
1

Lecture 25
Dynamic Compilation

I. Motivation & Background
II. Overview
III. Compilation Policy
IV. Partial Method Compilation
V. Partial Dead Code Elimination
VI. Escape Analysis

Carnegie Mellon

p y
VII. Results

“Partial Method Compilation Using Dynamic Profile Information”,
John Whaley, OOPSLA 01

(Slide content courtesy of John Whaley & Monica Lam.)

Todd C. Mowry 15-745: Dynamic Compilation 1

I. Goals of This Lecture

• Beyond static compilation
• Example of a complete system
• Use of data flow techniques in a new context
• Experimental approach

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 2

Static/Dynamic

• Compiler: high-level  binary, static

• Interpreter: high-level, emulate, dynamic

• Dynamic compilation: high-level  binary, dynamicDynam c comp lat on h gh level b nary, dynam c

– machine-independent, dynamic loading
– cross-module optimization
– Specialize program using runtime information

(without profiling)

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 3

High-Level/Binary

• Binary translator: Binary-binary; mostly dynamic
– Run “as-is”
– Software migration

(x86  alpha sun transmeta; (x86  alpha, sun, transmeta;
68000  powerPC x86)

– Virtualization (make hardware virtualizable)
– Dynamic optimization (Dynamo Rio)
– Security (execute out of code in a cache that is “protected”)

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 4

2

Closed-world vs. Open-world

• Closed-world assumption (most static compilers)
– all code is available a priori for analysis and compilation.

• Open-world assumption (most dynamic compilers)p p y p
– code is not available
– arbitrary code can be loaded at run time.

• Open-world assumption precludes many optimization opportunities.
– Solution: Optimistically assume the best case, but provide a way out

if necessary.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 5

II. Overview of Dynamic Compilation

• Interpretation/Compilation policy decisions
– Choosing what and how to compile

• Collecting runtime informationg
– Instrumentation
– Sampling

• Exploiting runtime information
– frequently-executed code paths

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 6

Speculative Inlining

• Virtual call sites are deadly.
– Kill optimization opportunities
– Virtual dispatch is expensive on modern CPUs
– Very common in object-oriented code

• Speculatively inline the most likely call target based on class
hierarchy or profile information.
– Many virtual call sites have only one target, so this

technique is very effective in practice.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 7

III. Compilation Policy

• ΔTtotal = Tcompile – (nexecutions * Timprovement)

– If ΔTtotal is negative, our compilation policy decision was effective.

• We can try to:
– Reduce Tcompile (faster compile times)
– Increase Timprovement (generate better code)
– Focus on large nexecutions (compile hot spots)

• 80/20 rule: Pareto Principle
– 20% of the work for 80% of the advantage

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 8

3

Latency vs. Throughput

• Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter
‘Quick’ compiler
Optimizing compiler

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 9

Latency vs. Throughput

• Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter Best
‘Quick’ compiler Fair
Optimizing compiler Poor

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 10

Latency vs. Throughput

• Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter Best Poor
‘Quick’ compiler Fair Fair
Optimizing compiler Poor Best

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 11

interpreted
codeStage 1:

Multi-Stage Dynamic Compilation System

when execution

when execution
count = t2 (e.g. 25000)

Stage 2:
compiled
code

when execution
count = t1 (e.g. 2000)

Execution count is the sum of
method invocations & back edges executed.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation

fully
optimized
code

Stage 3:

12

4

Granularity of Compilation

• Compilation time is proportional to the amount of code being compiled.
• Many optimizations are not linear.
• Methods can be large, especially after inlining.
• Cutting inlining too much hurts performance considerably.
• Even “hot” methods typically contain some code that is rarely or never

executed.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 13

Example: SpecJVM db
void read_db(String fn) {

int n = 0, act = 0; byte buffer[] = null;
try {
FileInputStream sif = new FileInputStream(fn);p p ();
buffer = new byte[n];
while ((b = sif.read(buffer, act, n-act))>0) {
act = act + b;

}
sif.close();
if (act != n) {
/* lots of error handling code, rare */

}

Hot
loop

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation

}
} catch (IOException ioe) {
/* lots of error handling code, rare */

}
}

14

void read_db(String fn) {
int n = 0, act = 0; byte buffer[] = null;
try {

FileInputStream sif = new FileInputStream(fn);

