Data Dependence, Parallelization,
and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

Todd C. Mowry

Data Dependence

S: A=10
S,: B=A+20
St A=C-D
s,: A=B/C

We define four types of data dependence.

e Flow (true) dependence: a statement S; precedes a

statement S; in execution and S; computes a data value that
S; uses.

e Implies that S; must execute before S;.
58S, (58'S, and S,8'S,)

Carnegie Mellon -

Optimizing Compilers: Parallelization -2- Todd C. Mowry

Data Dependence

S A=10
S, B=A+20
S;: A=C-D
S,: A=B/C

We define four types of data dependence.

e Anti dependence: a statement S; precedes a statement S; in
execution and S; uses a data value that S; computes.

o If implies that S; must be executed before S;.

58S, (5,85,)

J

Carnegie Mellon -

Optimizing Compilers: Parallelization -3- Todd C. Mowry

Data Dependence

S A=10
S,: B=A+20
S A=C-D
S, A=B/C

We define four types of data dependence.

e Output dependence: a statement S; precedes a statement S;
in execution and S; computes a data value that S; also
computes.

e Itimplies that S; must be executed before S;.
5%s, (5,5, and S,88,)

Carnegie Mellon -

Optimizing Compilers: Parallelization -4- Todd C. Mowry

Data Dependence

S A=10
S,: B=A+20
S;: A=C-D
S,: A=§/C

We define four types of data dependence.

e Input dependence: a statement S; precedes a statement S;
in execution and S; uses a data value that S; also uses.

e Does this imply that S; must execute before S;?

53'S, (5,8°5,)

J

Carnegie Mellon -

Optimizing Compilers: Parallelization -5- Todd C. Mowry

|
Data Dependence (continued)

e The dependence is said to flow from S; to S; because S;
precedes S; in execution.

e S;is said to be the source of the dependence. S; is said to
be the sink of the dependence.

e The only “true” dependence is flow dependence; it
represents the flow of data in the program.

e The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

S A=10

S B=A+20
S, Al=C-D
s,: A2-B/C

Optimizing Compilers: Parallelization -6- Todd C. Mowry

Data Dependence (continued)

e Data dependence in a program may be represented using a
dependence graph 6=(V,E), where the nodes V represent
statements in the program and the directed edges E
represent dependence relations.

S;: A=10

S,: B=A+20 e 5

S;: A=C-D

e
s,: A=BIC 51

Carnegie Mellon -

Optimizing Compilers: Parallelization 7- Todd C. Mowry

Value or Location?

e There are two ways a dependence is defined: value-oriented
or location-oriented.

S;: A=1.0
S,: B=A+20
S;: A=C-D

S,: A=B/C

Carnegie Mellon -

Optimizing Compilers: Parallelization 8- Todd C. Mowry

Example 1
i=2 ! i=3 ! i=4
doi=2,4 Si2] S,[2]1 Si[3] S,[3]1 Si[4] S.[4]
Spali) = b(i) + (i) SRR Sl Ghbl JRESl
Sy d(i) = a(i) eull I gl 5
) ' I 0
end do a2) a@) a@B) aB) aA) a(4)

e There is an instance of S; that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence flows between instances of statements in the
same iteration (loop-independent dependence).

e The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =.

535S, o 5§85,
Carnegie Mellon -

Optimizing Compilers: Parallelization -9- Todd C. Mowry

Example 2
i=2 ' i=3 ' i=4
doi=2,4 Si[2] S[2]1 Si[3] Si311 Si[4] S.[4]
Sy ali) = b(i) + c(i)
S, d(i) = a(i-1)
end do

e There is an instance of S; that precedes an instance of S, in
execution and S, produces data that S, consumes.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence flows between instances of statements in
different iterations (loop-carried dependence).
e The dependence distance is 1. The direction is positive (<).
53s, or S35,
Carnegie Mellon -

Optimizing Compilers: Parallelization -10- Todd C. Mowry

Example 3
i=2 ! i=3 ! i=4
doi=2,4 Si[2] Sif2]1 Si[3] Si[311 Si[4] S.[4]
St a(i) = b(i) * c(i) SERE Al SRR BELE SLEE
Sz d(i) = a(i+1) i i
end do ! !

a@2) a3 aB) a4 a@) a®)
e There is an instance of S, that precedes an instance of S, in
execution and S, consumes data that S; produces.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence is loop-carried.
e The dependence distance is 1.
5,85 or 585

e Are you sure you know why it is S, 32 S, even though S, appears
before S, in the code?

