
1

Lecture 27

Pointer AnalysisPointer Analysis

• Basics
• Design Options
• Pointer Analysis Algorithms
• Pointer Analysis Using BDDs

Carnegie Mellon

Pointer Analysis Using BDDs
• Probabilistic Pointer Analysis

(Slide content courtesy of Greg Steffan, U. of Toronto)

Todd C. Mowry 15-745: Pointer Analysis 1

Pros and Cons of Pointers

• Many procedural languages have pointers
– e.g., C or C++: int *p = &x;

• Pointers are powerful and convenient
– can build arbitrary data structures

• Pointers can also hinder compiler optimization
– hard to know where pointers are pointing
– must be conservative in their presence

• Has inspired much research
– analyses to decide where pointers are pointing
– many options and trade-offs

Carnegie Mellon

– open problem: a scalable accurate analysis

Todd C. Mowry15-745: Pointer Analysis 2

Pointer Analysis Basics: Aliases

• Two variables are aliases if:
– they reference the same memory location

• More useful:
– prove variables reference different locations

int x,y;

int *p = &x;

int *q = &y;

Alias sets:

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 3

int *q = &y;

int *r = p;

int **s = &q;

The Pointer Alias Analysis Problem

• Decide for every pair of pointers at every program point:
– do they point to the same memory location?

• A difficult problem
– shown to be undecidable by Landi, 1992

• Correctness:
– report all pairs of pointers which do/may alias

• Ambiguous:
– two pointers which may or may not alias

• Accuracy/Precision:
– how few pairs of pointers are reported while remaining correct

Carnegie Mellon

– ie., reduce ambiguity to improve accuracy

Todd C. Mowry15-745: Pointer Analysis 4

2

Many Uses of Pointer Analysis

• Basic compiler optimizations
– register allocation, CSE, dead code elimination, live variables,

instruction scheduling, loop invariant code motion, redundant
load/store eliminationload/store elimination

• Parallelization
– instruction-level parallelism
– thread-level parallelism

• Behavioral synthesis
– automatically converting C-code into gates

• Error detection and program understanding
memory leaks wild pointers security holes

Carnegie Mellon

– memory leaks, wild pointers, security holes

Todd C. Mowry15-745: Pointer Analysis 5

Challenges for Pointer Analysis

• Complexity: huge in space and time
– compare every pointer with every other pointer
– at every program point
– potentially considering all program paths to that point

• Scalability vs accuracy trade-off
– different analyses motivated for different purposes
– many useful algorithms (adds to confusion)

• Coding corner cases
– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?

Carnegie Mellon

– most algorithms require the entire program
– library code? optimizing at link-time only?

Todd C. Mowry15-745: Pointer Analysis 6

Pointer Analysis: Design Options

• Representation
• Heap modeling
• Aggregate modeling
• Flow sensitivity
• Context sensitivity

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 7

Representation

• Track pointer aliases
– <*a, b>, <*a, e>, <b, e>,

<**a, c>, <**a, d>, …
– More precise, less efficient

• Track points-to information
– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>
– Less precise, more efficient

a &b

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 8

a = &b;

b = &c;

b = &d;

e = b;

3

Heap Modeling Options

• Heap merged
– i.e. “no heap modeling”

• Allocation site (any call to malloc/calloc)
– Consider each to be a unique location
– Doesn’t differentiate between multiple objects allocated by the

same allocation site
• Shape analysis

– Recognize linked lists, trees, DAGs, etc.

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 9

Aggregate Modeling Options

Arrays

Elements are treated Elements are treated

Structures

… as individual locations

or

Treat entire array
as a single location

or
…

Elements are treated
as individual locations
(“field sensitive”)

or

Treat first element

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 10

Treat entire structure
as a single location

Treat first element
separate from others

…

Flow Sensitivity Options

• Flow insensitive
– The order of statements doesn’t matter

• Result of analysis is the same regardless of statement order
U i l l b l t t t t lt th t d– Uses a single global state to store results as they are computed

– Not very accurate
• Flow sensitive

– The order of the statements matter
– Need a control flow graph
– Must store results for each program point
– Improves accuracy

P h i i

Carnegie Mellon

• Path sensitive
– Each path in a control flow graph is considered

Todd C. Mowry15-745: Pointer Analysis 11

Flow Sensitivity Example
(assuming allocation-site heap modeling)

1 ll ()

Flow Insensitive
aS7

S1: a = malloc(…);
S2: b = malloc(…);
S3: a = b;
S4: a = malloc(…);
S5: if(c)

a = b;
S6: if(!c)

a = malloc(…);
S7: *a

Flow Sensitive
aS7

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 12

S7: … = *a;
Path Sensitive
aS7

4

Context Sensitivity Options

• Context insensitive/sensitive
– whether to consider different calling contexts
– e.g., what are the possibilities for p at S6?

