
1

Lecture 20

Memory Hierarchy Optimizations

Carnegie Mellon

CS745: Memory Hierarchy Optimizations Todd C. Mowry

Caches: A Quick Review

• How do they work?
• Why do we care about them?
• What are typical configurations today?
• What are some important cache parameters that will affect

performance?

CS745: Memory Hierarchy Optimizations -2-

Carnegie Mellon

Todd C. Mowry

Optimizing Cache Performance

• Things to enhance:
• temporal locality
• spatial locality

• Things to minimize:
• conflicts (i.e. bad replacement decisions)

Wh t th il d t h l ?

CS745: Memory Hierarchy Optimizations -3-

Carnegie Mellon

Todd C. Mowry

What can the compiler do to help?

Two Things We Can Manipulate

• Time:
• When is an object accessed?

• Space:
• Where does an object exist in the address space?

H d l it th t l ?

CS745: Memory Hierarchy Optimizations -4-

Carnegie Mellon

Todd C. Mowry

How do we exploit these two levers?

2

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
• What information is needed?

• How do we know that this would be safe?

CS745: Memory Hierarchy Optimizations -5-

Carnegie Mellon

Todd C. Mowry

Space: Changing Data Layout

• What do we know about an object’s location?
• scalars, structures, pointer-based data structures, arrays,

code, etc.

• How can we tell what a better layout would be?
• how many can we create?

• To what extent can we safely alter the layout?

CS745: Memory Hierarchy Optimizations -6-

Carnegie Mellon

Todd C. Mowry

• To what extent can we safely alter the layout?

Types of Objects to Consider

• Scalars
• Structures & Pointers
• Arrays

CS745: Memory Hierarchy Optimizations -7-

Carnegie Mellon

Todd C. Mowry

Scalars

• Locals int x;
d bl

• Globals

• Procedure arguments

• Is cache performance a concern here?
If h b d ?

double y;
foo(int a){
int i;
…
x = a*i;
…

}

CS745: Memory Hierarchy Optimizations -8-

Carnegie Mellon

Todd C. Mowry

• If so, what can be done?

3

Structures and Pointers

• What can we do here?
struct {

int count;

• within a node
• across nodes

double velocity;
double inertia;
struct node *neighbors[N];

} node;

CS745: Memory Hierarchy Optimizations -9-

Carnegie Mellon

Todd C. Mowry

• What limits the compiler’s ability to optimize here?

Arrays

double A[N][N], B[N][N];
…
for i = 0 to N 1

• usually accessed within loops nests
• makes it easy to understand “time”

• what we know about array element addresses:

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

CS745: Memory Hierarchy Optimizations -10-

Carnegie Mellon

Todd C. Mowry

what we know about array element addresses:
• start of array?
• relative position within array

Handy Representation: “Iteration Space”

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

CS745: Memory Hierarchy Optimizations -11-

Carnegie Mellon

Todd C. Mowry

• each position represents an iteration

j

Visitation Order in Iteration Space

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

CS745: Memory Hierarchy Optimizations -12-

Carnegie Mellon

Todd C. Mowry

• Note: iteration space data space

j

4

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

i i
A B

CS745: Memory Hierarchy Optimizations -13-

Carnegie Mellon

Todd C. Mowry

j j

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i

CS745: Memory Hierarchy Optimizations -14-

Carnegie Mellon

Todd C. Mowry

j

Optimizing the Cache Behavior of Array Accesses

• We need to answer the following questions:
• when do cache misses occur?when do cache misses occur?

• use “locality analysis”
• can we change the order of the iterations (or possibly data

layout) to produce better behavior?
• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct results?
• use “dependence analysis”

CS745: Memory Hierarchy Optimizations -15-

Carnegie Mellon

Todd C. Mowry

Examples of Loop Transformations

• Loop Interchange
• Cache Blockingg
• Skewing
• Loop Reversal
• …

(we will briefly discuss the first two)

CS745: Memory Hierarchy Optimizations -16-

Carnegie Mellon

Todd C. Mowry

5

Loop Interchange

for i = 0 to N-1
for j = 0 to N-1

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;

i Hit
Miss

j

A[j][i] = i*j;

CS745: Memory Hierarchy Optimizations -17-

Carnegie Mellon

Todd C. Mowry

• (assuming N is large relative to cache size)
j i

Cache Blocking (aka “Tiling”)

for i = 0 to N-1
for JJ = 0 to N-1 by B

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);
for j = JJ to max(N-1,JJ+B-1)

f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]

CS745: Memory Hierarchy Optimizations -18-

Carnegie Mellon

Todd C. Mowry

now we can exploit temporal locality

jjjj

Impact on Visitation Order in Iteration Space

for i = 0 to N-1
for JJ = 0 to N-1 by B

for i = 0 to N-1

i

for j = 0 to N-1
f(A[i],A[j]);

for j = JJ to max(N-1,JJ+B-1)
f(A[i],A[j]);

i

CS745: Memory Hierarchy Optimizations -19-

Carnegie Mellon

Todd C. Mowry

j j

Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B

for i = 0 to N-1
for j = 0 to N-1
for k = 0 to N-1
c[i,k] += a[i,j]*b[j,k];

for KK = 0 to N-1 by B
for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)
for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