Carnegie Mellon -

Optimizing Compilers: Parallelization g Todd C. Mowry

Example 4
doi=2,4 a(1,3) a(1,4) a(1,5)
doj=2,4 S[2,2] 5[2,3] S[2,4]
st a(ij)=a(i-lj) 0 @I '0‘/

end do \ \v ﬁ‘:\f

end do

e Aninstance of S precedes
another instance of S and
S produces data that S
consumes.

e Sis both source and sink.
e The dependence is loop-

carried.
e The dependence distance
is (1,-1).
S§.S or S§.,S a(4,2) a(4.3) a(4,4)

Carnegie Mellon -

Optimizing Compilers: Parallelization -12- Todd C. Mowry

Problem Formulation

e Consider the following perfect nest of depth d:

doI =L,V array reference
oL =LY, ——
- o, fi@),
P o)
alf (D), £ (E), £,(D) = -
~-=a(g,(I),9,(T),-+,9,(T)) subscript subscript
enddo position function
. or
enddo subscript
enddo expression
1= (lplz,+.lg)
C=WlyLy) linear functions
~ 2 d by +b L +b, I +---+by Iy
U=(UpUy, -, Ug)
L<U
Optimizing Compilers: Parallelization 13- Todd C. Mowry

|
Problem Formulation

o Dependence will exist if there exists two iteration vectors k
and jsuch that L<k< j<U and:

fl(R) = 91(])
an - -
g 01=000)

o ®)= ()

e That is:
fi(k)-a(j) =0
an —~ -
and fz(k)‘— %.(j)=0
and - -
fn(k)=gn(j) =0
Carnegie Mellon -
Optimizing Compilers: Parallelization -14- Todd €. Mowry

Problem Formulation - Example

doi=2,4
Syia(i) = b(i) + c(i)
S, d(i) = a(i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
2 <y <iy <4 and such that:

iy =i, 12
e Answer: yes; i;1=2 & i,=3 and i;=3 & i, =4.
e Hence, there is dependencel

e The dependence distance vector is i -i; = 1.

The dependence direction vector is sign(1) = <.

Carnegie Mellon -

Optimizing Compilers: Parallelization -15- Todd C. Mowry

|
Problem Formulation - Example

doi=2,4
Sitoa(i) = b(i) + c(i)
Syt d(i) = a(i+1)
end do

e Does there exist two iteration vectors i; and i,, such that
2 <i; <iy <4 and such that:

i =iy +12

e Answer: yes; i;=3 & i,=2 and i;=4 & i, =3. (But, but!).
e Hence, there is dependencel!

e The dependence distance vector is i -iy = -1.

e The dependence direction vector is sign(-1) = >.

e TIs this possible?

Carnegie Mellon -

Optimizing Compilers: Parallelization -16- Todd C. Mowry

|
Problem Formulation - Example

doi=1,10
Sia(2*i) = b(i) + c(i)
S, d(i) = a(2%i+1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

2%i, = 2%i, +1?
e Answer: no; 2%i; is even & 2*i,+1 is odd.

e Hence, there is no dependence!

