
1

Lecture 19
Software Pipelining

I. Introduction

II. Problem Formulation

Carnegie Mellon

III. Algorithm

Todd C. Mowry 15-745: Software Pipelining 1

I. Example of DoAll Loops
• Machine:

– Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware
loop op and auto-incrementing addressing mode.

• Source code:• Source code:
For i = 1 to n

D[i] = A[i] * B[i]+ c

• Code for one iteration:
1. LD R5,0(R1++)
2. LD R6,0(R2++)
3. MUL R7,R5,R6
4.

Carnegie Mellon

5. ADD R8,R7,R4
6.
7. ST 0(R3++),R8

• Little or no parallelism within basic block

Todd C. Mowry15-745: Software Pipelining 2

Loop Unrolling
1.L: LD
2. LD
3. LD
4. MUL LD

Schedule after unrolling by a factor of 4

5. MUL LD
6. ADD LD
7. ADD LD
8. ST MUL LD
9. MUL
10. ST ADD
11. ADD
12. ST
13 ST BL (L)

Carnegie Mellon

13. ST BL (L)

• Let u be the degree of unrolling:
– Length of u iterations = 7+2(u-1)
– Execution time per source iteration = (7+2(u-1)) / u = 2 + 5/u

Todd C. Mowry15-745: Software Pipelining 3

Software Pipelined Code
1. LD
2. LD
3. MUL LD
4. LD
5 MUL LD5. MUL LD
6. ADD LD
7. MUL LD
8. ST ADD LD
9. MUL LD
10. ST ADD LD
11. MUL
12. ST ADD
13.
14 ST ADD

…

Carnegie Mellon

14. ST ADD
15.
16. ST

• Unlike unrolling, software pipelining can give optimal result.
• Locally compacted code may not be globally optimal
• DOALL: Can fill arbitrarily long pipelines with infinitely many iterations

Todd C. Mowry15-745: Software Pipelining 4

2

Example of DoAcross Loop

Loop:
Sum = Sum + A[i];
B[i] = A[i] * c;

1. LD
2. MUL
3. ADD

Software Pipelined Code
1. LD
2. MUL
3. ADD LD
4. ST MUL
5. ADD
6. ST

4. ST

Carnegie Mellon

Doacross loops
• Recurrences can be parallelized
• Harder to fully utilize hardware with large degrees of parallelism

Todd C. Mowry15-745: Software Pipelining 5

II. Problem Formulation

Goals:
– maximize throughput
– small code size

Find:
– an identical relative schedule S(n)

for every iteration
– a constant initiation interval (T)

such that
– the initiation interval is minimized

S
0 LD
1 MUL
2 ADD LD
3 ST MUL

ADD
ST

T=2

Carnegie Mellon

Complexity:
– NP-complete in general

Todd C. Mowry15-745: Software Pipelining 6

Impact of Resources on Bound on Initiation Interval

• Example: Resource usage of 1 iteration
– (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)

LD, LD, MUL, ADD, ST

• Lower bound on initiation interval?

for all resource i,
number of units required by one iteration: ni

number of units in system: Ri

Carnegie Mellon

Lower bound due to resource constraints: maxi ni/Ri

Todd C. Mowry15-745: Software Pipelining 7

Scheduling Constraints: Resources

LD Alu ST

LD Alu ST

LD l

Iteration 1

Iteration 2

Iteration 3

T=2

LD Alu ST

LD Alu ST
Iteration 4

Ti
m

e

LD Alu ST
Steady State

T=2

Carnegie Mellon

• RT: resource reservation table for single iteration
• RTs: modulo resource reservation table

RTs[i] = t|(t mod T = i) RT[t]

Todd C. Mowry15-745: Software Pipelining 8

3

Scheduling Constraints: Precedence
for (i = 0; i < n; i++) {

*(p++) = *(q++) + c
}

• Minimum initiation interval?

Carnegie Mellon

• Minimum initiation interval?
• S(n): schedule for n with respect to the beginning of the schedule
• Label edges with < , d >

• = iteration difference, d = delay

 x T + S(n2) – S(n1) d

Todd C. Mowry15-745: Software Pipelining 9

Scheduling Constraints: Precedence
for (i = 2; i < n; i++) {

A[i] = A[i-2] + 1;
}

• Minimum initiation interval?

Carnegie Mellon

• Minimum initiation interval?
• S(n): schedule for n with respect to the beginning of the schedule
• Label edges with < , d >

• = iteration difference, d = delay

 x T + S(n2) – S(n1) d

Todd C. Mowry15-745: Software Pipelining 10

Minimum Initiation Interval

For all cycles c,
/max c CycleLength(c) / IterationDifference (c)

Carnegie Mellon
Todd C. Mowry15-745: Software Pipelining 11

III. Example: An Acyclic Graph

Carnegie Mellon
Todd C. Mowry15-745: Software Pipelining 12

4

Algorithm for Acyclic Graphs

• Find lower bound of initiation interval: T0

– based on resource constraints

• For T = T0, T0+1, ... until all nodes are scheduled0 0

– For each node n in topological order
• s0 = earliest n can be scheduled
• for each s = s0 , s0 +1, ..., s0 +T-1
• if NodeScheduled(n, s) break;
• if n cannot be scheduled break;

