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Lecture 19
Software Pipelining

I. Introduction

II. Problem Formulation
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III. Algorithm

Todd C. Mowry 15-745: Software Pipelining 1

I. Example of DoAll Loops
• Machine:

– Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware 
loop op and auto-incrementing addressing mode.

• Source code:• Source code:
For i = 1 to n

D[i] = A[i] * B[i]+ c

• Code for one iteration:
1. LD  R5,0(R1++)
2. LD  R6,0(R2++)
3. MUL R7,R5,R6
4.   
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5. ADD R8,R7,R4
6. 
7. ST 0(R3++),R8

• Little or no parallelism within basic block
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Loop Unrolling
1.L: LD
2.   LD
3.          LD
4.   MUL    LD

Schedule after unrolling by a factor of 4

5.          MUL    LD
6.   ADD           LD
7.   ADD           LD
8.   ST            MUL    LD 
9.                        MUL
10.          ST     ADD
11. ADD
12. ST
13 ST BL (L)
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13.                        ST     BL (L)

• Let  u be the degree of unrolling:
– Length of u iterations = 7+2(u-1)
– Execution time per source iteration = (7+2(u-1)) / u =  2 + 5/u

Todd C. Mowry15-745: Software Pipelining 3

Software Pipelined Code
1. LD
2. LD
3. MUL    LD
4.        LD
5 MUL LD5.        MUL    LD
6. ADD           LD
7.               MUL    LD
8. ST     ADD           LD 
9.                      MUL    LD
10.        ST     ADD           LD
11. MUL
12. ST ADD
13.                      
14 ST ADD

…
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14. ST     ADD
15.
16.                             ST

• Unlike unrolling, software pipelining can give optimal result.
• Locally compacted code may not be globally optimal
• DOALL: Can fill arbitrarily long pipelines with infinitely many iterations
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Example of DoAcross Loop

Loop:
Sum = Sum + A[i];
B[i] = A[i] * c;

1. LD
2. MUL
3. ADD

Software Pipelined Code
1. LD
2. MUL
3. ADD   LD
4. ST    MUL
5.       ADD
6.       ST

4. ST
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Doacross loops
• Recurrences can be parallelized 
• Harder to fully utilize hardware with large degrees of parallelism
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II. Problem Formulation

Goals:
– maximize throughput
– small code size

Find: 
– an identical relative schedule S(n)

for every iteration
– a constant initiation interval (T)

such that
– the initiation interval is minimized 

S
0 LD
1 MUL
2 ADD   LD
3 ST    MUL

ADD
ST

T=2
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Complexity:
– NP-complete in general
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Impact of Resources on Bound on Initiation Interval

• Example: Resource usage of 1 iteration
– (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)

LD, LD, MUL, ADD, ST

• Lower bound on initiation interval?

for all resource i, 
number of units required by one iteration: ni

number of units in system: Ri
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Lower bound due to resource constraints: maxi ni/Ri
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Scheduling Constraints: Resources

LD Alu ST

LD Alu ST

LD l

Iteration 1

Iteration 2

Iteration 3

T=2

LD Alu ST

LD Alu ST
Iteration 4

Ti
m

e

LD Alu ST
Steady State

T=2
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• RT: resource reservation table for single iteration
• RTs: modulo resource reservation table

RTs[i] = t|(t mod T = i) RT[t]
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Scheduling Constraints: Precedence
for (i = 0; i < n; i++) {

*(p++) = *(q++) + c
}

• Minimum initiation interval?

Carnegie Mellon

• Minimum initiation interval?
• S(n): schedule for n with respect to the beginning of the schedule 
• Label edges with < , d > 

•  = iteration difference, d = delay

 x T + S(n2) – S(n1)  d
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Scheduling Constraints: Precedence
for (i = 2; i < n; i++) {

A[i] = A[i-2] + 1;
}

• Minimum initiation interval?
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• Minimum initiation interval?
• S(n): schedule for n with respect to the beginning of the schedule 
• Label edges with < , d > 

•  = iteration difference, d = delay

 x T + S(n2) – S(n1)  d
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Minimum Initiation Interval

For all cycles c, 
/max c CycleLength(c) / IterationDifference (c)

Carnegie Mellon
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III. Example: An Acyclic Graph
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Algorithm for Acyclic Graphs

• Find lower bound of initiation interval: T0

– based on resource constraints

• For T = T0, T0+1, ... until all nodes are scheduled0 0

– For each node n in topological order
• s0 = earliest n can be scheduled
• for each s = s0 , s0 +1, ..., s0 +T-1
• if NodeScheduled(n, s) break; 
• if n cannot be scheduled break; 

