Lecture 17
List Scheduling

Reading: Chapter 10.3 - 10.4

I - <5 velon [
1

Todd C. Mowry 15745: List Scheduling

|
Review: The Ideal Scheduling Outcome

* What prevents us from achieving this ideal?

Before After n
Time T EE T T] - 1 cycle
N cycles
Carnegie Mellon -
15745: List Scheduling 2 Todd C. Mowry

|
Review: Scheduling Constraints

e Hardware Resources

— finite set of FUs with instruction type, bandwidth, and latency
constraints

- cache hierarchy also has many constraints
+ Data Dependences

— can't consume a result before it is produced

— ambiguous dependences create many challenges
+ Control Dependences

— impractical to schedule for all possible paths

— choosing an “expected” path may be difficult

* recovery costs can be non-trivial if you are wrong

Carnegie Mellon -

15745: List Scheduling 3 Todd C. Mowry

Scheduling Roadmap

a+b

‘c+d

List Scheduling: Trace Scheduling: Software Pipelining:
* within a basic block + across basic blocks * across loop iterations

Carnegie Mellon -

15745: List Scheduling 4 Todd C. Mowry

|
List Schedulin

* The most common technique for scheduling instructions within a basic
block

We don't need to worry about: \/
— control flow

a+b

We do need to worry about: c+d

y
— data dependences /\

— hardware resources

+ Evenwithout control flow, the problem is still NP-hard

Carnegie Mellon -

15745: List Scheduling 5 Todd C. Mowry

List Scheduling Algorithm: Inputs and Outputs

Algorithm reproduced from:
— "An Experimental Evaluation of List Scheduling”, Keith D. Cooper, Philip J.
Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998.

|
List Scheduling: The Basic Idea

e Maintain a list of instructions that are ready to execute
— data dependence constraints would be preserved
— machine resources are available
* Moving cycle-by-cycle through the schedule template:
— choose instructions from the list & schedule them
— update the list for the next cycle

=hs

Carnegie Mellon -

15745: List Scheduling 7 Todd C. Mowry

Inputs: | Output:
Data Precedence Machine 1
Graph (DPG) Parameters : Scheduled Code Cycle
® ® @ |#oru [oT=To
2 INT,1FP I E R
Latencies: '
@ @® add=1lcycle,.. | || I3 | I8 | 16 | 2
@ @ @ Pipelining: ' I10| --- | I11 3
1 add/cycle, ... : 17 19 15 4
Carnegie Mellon -
15745: List Scheduling 6 Todd C. Mowry
What Makes Life Interesting: Choice
Easy case:

— all ready instructions can be scheduled this cycle

Cwmunv > [T T«

Interesting case:
— we need to pick a subset of the ready instructions

Cmunegom [T T 1+
~>

+ List scheduling makes choices based upon priorities
— assigning priorities correctly is a key challenge

Carnegie Mellon -

15745: List Scheduling 8 Todd C. Mowry

Intuition Behind Priorities

» Intuitively, what should the priority correspond to?
» What factors are used to compute it?

— data dependences?

— machine parameters?

© @ @ # of FUs:
2 INT,1FP
@ @ Latencies:
add =1 cycle, ...

@3) (18 (@5 Pipelining:

@ 1 add/cycle, ...

Carnegie Mellon -

15745: List Scheduling 9 Todd C. Mowry

Representing Data Dependences:
The Data Precedence Graph (DPG)

* Two different kinds of edges:

Computing Priorities

+ Let's start with just true dependences (i.e. "edges” in DPG)
Priority = /atency-weighted depth in the DPG

l
priority(z) = maz(vlEletwes(DPG)vpepaths(a:,AAA,l) Z latency(p;))
pi=a

W @ @
@ @

™ @ @
<)

Carnegie Mellon -
15745: List Scheduling 1 Todd C. Mowry

Code DPe
10- x = 1 true “edges”: E @
I11: y>‘x (read-after-write) = (10,I1)
12: x*= .o w
= anti-edges™: E .
131 2 =3 (write-after-read) = (I112)
o e=(I2,I3)
* Why distinguish them? @
— do they affect scheduling differently?
* What about output dependences?
Carnegie Mellon -
15745: List Scheduling 10 Todd C. Mowry
Computing Priorities (Cont.)
* Now let's also take anti-dependences into account
- i.e. anti-edges in the set E'
latency(x) if x is a leaf
priority(x) = | max(latency(x) 4+ MaT(; e gpriority(y)),
ma:r;(I‘y)€h~:(prim'£ty(y))) otherwise.
& ® ©
Carnegie Mellon -

15745: List Scheduling 12 Todd C. Mowry

|
List Scheduling Algorithm

cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((]|ready-list]+]inflight-list] > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {
if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list;

¥

cycle = cycle + 1;
for op = (all nodes in inflight-list)
if (op finishes at time cycle) {
remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands

Example

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
110: JVWP L1

+
X

1

®O® ®
@@{@@@

@19

© w
+ 4
< 0O

O =hiS R =HOND R
+
o

Ne 0 QQ O T =9

I
[ay

+ 2 identical fully-pipelined FUs
* adds fake 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: List Scheduling 14 Todd C. Mowry

available;
3
3

3

Carnegie Mellon -
15745: List Scheduling 13 Todd C. Mowry

Example

10: a=1 Cycle
I11: f=a+x 0
12: b =7 @ 10 L2
13: c =9 13| !
arg=f+p @O © 5 | 19| 2
15: d = 13 I4 17 3
16: e = 19;
6z e =19 @®HOHEOE T T1e| 4
18: j=d+vy - — 5
19: z = -1 @ T10 6
110: JVP L1
+ 2 identical fully-pipelined FUs
+ adds fake 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: List Scheduling 15 Todd C. Mowry

What if We Break Ties Differently?