Carnegie Mellon -

Optimizing Compilers: Parallelization -17- Todd C. Mowry

|
Problem Formulation

e Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraint!

e Analgorithm that determines if there exits two iteration
vectors k and | that satisfies these constraints is called a
dependence tester.

e The dependence distance vector is given by] - k.
o The dependence direction vector is give by sign(j - k).
e Dependence testing is NP-completel

e A dependence test that reports dependence only when there
is dependence is said to be exact. Otherwise it is in-exact.

o A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be

assumed.
Carnegie Mellon -

Optimizing Compilers: Parallelization -18- Todd C. Mowry

|
Dependence Testers

e Lamport's Test.

e GCD Test.

e Banerjee's Inequalities.
e Generalized GCD Test.
e Power Test.

o I-Test.

o Omega Test.

e Delta Test.

e Stanford Test.

e etc..

Carnegie Mellon -

Optimizing Compilers: Parallelization -19- Todd C. Mowry

|
Lamport's Test

o Lamport's Test is used when there is a single index variable
in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

A(+ bXite,)=
2 A bR,)
e The dependence problem: does there exist i; and i, such
that L; <i; < i, < U; and such that

Ci—C24

b*i;+c;=b*i, +¢c,? or 21z

e There is integer solution if and only if

q;cZ is integer.

e The dependence distance is d = % if Li<|d| < U,

e d>0 = true dependence.
d=0 = loop independent dependence.
d<0 = antidependence.

Carnegie Mellon -

Optimizing Compilers: Parallelization -20- Todd C. Mowry

Lamport's Test - Example

doi=1,n
doj=1,n
S: a(i,j) = a(i-1,j+1)

/ enzng Odo \

® ij=i,-1? o ji=j,+1?
b=11¢=0¢c,=-1 b=11¢=0/¢c,=1
a-c2 G—C2
a4-2_4 4-2_
b b
There is dependence. There is dependence.
Distance (i) is 1. Distance (j) is -1.

\ /

Lamport's Test - Example

doi=1,n
doj=1,n
S: a(i,2*j) = a(i-1,2*j+1)

/ enfingodo \

° ij=i,-1? o 2%j =2%j,+1?
b=1¢=0;¢c,=-1 b=2¢,=0/¢c,=1
Cl_C2:1 C1_C2:_1

b b 2
There is dependence. There is no dependence.

Distance (i) is 1.

?
There is no dependencel!
Carnegie Mellon -

Optimizing Compilers: Parallelization -22- Todd C. Mowry

55('1'71) S or 55(2‘>) S
Carnegie Mellon -
Optimizing Compilers: Parallelization -21- Todd €. Mowry
GCD Test

e Given the following equation:

n

. .
>aixi=c ai's and c are integers
i1

an integer solution exists if and only if:

gcd(ar,az,++,an) divides ¢

e Problems:
- ignores loop bounds.
- gives no information on distance or direction of dependence.
- often gcd(.....) is 1 which always divides c, resulting in false
dependences.

Carnegie Mellon -

Optimizing Compilers: Parallelization -23- Todd C. Mowry

GCD Test - Example

doi=1,10
Syita(2*i) = b(i) + c(i)
S,i o d(i) = a(2%i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

2%y = 2%i, -1?
or
2%i, - 2%i = 17

o There will be an integer solution if and only if gcd(2,-2)
divides 1.

e This is not the case, and hence, there is no dependence!

Carnegie Mellon -

Optimizing Compilers: Parallelization -24- Todd C. Mowry

|
GCD Test Example

doi=1,10
Sitoa(i) = b(i) + c(i)
S, d(i) = a(i-100)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, 10 and such that:

iy = i, -100?
or
ip - i; = 100?
e There will be an integer solution if and only if gcd(1,-1) divides
100.

e This is the case, and hence, there is dependence! Or is there?

Carnegie Mellon -

Optimizing Compilers: Parallelization -25- Todd C. Mowry

Dependence Testing Complications

e Unknown loop bounds.
doi=1,N
St a(i) = a(i+10)
end do

What is the relationship between N and 10?

e Triangular loops.

doi=1N
doj=1,i-1
s aij) = a(j.i)
end do
end do

Must impose j < i as an additional constraint.

