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Lecture 20

Memory Hierarchy Optimizations

Carnegie Mellon
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Caches: A Quick Review

• How do they work?
• Why do we care about them?
• What are typical configurations today?
• What are some important cache parameters that will affect 

performance?
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Optimizing Cache Performance

• Things to enhance:
• temporal locality
• spatial locality

• Things to minimize:
• conflicts (i.e. bad replacement decisions)

Wh t  th  il d  t  h l ?
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What can the compiler do to help?

Two Things We Can Manipulate

• Time:
• When is an object accessed?

• Space:
• Where does an object exist in the address space?

H  d   l it th  t  l ?

CS745: Memory Hierarchy Optimizations -4-

Carnegie Mellon

Todd C. Mowry

How do we exploit these two levers?
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Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
• What information is needed?

• How do we know that this would be safe?
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Space: Changing Data Layout

• What do we know about an object’s location?
• scalars, structures, pointer-based data structures, arrays, 

code, etc.

• How can we tell what a better layout would be?
• how many can we create?

• To what extent can we safely alter the layout?
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• To what extent can we safely alter the layout?

Types of Objects to Consider

• Scalars
• Structures & Pointers
• Arrays
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Scalars

• Locals int x;
d bl

• Globals

• Procedure arguments

• Is cache performance a concern here?
If  h   b  d ?

double y;
foo(int a){
int i;
…
x = a*i;
…

}
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• If so, what can be done?
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Structures and Pointers

• What can we do here?
struct {

int count;

• within a node
• across nodes

double velocity;
double inertia;
struct node *neighbors[N];

} node;
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• What limits the compiler’s ability to optimize here? 

Arrays

double A[N][N], B[N][N];
…
for i = 0 to N 1

• usually accessed within loops nests
• makes it easy to understand “time”

• what we know about array element addresses:

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];
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what we know about array element addresses:
• start of array?
• relative position within array

Handy Representation: “Iteration Space”

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];
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• each position represents an iteration

j

Visitation Order in Iteration Space

i

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];
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• Note: iteration space  data space

j
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When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

i i
A B
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j j

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i
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Optimizing the Cache Behavior of Array Accesses

• We need to answer the following questions:
• when do cache misses occur?when do cache misses occur?

• use “locality analysis”
• can we change the order of the iterations (or possibly data 

layout) to produce better behavior?
• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct results?
• use “dependence analysis”
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Examples of Loop Transformations

• Loop Interchange
• Cache Blockingg
• Skewing
• Loop Reversal
• …

(we will briefly discuss the first two)
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Loop Interchange

for i = 0 to N-1
for j = 0 to N-1

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;

i Hit
Miss

j

A[j][i] = i*j;
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• (assuming N is large relative to cache size)
j i

Cache Blocking (aka “Tiling”)

for i = 0 to N-1
for JJ = 0 to N-1 by B

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);
for j = JJ to max(N-1,JJ+B-1) 

f(A[i],A[j]);

ii
A[i] A[j]

ii
A[i] A[j]
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now we can exploit temporal locality

jjjj

Impact on Visitation Order in Iteration Space

for i = 0 to N-1
for JJ = 0 to N-1 by B

for i = 0 to N-1

i

for j = 0 to N-1
f(A[i],A[j]);

for j = JJ to max(N-1,JJ+B-1) 
f(A[i],A[j]);

i
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Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B

for i = 0 to N-1
for j = 0 to N-1
for k = 0 to N-1
c[i,k] += a[i,j]*b[j,k];

for KK = 0 to N-1 by B
for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)
for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];
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• brings square sub-blocks of matrix “b” into the cache
• completely uses them up before moving on
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Predicting Cache Behavior through “Locality Analysis”

• Definitions:
• Reuse:

• accessing a location that has been accessed in the past
• Locality:

• accessing a location that is now found in the cache

• Key Insights
• Locality only occurs when there is reuse!
• BUT, reuse does not necessarily result in locality.
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BU , reuse does not necessar ly result n local ty.
• why not?

Steps in Locality Analysis

1. Find data reuse
• if caches were infinitely large, we would be finishedy g ,

2. Determine “localized iteration space”
• set of inner loops where the data accessed by an iteration is 

expected to fit within the cache

3. Find data locality:
• reuse  localized iteration space  locality
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Types of Data Reuse/Locality

for i = 0 to 2
for j = 0 to 100 Hit
A[i][j] = B[j][0] + B[j+1][0]; Miss

i

A[i][j]

i

B[j+1][0]

i

B[j][0]
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j

Spatial

j

Temporal

j

Group

Reuse Analysis: Representation
for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Map n loop indices into d array indices via array indexing function:
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• Temporal reuse occurs between iterations     and 
whenever:

Finding Temporal Reuse

• Rather than worrying about individual values of and  , 
we say that reuse occurs along direction vector when:

CS745: Memory Hierarchy Optimizations -25-

Carnegie Mellon

Todd C. Mowry

• Solution: compute the nullspace of H

Temporal Reuse Example

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

T  h    d dl  f h  d ff  

A[i][j]  B[j][0] + B[j+1][0];
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• True whenever j1 = j2, and regardless of the difference 
between i1 and i2.
• i.e. whenever the difference lies along the nullspace of         , 

which is span{(1,0)} (i.e. the outer loop).

More Complicated Example

for i = 0 to N-1
f j 0 t N 1 Hit

i
for j = 0 to N-1

A[i+j][0] = i*j;

Hit
Miss

j
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• Nullspace of             = span{(1,-1)}.

j

Computing Spatial Reuse

• Replace last row of H with zeros, creating Hs
• Find the nullspace of Hs

• Result: vector along which we access the same row
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Computing Spatial Reuse: Example

for i = 0 to 2
for j = 0 to 100

i
Hit

• Hs = 

j
A[i][j] = B[j][0] + B[j+1][0];

j

Miss
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• Nullspace of Hs = span{(0,1)}
• i.e. access same row of A[i][j] along inner loop

Computing Spatial Reuse: More Complicated Example

for i = 0 to N-1
f j 0 t N 1 Hit

i

• Hs = 

for j = 0 to N-1
A[i+j] = i*j;

Hit
Miss

j
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• Nullspace of H = span{(1,-1)}

• Nullspace of Hs = span{(1,0),(0,1)}

j

Group Reuse

for i = 0 to 2
for j = 0 to 100

• Only consider “uniformly generated sets”
• index expressions differ only by constant terms

• Check whether they actually do access the same cache line
• Only the “leading reference” suffers the bulk of the cache misses

A[i][j] = B[j][0] + B[j+1][0];
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Localized Iteration Space

• Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]

i

j

B[j+1][0]
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• Localized if accesses less data than effective cache size

j j

Localized: both i and j loops
(i.e. span{(1,0),(0,1)})

Localized: j loop only
(i.e. span{(0,1)})
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Computing Locality

• Reuse Vector Space  Localized Vector Space  Locality Vector Space

• Example:

• If both loops are localized:
• span{(1,0)}  span{(1,0),(0,1)}  span{(1,0)}
• i.e. temporal reuse does result in temporal locality

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];
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• If only the innermost loop is localized:
• span{(1,0)}  span{(0,1)}  span{}
• i.e. no temporal locality


