Which is better:
– doing more of the scheduling work in the compiler?
– doing more of the scheduling work in the hardware?

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 25

Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric

VLIW
(Very Long

Instruction Word)

Out-of-Order
Superscalar

In-Order
Superscalar

e.g.: Itanium e.g.: Original Pentium e.g.: Pentium 4

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 26

VLIW Processors

Motivation:
– if the hardware spends zero (or almost zero) time thinking about

scheduling, it can run faster
Phil s hPhilosophy:

– give full control over scheduling to the compiler
Implementation:

– expose control over all FUs directly to software via a “very long
instruction word”

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 27

Int Mem FP Time

Compiling for VLIW

Predicting Execution Latencies:
– easy for most functional units (latency is fixed)
– but what about memory references?

Data Dependences:
– in “pure” VLIW, the hardware does not check for them

• the compiler takes them into account to produce safe code

a = b + 1;
c = a – d;
e c / 3

while (p != NULL) {
if (test(p->val))

q->next = p->left;

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 28

e = c / 3;
f = g – e;

Example #1

q p
p = p->next;

}
Example #2

8

“VLIW” Today

• Hardware checks for data dependences through memory
• Compiler can do a good job with register dependences

Carnegie Mellon
15745: Intro to Scheduling

Intel/HP Itanium2

Inst 2 Inst 1 Inst 0 Template

128-bit bundle

Transmeta Crusoe 5400

 Runtime software dynamically
generates VLIW code

Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric

VLIW In-Order
Superscalar

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 30

In-Order Superscalar Processors

In contrast with VLIW:
– hardware does full data dependence checking
– hence, no need to encode NOPs for empty slots

Int Mem FP

Empty Slot

Time Once an instruction cannot be issued, no
instructions after it will be issued.

Bottom Line:
• hardware matches code to available resources;

recompilation is not necessary for correctness
• compiler’s role is still important

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 31

p y
• for performance, not correctness!

Spectrum of Hardware Support
for Scheduling

Compiler-Centric Hardware-Centric

VLIW In-Order
Superscalar

Out-of-Order
Superscalar

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 32

9

Out-of-Order Superscalar Processors

Motivation:
– when an instruction is stuck, perhaps there are subsequent

instructions that can be executed

stuck waiting on true dependencestuck waiting on true dependence
suffers expensive cache misssuffers expensive cache missx = *p;

y = x + 1;
z = a + 2;
b = c / 3; } these do not need to wait

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 33

Sounds great! But how does this complicate the hardware?

Out-of-Order Superscalar Processors: Hardware Overview

• fetch & graduate in-order, issue out-of-order

PC: 0x10 Inst.0x140x180x1c
Complexity of checking
dependences increases

0x1c: b = c / 3;

0x18: z = a + 2;

PC: 0x10 Cache

Branch
Predictor

0x140x180x1c

0x1c: b = c / 3;

0x18: z = a + 2;de
r

Bu
ff

er

issue (out-of-order)
issue (out-of-order)
issue (out-of-order)
issue (out-of-order)

dependences increases
exponentially with
issue width!

}
Carnegie Mellon

Todd C. Mowry15745: Intro to Scheduling 34

issue (cache miss)
0x14: y = x + 1;

0x10: x = *p;

0x14: y = x + 1;

0x10: x = *p;Re
or

d

issue (cache miss)
can’t issuecan’t issue }

Compiler- vs. Hardware-Centric Scheduling: Bottom Line

Compiler-Centric Hardware-Centric

• High-end processors will probably remain out-of-order
– moving instructions small distances is probably useless

BUT i i i l di ill h l

VLIW In-Order
Superscalar

Out-of-Order
Superscalar

Carnegie Mellon

– BUT, moving instructions large distances may still help

• Cheap, power-efficient processors may be in-order/VLIW
– instruction scheduling may have a large impact

Todd C. Mowry15745: Intro to Scheduling 35

Scheduling Roadmap

…
y = c + d

x = a + b x = a + b

y = c + d

…
y = c + d

x = a + b

Carnegie Mellon
Todd C. Mowry15745: Intro to Scheduling 36

List Scheduling:
• within a basic block

Trace Scheduling:
• across basic blocks

Software Pipelining:
• across loop iterations