int a, b, *p;
int main()
{
S1: f();
S2: p = &a;
S3: g();

int f()
{
S4: p = &b;
S5: g();
}

Context Insensitive:

Context Sensitive:

Carnegie Mellon

S3: g();
}

Todd C. Mowry15-745: Pointer Analysis 13

int g()
{
S6: … = *p;
}

Pointer Alias Analysis Algorithms

References:
• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996
• “Program Analysis and Specialization for the C Programming Language”,

A d s T h i l R t 1994Andersen, Technical Report, 1994
• “Context-sensitive interprocedural points-to analysis in the presence of

function pointers”, Emami et al., PLDI 1994
• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE

2001
• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 14

Address Taken

• Basic, fast, ultra-conservative algorithm
– flow-insensitive, context-insensitive
– often used in production compilers

• Algorithm:
– Generate the set of all variables whose addresses are assigned to

another variable.
– Assume that any pointer can potentially point to any variable in that

set.
• Complexity: O(n) - linear in size of program
• Accuracy: very imprecise

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 15

Address Taken Example

T *p, *q, *r;

int main() {
S1: p = alloc(T);

void f() {
S6: q = alloc(T);

g(T **fp) {
T local;S1: p = alloc(T);

f();
g(&p);

S4: p = alloc(T);
S5: … = *p;
}

S6: q = alloc(T);
g(&q);

S8: r = alloc(T);
}

T local;
if(…)

s9: p = &local;
}

Carnegie Mellon

pS5 =

Todd C. Mowry15-745: Pointer Analysis 16

5

Anderson’s Algorithm

• Flow-insensitive, context-insensitive, iterative
• Representation:

– one points-to graph for entire program
– each node represents exactly one location

• For each statement, build the points-to graph:

y = &x y points-to x
y = x if x points-to w

then y points-to w
*y = x if y points-to z and x points-to w

then z points-to w

Carnegie Mellon

• Iterate until graph no longer changes
• Worst case complexity: O(n3), where n = program size

Todd C. Mowry15-745: Pointer Analysis 17

then z points to w
y = *x if x points-to z and z points-to w

then y points-to w

Anderson Example

T *p, *q, *r;

int main() {
S1: p = alloc(T);

void f() {
S6: q = alloc(T);

g(T **fp) {
T local;S1: p = alloc(T);

f();
g(&p);

S4: p = alloc(T);
S5: … = *p;
}

S6: q = alloc(T);
g(&q);

S8: r = alloc(T);
}

T local;
if(…)

s9: p = &local;
}

Carnegie Mellon

pS5 =

Todd C. Mowry15-745: Pointer Analysis 18

Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive
• Representation:

– a compact points-to graph for entire program
h d l l l• each node can represent multiple locations

• but can only point to one other node
– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out
– “unioning” while finding eliminates need to iterate

• Worst case complexity: O(n)
• Precision: less precise than Anderson’s

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 19

Steensgaard Example

T *p, *q, *r;

int main() {
S1: p = alloc(T);

void f() {
S6: q = alloc(T);

g(T **fp) {
T local;S1: p = alloc(T);

f();
g(&p);

S4: p = alloc(T);
S5: … = *p;
}

S6: q = alloc(T);
g(&q);

S8: r = alloc(T);
}

T local;
if(…)

s9: p = &local;
}

Carnegie Mellon

pS5 =

Todd C. Mowry15-745: Pointer Analysis 20

6

Example with Flow Sensitivity

T *p, *q, *r;

int main() {
S1: p = alloc(T);

void f() {
S6: q = alloc(T);

g(T **fp) {
T local;S1: p = alloc(T);

f();
g(&p);

S4: p = alloc(T);
S5: … = *p;
}

S6: q = alloc(T);
g(&q);

S8: r = alloc(T);
}

T local;
if(…)

s9: p = &local;
}

Carnegie Mellon

pS5 =

Todd C. Mowry15-745: Pointer Analysis 21

pS9 =

Pointer Analysis Using BDDs

References:
• “Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams”, Whaley and Lam, PLDI 2004
“S b li i t l sis isit d” Zh d C l PDLI 2004• “Symbolic pointer analysis revisited”, Zhu and Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al, PDLI 2003

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 22

Binary Decision Diagram (BDD)

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 23

Binary Decision Tree Truth Table BDD

BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions
– encode procedure as a function of its calling context
– compact and efficient representation

• Perform context-sensitive, inter-procedural analysis
– similar to dataflow analysis
– but across the procedure call graph

• Gives accurate results
– and scales up to large programs

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 24

7

Probabilistic Pointer Analysis

References:
• “A Probabilistic Pointer Analysis for Speculative Optimizations”, DaSilva

and Steffan, ASPLOS 2006
“C il s t f s l ti ltith di hit t ith • “Compiler support for speculative multithreading architecture with
probabilistic points-to analysis”, Shen et al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez and
Espasa, PACT 2002

• “A General Compiler Framework for Speculative Optimizations Using
Data Speculative Code Motion”, Dai et al., CGO 2005

• “Speculative register promotion using Advanced Load Address Table
(ALAT)”, Lin et al., CGO 2003

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 25

Pointer Analysis: Yes, No, & Maybe

*a = ~
~ = *b

optimize

~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

*a = ~ ~ = *b

Carnegie Mellon

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases?