Carnegie Mellon -

Optimizing Compilers: Parallelization -26- Todd C. Mowry

More Complications

e User variables.

doi=1,10
Syt a(i) = a(i+k)
end do

Same problem as unknown loop bounds, but occur due to
some loop transformations (e.g., normalization).

doi=L,H
Sia(i) = a(i-1)
end do

U

doi=1H-L
St a(i+l) = a(i+L-1)
end do
Carnegie Mellon -

Optimizing Compilers: Parallelization -27- Todd C. Mowry

More Complications

e Scalars.
doi=1N doi=1N
Si x=a(i) Sy x(i) = a(i)
S, b(i)= x = S, b(i) = x(i)
end do end do
j=N-1
doi=1N doi=1N
S¢a(i) = a(j) = Sy a(i) = a(N-i)
Sy jzj-1
end do end do
sum =0 doi=1N
doi=1,N = Sy osum(i) = a(i)
Syt sum = sum + a(i) end do
end do sum += sum(i) i=1,N
Carnegie Mellon -
_28- Todd C. Mowry

Optimizing Compilers: Parallelization

|
Serious Complications

o Aliases.
- Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

- Common blocks: Fortran's way of having shared/global variables.

common /shared/a,b,c

subroutine foo (...)
common /shared/a,b,c
common /shared/x.y,z

Carnegie Mellon -

Optimizing Compilers: Parallelization -29- Todd C. Mowry

]
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
a(i, j) = .. o
=a(i, j)
b, j) = ..
= b(i, j-1)
c(i,j) = .
= c(i-1, j)
end do
end do
Carnegie Mellon -
Optimizing Compilers: Parallelization -30- Todd C. Mowry

|
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
t ai, j) = ..
o = a(i, §)
b(i, j) = ..
= b(i, j-1)
c@i,j) = .
= c(i-1, j)
end do
end do

Carnegie Mellon -

Optimizing Compilers: Parallelization 31 Todd C. Mowry

|
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
o)z
=a(i, j)
5t b(i, j) = ..
=< = b(i, j-1)
c(i,j) = .
= c(i-1, j)
end do
end do
Carnegie Mellon -
Optimizing Compilers: Parallelization -32- Todd C. Mowry

]
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
a(i, j) = .. o
=a(i, j)
b(i, j) = ..
= b(i, j-1)
+ C(i, J) = ..
S~ s)
end do
end do
Carnegie Mellon -
Optimizing Compilers: Parallelization -33- Todd C. Mowry

]
Loop Parallelization

e A dependence is said to be carried by a loop if the loop is
the outmost loop whose removal eliminates the dependence.
If a dependence is not carried by the loop, it is loop-

independent.
doi=2,n-1
doj=2,m-1
+ a(i, j) = ..
- = a(i,)
5t b, j) = ..
w2 b(i, 1)
5t C(i, J) = ..
<~ w o= c(i-1,))
end do
end do
e Outermost loop with a non "=" direction carries dependence!
Carnegie Mellon -
Optimizing Compilers: Parallelization -34- Todd €. Mowry

|
Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

Carnegie Mellon -

Optimizing Compilers: Parallelization -35- Todd C. Mowry

|
Loop Parallelization - Example

join

e Iterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

e Outer loop parallelism.

Carnegie Mellon -

Optimizing Compilers: Parallelization -36- Todd C. Mowry

|
Loop Parallelization - Example

e TIterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

e TInner loop parallelism.

Carnegie Mellon -

Optimizing Compilers: Parallelization -37- Todd C. Mowry

Loop Parallelization - Example

e Tterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

e Inner loop parallelism.