+
X

©w
+ 4w

< 0

N
NeT0oQ O T =Ho
O =P R =,OoNY R

+

o

-1
110: JVWP L1

+ 2 identical fully-pipelined FUs
 adds fake 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: List Scheduling 16 Todd C. Mowry

What if We Break Ties Differently?

10: a=1 Cycle
11: f=a+ x 0
12: b =7 @ 10 12
13: ¢ =9 Il 11 !
—

gzt OO ® [@@
5 @OO®D ed i
17: h=Ff+c @ |16 | 4
182 J =d+y oy I10 5
19: z = -1 @ 6
110: JVWP L1
+ 2 identical fully-pipelined FUs
+ adds fake 2 cycles; all other insts take 1 cycle

Carnegie Mellon -
15745: List Scheduling 17 Todd C. Mowry

Contrasting the Two Schedules

* Breaking ties arbitrarily may not be the best approach

Cycle Cycle
10 |12 | © I0 [12 | ©
11 |13 | 1 1 @] !
5 | 19 | 2 T3 2
4 |17 | 3 4 f17 | 3
8 | I6 | 4 T | m | 4
— | -] 5 110 5
I10 6
Carnegie Mellon -
15745: List Scheduling 18 Todd C. Mowry

|
Backward List Scheduling

Modify the algorithm as follows:
— reverse the direction of all edges in the DPG
— schedule the finish times of each operation
+ start times must still be used to ensure FU availability

Impact of scheduling backwards:
— clusters operations near the end (vs. the beginning)
— may be either better or worse than forward scheduling

Carnegie Mellon -

15745: List Scheduling 19 Todd C. Mowry

|
Backward List Scheduling Example:
Let's Schedule it Forward First

INT INT MEM Cycle

[DIa T LSL —- 0
[DIb | [DIc === 1
LDId [ADDa | ---- 2
ADDb [ADDc [---- 3
ADDd [ADDI | STa 4
CMP -—-- STb 5
=== === STc 6
---- ---- STd 7
---- ---- STe 8
— — J— 9
---- ---- ---- 10
---- ---- -—-- 11
BR --- -o-- 12

Hardware parameters:
— 2 INT units: ADDs take 2 cycles; others take 1 cycle

— 1 MEM unit: stores (ST) take 4 cycles

Carnegie Mellon -

15745: List Scheduling 20 Todd C. Mowry

Now Let's Try Scheduling Backward

INT INT MEM Cycle

LDIa - - 0
ADDI | LSL -—-- 1
ADDd | IDIc -—-- 2
ADDc | LDId STe 3
ADDb [[DIa | 57d | 4
ADDa | —— STc | 5
STb | 6
--—- --—- STa 7
— — J— 8
— R I 9
CMP__| — — | 10
BR — 1
Hardware parameters:
— 2 INT units: ADDs take 2 cycles; others take 1 cycle
— 1 MEM unit: stores (ST) take 4 cycles
Carnegie Mellon -
15745: List Scheduling 21 Todd C. Mowry

|
Contrasting Forward vs. Backward

List Scheduling

Forward Backward

INT INT MEM Cycle INT INT MEM Cycle
IDla [LSC | —] 0 ISla [] ——] 0
IDIb [IDIc | — | 1 ADDT [TSC [—] 1
IDId [ADDa | —— | 2 ADDd [IO | —— | 2
ADDE | ADDc | — | 3 ADbc | IbId | 5T | 3
ADbd | ADDI | 57a | 4 ADDb [LbIa | 57d | 4
TMP | — [5| 5 ADDa | — | 51c | 5
- | — [57| 6 — [— [5] 6
— [— | s5d]| 7 — [— [5a]| 7
— [| 57| 8 — [— [— | 8
— [[— | ¢ e I e
— | — | — | 10 WP [— | — | 10
— |— | —1n BR — [] 11
BR — | — 112

» backward scheduling clusters work near the end
» backward is better in this case, but this is not always true

Carnegie Mellon -

15745: List Scheduling 22 Todd C. Mowry

|
Evaluation of List Scheduling

Cooper et al. propose "RBF" scheduling:
— schedule each block M times forward & backward
— break any priority ties randomly

For real programs:
— regular list scheduling works very well

For synthetic blocks:
— RBF wins when "available parallelism" (AP) is ~2.5

— for smaller AP, scheduling is too constrained
— for larger AP, any decision tends to work well

Carnegie Mellon -

15745: List Scheduling 23 Todd C. Mowry

|
List Scheduling Wrap-Up

* The priority function can be arbitrarily sophisticated
- e.g.,, filling branch delay slots in early RISC processors

+ List scheduling is widely used, and it works fairly well

+ TItis limited, however, by basic block boundaries

Carnegie Mellon -

15745: List Scheduling 24 Todd C. Mowry

Scheduling Roadmap

a+b

y”c+d

List Scheduling: Trace Scheduling: Software Pipelining:
+ within a basic block + across basic blocks * across loop iterations

Carnegie Mellon -

15745: List Scheduling 25 Todd C. Mowry