Todd C. Mowry15-745: Pointer Analysis 26

Let’s Speculate

• Implement a potentially unsafe optimization
– Verify and Recover if necessary

int *a, x;
…
while(…)
{

x = *a;
…

} a is probably
loop invariant

int *a, x, tmp;
…
tmp = *a;
while(…)
{

x = tmp;
…

}

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 27

loop invariant }
<verify, recover?>

Data Speculative Optimizations

• EPIC Instruction sets
– Support for speculative load/store instructions (e.g., Itanium)

• Speculative compiler optimizations
– Dead store elimination, redundancy elimination, copy propagation,

strength reduction, register promotion
• Thread-level speculation (TLS)

– Hardware and compiler support for speculative parallel threads
• Transactional programming

– Hardware and software support for speculative parallel
transactions

Carnegie Mellon

Heavy reliance on detailed profile feedback

Todd C. Mowry15-745: Pointer Analysis 28

8

Can We Quantify “Maybe”?

• Estimate the potential benefit for speculating:

Recovery
lt Overhead

Maybe

SPECULATE?

Expected
speedup

(if successful)

penalty
(if unsuccessful)

Overhead
for verify Probability

of success

Carnegie Mellon

Ideally “maybe” should be a probability.

Todd C. Mowry15-745: Pointer Analysis 29

Conventional Pointer Analysis

*a = ~
~ = *b

optimize

Definitely Not

Definitely

Maybe

~ = *b

pp = 0.0

pp = 1.0

0.0 < pp < 1.0

Pointer
Analysis

*a = ~ ~ = *b

Carnegie Mellon

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program point

Todd C. Mowry15-745: Pointer Analysis 30

Probabilistic Pointer Analysis

*a = ~
~ = *b

optimize

Definitely Not

Definitely

Maybe

~ = *b

pp = 0.0

pp = 1.0

0.0 < pp < 1.0

Probabilistic
Pointer
Analysis

*a = ~ ~ = *b

Carnegie Mellon

• Potential advantage of Probabilistic Pointer Analysis:
– it doesn’t need to be safe

Todd C. Mowry15-745: Pointer Analysis 31

PPA Research Objectives

• Accurate points-to probability information
– at every static pointer dereference

• Scalable analysis
– Goal: entire SPEC integer benchmark suite

• Understand scalability/accuracy tradeoff
– through flexible static memory model

Carnegie Mellon

Improve our understanding of programs

Todd C. Mowry15-745: Pointer Analysis 32

9

Algorithm Design Choices

Fixed:
• Bottom Up / Top Down Approach
• Linear transfer functions (for scalability)
• One-level context and flow sensitive

Flexible:
• Edge profiling (or static prediction)
• Safe (or unsafe)
• Field sensitive (or field insensitive)

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 33

Traditional Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

if()

= pointer

i d

Definitely

M b

=

if(…)
b = &y;

if(…)
a = &z;

else(…)
a = b;

ab

= pointed at Maybe=

Carnegie Mellon
34

while(…) {
x = *a;
…

}
}

y UNDzx

Results are inconclusive

Probabilistic Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

if() 0 10 1 takentaken((edge profileedge profile))

= pointer

i d

p = 1.0

0 0 1 0

=

pif(…)
b = &y;

if(…)
a = &z;

else
a = b;

ab

0.10.1 takentaken((edge profileedge profile))

0.20.2 takentaken((edge profileedge profile))

= pointed at 0.0<p< 1.0=p

0.10.9
0.72

0.08

0.2

Carnegie Mellon
35

while(…) {
x = *a;
…

}
}

y UNDzx

Results provide more information

Probabilistic Pointer Analysis Results Summary

• Matrix-based, transfer function approach
– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks
– One-level context and flow sensitive

• As accurate as the most precise algorithms
• Interesting result:

– ~90% of pointers tend to point to only one thing

Carnegie Mellon
Todd C. Mowry15-745: Pointer Analysis 36

10

Pointer Analysis Summary

• Pointers are hard to understand at compile time!
– accurate analyses are large and complex

• Many different options:
– Representation, heap modeling, aggregate modeling, flow sensitivity,

context sensitivity
• Many algorithms:

– Address-taken, Steensgarde, Anderson, Emami
– BDD-based, probabilistic

• Many trade-offs:
– space, time, accuracy, safety

Ch th i ht t f l i i h th i f ti ill b d

Carnegie Mellon

• Choose the right type of analysis given how the information will be used

Todd C. Mowry15-745: Pointer Analysis 37