Example: SpecJVM db

Lots of
rare code!

p p ();
buffer = new byte[n];
while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;
}
sif.close();
if (act != n) {

/* lots of error handling code, rare */
}

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation

}
} catch (IOException ioe) {

/* lots of error handling code, rare */
}

}

15

Optimize hot “regions”, not methods
• Optimize only the most frequently executed segments within a

method.
• Simple technique: any basic block executed during Stage 2 is said

to be hotto be hot.
• Beneficial secondary effect of improving optimization

opportunities on the common paths.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 16

5

80.00%

100.00%
Linpack

JavaCUP

JavaLEX

Method‐at‐a‐time Strategy
ile

d

20.00%

40.00%

60.00%

JavaLEX

SwingSet

check

compress

jess

db

javac

mpegaudf
ba

si
c

bl
oc

ks
 c

om
p

Carnegie Mellon

Todd C. Mowry 15-745: Dynamic Compilation

0.00%

1 10 100 500 1000 2000 5000

mpegaud

mtrt

jack

execution threshold

%
 o

f

17

80.00%

100.00%
Linpack

JavaCUP

JavaLEX

Actual Basic Blocks Executed

ut
ed

20.00%

40.00%

60.00%

JavaLEX

SwingSet

check

compress

jess

db

javac

mpegaudf
ba

si
c

bl
oc

ks
 e

xe
cu

Carnegie Mellon

Todd C. Mowry 15-745: Dynamic Compilation

0.00%

1 10 100 500 1000 2000 5000

mpegaud

mtrt

jack

execution threshold

%
 o

f

18

Dynamic Code Transformations

• Compiling partial methods
• Partial dead code elimination
• Escape analysis

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 19

IV. Partial Method Compilation
1. Based on profile data, determine the set of rare blocks.

– Use code coverage information from the first compiled version

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 20

6

2. Perform live variable analysis.
– Determine the set of live variables at rare block entry points.

Partial Method Compilation

live: x,y,z

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 21

3. Redirect the control flow edges that targeted rare blocks, and
remove the rare blocks.

Partial Method Compilation

to interpreter…

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 22

4. Perform compilation normally.
– Analyses treat the interpreter transfer point as an

unanalyzable method call.

Partial Method Compilation

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 23

5. Record a map for each interpreter transfer point.
– In code generation, generate a map that specifies the location,

in registers or memory, of each of the live variables.

Partial Method Compilation

– Maps are typically < 100 bytes

x: sp - 4

y: R1

live: x,y,z

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation

z: sp - 8

24

7

V. Partial Dead Code Elimination

• Move computation that is only live on a rare path into the rare block, p y p
saving computation in the common case.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 25

Partial Dead Code Example
x = 0;
if (rare branch 1){

...

if (rare branch 1) {
x = 0;
...

z = x + y;
...

}
if (rare branch 2){

...
a = x + z;

z = x + y;
...

}
if (rare branch 2) {

x = 0;
...

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation

;
...

}
a = x + z;
...

}

26

VI. Escape Analysis
• Escape analysis finds objects that do not escape a method or a thread.

– “Captured” by method: can be allocated on the stack or in registers.
– “Captured” by thread: can avoid synchronization operations.

• All Java objects are normally heap allocated, so this is a big win.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 27

Escape Analysis
• Stack allocate objects that don’t escape in the common blocks.
• Eliminate synchronization on objects that don’t escape the common

blocks.
If b h t bl k is t k• If a branch to a rare block is taken:
– Copy stack-allocated objects to the heap and update pointers.
– Reapply eliminated synchronizations.

Carnegie Mellon
Todd C. Mowry15-745: Dynamic Compilation 28

8

70.00%

80.00%

90.00%

100.00%

VII. Run Time Improvement

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

check compress jess db javac mpegaud mtrt jack SwingSet linpack JLex JCup

Fi t b i i l (Wh l th d t)

Carnegie Mellon

Todd C. Mowry 15-745: Dynamic Compilation

First bar: original (Whole method opt)
Second bar: Partial Method Comp (PMC)
Third bar: PMC + opts

Bottom bar: Execution time if code was compiled/opt. from the beginning

29