CS745: Memory Hierarchy Optimizations -20-

Carnegie Mellon

Todd C. Mowry

• brings square sub-blocks of matrix “b” into the cache
• completely uses them up before moving on

6

Predicting Cache Behavior through “Locality Analysis”

• Definitions:
• Reuse:

• accessing a location that has been accessed in the past
• Locality:

• accessing a location that is now found in the cache

• Key Insights
• Locality only occurs when there is reuse!
• BUT, reuse does not necessarily result in locality.

CS745: Memory Hierarchy Optimizations -21-

Carnegie Mellon

Todd C. Mowry

BU , reuse does not necessar ly result n local ty.
• why not?

Steps in Locality Analysis

1. Find data reuse
• if caches were infinitely large, we would be finishedy g ,

2. Determine “localized iteration space”
• set of inner loops where the data accessed by an iteration is

expected to fit within the cache

3. Find data locality:
• reuse localized iteration space locality

CS745: Memory Hierarchy Optimizations -22-

Carnegie Mellon

Todd C. Mowry

Types of Data Reuse/Locality

for i = 0 to 2
for j = 0 to 100 Hit
A[i][j] = B[j][0] + B[j+1][0]; Miss

i

A[i][j]

i

B[j+1][0]

i

B[j][0]

CS745: Memory Hierarchy Optimizations -23-

Carnegie Mellon

Todd C. Mowry

j

Spatial

j

Temporal

j

Group

Reuse Analysis: Representation
for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Map n loop indices into d array indices via array indexing function:

CS745: Memory Hierarchy Optimizations -24-

Carnegie Mellon

Todd C. Mowry

7

• Temporal reuse occurs between iterations and
whenever:

Finding Temporal Reuse

• Rather than worrying about individual values of and ,
we say that reuse occurs along direction vector when:

CS745: Memory Hierarchy Optimizations -25-

Carnegie Mellon

Todd C. Mowry

• Solution: compute the nullspace of H

Temporal Reuse Example

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

T h d dl f h d ff

A[i][j] B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -26-

Carnegie Mellon

Todd C. Mowry

• True whenever j1 = j2, and regardless of the difference
between i1 and i2.
• i.e. whenever the difference lies along the nullspace of ,

which is span{(1,0)} (i.e. the outer loop).

More Complicated Example

for i = 0 to N-1
f j 0 t N 1 Hit

i
for j = 0 to N-1

A[i+j][0] = i*j;

Hit
Miss

j

CS745: Memory Hierarchy Optimizations -27-

Carnegie Mellon

Todd C. Mowry

• Nullspace of = span{(1,-1)}.

j

Computing Spatial Reuse

• Replace last row of H with zeros, creating Hs
• Find the nullspace of Hs

• Result: vector along which we access the same row

CS745: Memory Hierarchy Optimizations -28-

Carnegie Mellon

Todd C. Mowry

8

Computing Spatial Reuse: Example

for i = 0 to 2
for j = 0 to 100

i
Hit

• Hs =

j
A[i][j] = B[j][0] + B[j+1][0];

j

Miss

CS745: Memory Hierarchy Optimizations -29-

Carnegie Mellon

Todd C. Mowry

• Nullspace of Hs = span{(0,1)}
• i.e. access same row of A[i][j] along inner loop

Computing Spatial Reuse: More Complicated Example

for i = 0 to N-1
f j 0 t N 1 Hit

i

• Hs =

for j = 0 to N-1
A[i+j] = i*j;

Hit
Miss

j

CS745: Memory Hierarchy Optimizations -30-

Carnegie Mellon

Todd C. Mowry

• Nullspace of H = span{(1,-1)}

• Nullspace of Hs = span{(1,0),(0,1)}

j

Group Reuse

for i = 0 to 2
for j = 0 to 100

• Only consider “uniformly generated sets”
• index expressions differ only by constant terms

• Check whether they actually do access the same cache line
• Only the “leading reference” suffers the bulk of the cache misses

A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -31-

Carnegie Mellon

Todd C. Mowry

Localized Iteration Space

• Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

i

j

B[j+1][0]

CS745: Memory Hierarchy Optimizations -32-

Carnegie Mellon

Todd C. Mowry

• Localized if accesses less data than effective cache size

j j

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})

9

Computing Locality

• Reuse Vector Space Localized Vector Space Locality Vector Space

• Example:

• If both loops are localized:
• span{(1,0)} span{(1,0),(0,1)} span{(1,0)}
• i.e. temporal reuse does result in temporal locality

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -33-

Carnegie Mellon

Todd C. Mowry

• If only the innermost loop is localized:
• span{(1,0)} span{(0,1)} span{}
• i.e. no temporal locality