• NodeScheduled(n, s)
Check resources of n at s in modulo resource reservation table

Carnegie Mellon

– Check resources of n at s in modulo resource reservation table

• Can always meet the lower bound if:
– every operation uses only 1 resource, and
– no cyclic dependences in the loop

Todd C. Mowry15-745: Software Pipelining 13

Cyclic Graphs

• No such thing as “topological order”
• b c; c b

S(c) – S(b) 1

Carnegie Mellon

T + S(b) – S(c) 2

• Scheduling b constrains c, and vice versa
S(b) + 1 S(c) S(b) – 2 + T
S(c) – T + 2 S(b) S(c) – 1

Todd C. Mowry15-745: Software Pipelining 14

Strongly Connected Components

• A strongly connected component (SCC)
– Set of nodes such that every node can reach every other node

• Every node constrains all others from above and below
– Finds longest paths between every pair of nodes
– As each node scheduled,

find lower and upper bounds of all other nodes in SCC
• SCCs are hard to schedule

– Critical cycle: no slack
• Backtrack starting with the first node in SCC

– increases T, increases slack
• Edges between SCCs are acyclic

Carnegie Mellon

• Edges between SCCs are acyclic
– Acyclic graph: every node is a separate SCC

Todd C. Mowry15-745: Software Pipelining 15

Algorithm Design

• Find lower bound of initiation interval: T0

– based on resource constraints and precedence constraints

• For T = T0, T0+1, ... , until all nodes are scheduled0 0

– E*= longest path between each pair
– For each SCC c in topological order

• s0 = Earliest c can be scheduled
• For each s = s0 , s0 +1, ..., s0 +T-1
• if SCCScheduled(c, s) break;
• If c cannot be scheduled return false;

– return true;

Carnegie Mellon
Todd C. Mowry15-745: Software Pipelining 16

5

Scheduling a Strongly Connected Component (SCC)

• SCCScheduled(c, s)
– Schedule first node at s, return false if fails
– For each remaining node n in c

 l b d b d E*• sl = lower bound on n based on E*
• su = upper bound on n based on E*
• For each s = sl , sl +1, min (sl +T-1, su)
• if NodeScheduled(n, s) break;
• If n cannot be scheduled return false;

– return true;

Carnegie Mellon
Todd C. Mowry15-745: Software Pipelining 17

Modulo Variable Expansion
• Software-pipelined code

1. LD
2. LD
3 MUL LD

1. LD R5,0(R1++)
2. LD R6,0(R2++)
3. MUL R7,R5,R6
4.
5 ADD R8 R7 R43. MUL LD

4. LD
5. MUL LD
6. ADD LD

L:7. MUL LD
8. ST ADD LD BL L
9. MUL LD
10. ST ADD LD
11. MUL
12 ST ADD

5. ADD R8,R7,R4
6.
7. ST 0(R3++),R8

Carnegie Mellon

12. ST ADD
13.
14. ST ADD

Todd C. Mowry15-745: Software Pipelining 18

Modulo Variable Expansion
1. LD R5,0(R1++)
2. LD R6,0(R1++)
3. LD R5,0(R1++) MUL R7,R5,R6
4. LD R6,0(R1++)
5. LD R5,0(R1++) MUL R17,R5,R6, () , ,
6. LD R6,0(R1++) ADD R8,R7,R7

L 7. LD R5,0(R1++) MUL R7,R5,R6
8. LD R6,0(R1++) ADD R8,R17,R17 ST 0(R3++),R8
9. LD R5,0(R1++) MUL R17,R5,R6
10. LD R6,0(R1++) ADD R8,R7,R7 ST 0(R3++),R8 BL L
11. MUL R7,R5,R6
12. ADD R8,R17,R17 ST 0(R3++),R8
13.
14. ADD R8,R7,R7 ST 0(R3++),R8
1

Carnegie Mellon

15.
16. ST 0(R3++),R8

Todd C. Mowry15-745: Software Pipelining 19

Algorithm

• Normally, every iteration uses the same set of registers
– introduces artificial anti-dependences for software pipelining

• Modulo variable expansion algorithm
– schedule each iteration ignoring artificial constraints on registers
– calculate life times of registers
– degree of unrolling = maxr (lifetimer /T)
– unroll the steady state of software pipelined loop to use different

registers
• Code generation

– generate one pipelined loop with only one exit
(at beginning of steady state)

Carnegie Mellon

(at beginning of steady state)
– generate one unpipelined loop to handle the rest
– code generation is the messiest part of the algorithm!

Todd C. Mowry15-745: Software Pipelining 20

6

Conclusions

• Numerical Code
– Software pipelining is useful for machines with a lot of pipelining

and instruction level parallelism
C t d– Compact code

– Limits to parallelism: dependences, critical resource

Carnegie Mellon
Todd C. Mowry15-745: Software Pipelining 21

