


```
List Scheduling Algorithm
ready-list = root nodes in DPG; inflight-list = {};
while ((|ready-list|+|inflight-list| > 0) \&\& an issue slot is available) {
   for op = (all nodes in ready-list in descending priority order) {
       if (an FU exists for op to start at cycle) {
          remove op from ready-list and add to inflight-list;
          add op to schedule at time cycle;
          if (op has an outgoing anti-edge)
              add all targets of op's anti-edges that are ready to ready-list;
   cycle = cycle + 1;
   for op = (all nodes in inflight-list)
       if (op finishes at time cycle) {
          remove op from inflight-list;
          check nodes waiting for op & add to ready-list if all operands
   available;
                                                                  Carnegie Mellon
15745: List Scheduling
                                                                      Todd C. Mowry
```


Evaluation of List Scheduling Cooper et al. propose "RBF" scheduling: - schedule each block M times forward & backward - break any priority ties randomly For real programs: - regular list scheduling works very well For synthetic blocks: - RBF wins when "available parallelism" (AP) is ~2.5 - for smaller AP, scheduling is too constrained - for larger AP, any decision tends to work well Carnegie Mellon Todd C. Mowry