Carnegie Mellon -

Optimizing Compilers: Parallelization -38- Todd C. Mowry

|
Loop Interchange

Loop inferchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n
doi=1,n
a(ij) ...
end do
end do

Carnegie Mellon -

Optimizing Compilers: Parallelization -39- Todd C. Mowry

|
Loop Interchange

Loop inferchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n doi=1,n
doi=1,n doj=1,n
..a(ij) a(ig) ...
end do end do
end do end do

0

Optimizing Compilers: Parallelization -40- Todd C. Mowry

10

Loop Interchange

o Loop interchange can improve the granularity of parallelism!

doi=1,n doj=1,n
doj=1,n doi=1,n
a(i.j) = b(i.j) a(i.j) = b(i.j)
c(i.j) = a(i-1,j) c(i,j) = a(i-1,j)
end do end do
end do end do
8 8
Carnegie Mellon -
Optimizing Compilers: Parallelization -41- Todd €. Mowry

Loop Interchange

doi=1n doj=1n
doj=1n doi=1n
o a(i§) o o a(i§) .
end do end do
end do end do
e When is loop interchange legal?
Carnegie Mellon -
Todd C. Mowry

Optimizing Compilers: Parallelization -42-

Loop Interchange

Loop Interchange

doi=1n
doj=1n
()
end do
end do

.
(AN
A
61‘ t
<=

e When is loop interchange legal?

Optimizing Compilers: Parallelization

-43-

doj=1n
doi=1n
w0 §) -
end do
end do

Carnegie Mellon -

Todd C. Mowry

| &

doi=1n
doj=1n
o a(i§) .
end do
end do

e When is loop interchange legal?

Optimizing Compilers: Parallelization

-44-

doj=1n
doi=1n
o a(i§) .
end do
end do

Carnegie Mellon -

Todd C. Mowry

|
Loop Interchange

| &

doi=1n doj=1n
doj=1n doi=1n
w0 §) o w0 §) -
end do end do
end do oL, end do

e When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

Carnegie Mellon -

Optimizing Compilers: Parallelization -45- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

dot=1T s
doi=1n =
doj=1n =
(i) -
end do
end do
end do l,
Carnegie Mellon -
Optimizing Compilers: Parallelization -46- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1n B control loops

e00c0eccccccccce
oo
o
oo
o
o
oo
oo
oo
oo
oo
oo
oo

dojc=1,n,B
dot=1T
doi=18B
doj=1B
.. a(ic+i-1,jc+j-1) ..
end do
end do
end do hibd

end do eececcccccccccce

end do B: Block size

e00c0000ccccccce

Carnegie Mellon -

Optimizing Compilers: Parallelization -47- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop hest.

doic=1n B control loops de=1
doje=1,n,B eseneseseses
dot=1T ic =1 .
doi=18B e= :
doj=1B :
.. a(ic+i-1,jc+j-1) ... : :
end do .
end do . .
end do . .
enddo [RN NN NN NN NN NN
end do B: Block size
Carnegie Mellon -
Optimizing Compilers: Parallelization -48- Todd C. Mowry

12

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1n B control loops
dojc=1,n,B
dot=1T
doi=1B
doj=18B
. a(ici-1,je+j-1) ..
end do
end do
end do

end do
end do B: Block size

ic=1

eec0cccccccccccce

Carnegie Mellon -

Optimizing Compilers: Parallelization -49- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1nB control loops
dojc=1,n,B
dot=1T
doi=1B
doj=1B
. a(icti-1,jc+j-1) .
end do
end do ic=2
end do

end do
end do B: Block size

Carnegie Mellon -

Optimizing Compilers: Parallelization -50- Todd C. Mowry

|
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1n B control loops

dojc=1,n,B
dot=1T
doi=18B
doj=1B
.. a(ic+i-1,jc+j-1) ..
end do
end do
end do

end do
end do B: Block size

e0c000c0ccc0cccoe

Carnegie Mellon -

Optimizing Compilers: Parallelization 51- Todd C. Mowry

|
Loop Blocking (Tiling)

doic=1,n,B
dot=1T dojc=1,n,B
dot=1T doic=1,n,B dot=1T
doi=1n doi=1B doi=1B
doj=1n dojc=1,nB doj=1B
@i) doj=1B .. a(icti-1,jc+j-1) ...
end do .. a(ic+i-1,jc+j-1) .. end do
end do end do end do
end do end do end do
end do end do
end do
e When is loop blocking legal?
Carnegie Mellon -
Optimizing Compilers: Parallelization -52- Todd C. Mowry

13