• NodeScheduled(n, s) 
Check resources of n at s in modulo resource reservation table
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– Check resources of n at s in modulo resource reservation table

• Can always meet the lower bound if: 
– every operation uses only 1 resource, and
– no cyclic dependences in the loop
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Cyclic Graphs

• No such thing as “topological order”
• b c; c b

S(c) – S(b)  1
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T + S(b) – S(c)  2

• Scheduling b constrains c, and vice versa
S(b) + 1  S(c)  S(b) – 2 + T
S(c) – T + 2  S(b)  S(c) – 1
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Strongly Connected Components

• A strongly connected component (SCC)
– Set of nodes such that every node can reach every other node

• Every node constrains all others from above and below
– Finds longest paths between every pair of nodes
– As each node scheduled, 

find lower and upper bounds of all other nodes in SCC
• SCCs are hard to schedule

– Critical cycle: no slack
• Backtrack starting with the first node in SCC 

– increases T, increases slack
• Edges between SCCs are acyclic
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• Edges between SCCs are acyclic
– Acyclic graph: every node is a separate SCC
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Algorithm Design

• Find lower bound of initiation interval: T0

– based on resource constraints and precedence constraints

• For T = T0, T0+1, ... , until all nodes are scheduled0 0

– E*= longest path between each pair
– For each SCC c in topological order

• s0 = Earliest c can be scheduled
• For each s = s0 , s0 +1, ..., s0 +T-1
• if SCCScheduled(c, s) break; 
• If c cannot be scheduled return false; 

– return true; 

Carnegie Mellon
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Scheduling a Strongly Connected Component (SCC)

• SCCScheduled(c, s)
– Schedule first node at s, return false if fails
– For each remaining node n in c 

 l  b d   b d  E*• sl = lower bound on n based on E*
• su = upper bound on n based on E*
• For each s = sl , sl +1, min (sl +T-1, su)
• if NodeScheduled(n, s) break; 
• If n cannot be scheduled return false; 

– return true;
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Modulo Variable Expansion
• Software-pipelined code

1. LD
2. LD
3 MUL LD

1. LD  R5,0(R1++)
2. LD  R6,0(R2++)
3. MUL R7,R5,R6
4.
5 ADD R8 R7 R43. MUL    LD

4.        LD 
5.        MUL    LD
6. ADD           LD

L:7.               MUL    LD
8. ST     ADD           LD     BL L
9.                      MUL    LD
10.        ST     ADD           LD
11.                             MUL
12 ST ADD

5. ADD R8,R7,R4
6.
7. ST 0(R3++),R8
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12.               ST ADD
13.                      
14.                      ST     ADD
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Modulo Variable Expansion
1. LD R5,0(R1++)
2. LD R6,0(R1++)
3. LD R5,0(R1++) MUL R7,R5,R6
4. LD R6,0(R1++)
5. LD R5,0(R1++) MUL R17,R5,R6, ( ) , ,
6. LD R6,0(R1++) ADD R8,R7,R7

L  7. LD R5,0(R1++) MUL R7,R5,R6 
8. LD R6,0(R1++) ADD R8,R17,R17 ST 0(R3++),R8
9. LD R5,0(R1++) MUL R17,R5,R6
10. LD R6,0(R1++) ADD R8,R7,R7 ST 0(R3++),R8   BL L
11. MUL R7,R5,R6
12. ADD R8,R17,R17 ST 0(R3++),R8
13.
14. ADD R8,R7,R7 ST 0(R3++),R8
1
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15.
16. ST 0(R3++),R8
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Algorithm

• Normally, every iteration uses the same set of registers 
– introduces artificial anti-dependences for software pipelining

• Modulo variable expansion algorithm
– schedule each iteration ignoring artificial constraints on registers
– calculate life times of registers
– degree of unrolling = maxr (lifetimer /T)
– unroll the steady state of software pipelined loop to use different 

registers 
• Code generation

– generate one pipelined loop with only one exit 
(at beginning of steady state)
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(at beginning of steady state)
– generate one unpipelined loop to handle the rest
– code generation is the messiest part of the algorithm!
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Conclusions

• Numerical Code
– Software pipelining is useful for machines with a lot of pipelining 

and instruction level parallelism
C t d– Compact code

– Limits to parallelism: dependences, critical resource

Carnegie Mellon
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