The LLVM Compiler

Framework and Infrastructure

15745: Optimizing Compilers

Olatunji Ruwase

Substantial portions courtesy of Chris Lattner, Vikram Adve, and David Koes

LLVM Compiler System

m The LLVM Compiler Infrastructure
Provides reusable components for building compilers
Reduce the time/cost to build a new compiler
Build static compilers, JITs, trace-based optimizers, ...

m The LLVM Compiler Framework
End-to-end compilers using the LLVM infrastructure
C and C++ are robust and aggressive:
= Java, Scheme and others are in development
Emit C code or native code for X86, Sparc, PowerPC

Three primary LLVM components

m The LLVM Virtual Instruction Set
The common language- and target-independent IR
Internal (IR) and external (persistent) representation

m A collection of well-integrated libraries

Analyses, optimizations, code generators, JIT
compiler, garbage collection support, profiling, ...

m A collection of tools built from the libraries

Assemblers, automatic debugger, linker, code
generator, compiler driver, modular optimizer, ...

Tutorial Overview

Introduction to the running example
LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler
The LLVM Virtual Instruction Set
IR overview and type-system
m LLVM C++ IR and important API's
Basics, PassManager, dataflow
Important LLVM Tools
opt, code generator, JIT
m Assignment 1

Running example: arg promotion

Consider use of by-reference parameters:
int callee(const int &X) { int callee(const int *X) {

return X+1; |:> return *X+1; // memory load
} }

int caller() { compiles to |int caller() {
return callee(4); int tmp; /I stack object
} tmp =4; /l memory store
return callee(&tmp);
We want: }
int callee(int X) { R .
return X+1: vEliminated load in callee
: vEliminated store in caller
int caller() {

return callee(4); | v'Eliminated stack slot for ‘tmp’

}

Tutorial Overview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow

m Important LLVM Tools
opt, code generator, JIT

m Assignment 1

The LLVM C/C++ Compiler

m From the high level, it is a standard compiler:
Compatible with standard makefiles
Uses GCC 4.2 C and C++ parser

Cfile — |llvmgce -emit-livm | — .ofile ~\
- o livm linker executable
C++ file — | llvmg++ -emit-llvm | — .o file

Compile Time Link Time

m Distinguishing features:
Uses LLVM optimizers, not GCC optimizers
.0 files contain LLVM IR/bytecode, not machine code
Executable can be bytecode (JIT'd) or machine code

Looking into events at compile-time

C file — — ofile
/ \

“cc‘l"/ “gccas” \
M [¢]

E

Lowers to

Looking into events at link-time

.o file
N llvm linker | = executable

© me/ \

.bc file for LLVM JIT

.0 file\

ofile”

Native executable

Native
— executable
“llc —march=c” gee
h'd
Link in native .o files

and libraries here

Perfect place for argument
promotion optimization!

Tutorial Overview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow

m Important LLVM Tools
opt, code generator, JIT

m Assignment 1

10

Goals of LLVM IR

m Easy to produce, understand, and define!

m Language- and Target-Independent
AST-level IR (e.g. ANDF, UNCOL) is not very feasible
= Every analysis/xform must know about ‘all’ languages
m One IR for analysis and optimization

IR must be able to support aggressive IPO, loop opts,
scalar opts, ... high- and low-level optimization!

m Optimize as much as early as possible
Can't postpone everything until link or runtime
No lowering in the IR!

LLVM Instruction Set Overview #1

m Low-level and target-independent semantics
RISC-like three address code
Infinite virtual register set in SSA form
Simple, low-level control flow constructs
Load/store instructions with typed-pointers

m IR has text, binary, and in-memory forms

loop: ; preds = %bb0, %loop
%i.1 = phi i32 [0, %bb0], [%i.2, %loop 1]
- - %ATAddr = getelementptr float* %A, 132 %i.1
LR CRRCE IR E o1 void @sum(Float %AiAddr, %pair* %P)
) %i.2 = add 132 %i.1, 1
ST e wexiteond = dcmp eq 132 %i.1, %N
br 11 %exitcond, label %outloop, label %loop

LLVM Instruction Set Overview #2

m High-level information exposed in the code
Explicit dataflow through SSA form
Explicit control-flow graph (even for exceptions)
Explicit language-independent type-information
Explicit typed pointer arithmetic
» Preserve array subscript and structure indexing

loop: ; preds = %bb0, %loop

%i.1 = phi i32 [0, %bb0 J, [%i.2, %loop]
%ATAddr = getelementptr float* %A, 132 %i.1
call void @Sum(Float %AiAddr, %pair* %P)
%i.2 = add 132 %i.1, 1

%exitcond = icmp eq 132 %i.1, %N

br i1 %exitcond, label %outloop, label %loop

for (i = 0; 1 <N;
1)
Sum(8ALi], &P);

LLVM Type System Details

m The entire type system consists of:
Primitives: label, void, float, integer, ...
= Arbitrary bitwidth integers (i1, i32, 64)
Derived: pointer, array, structure, function
No high-level types: type-system is language neutral!

m Type system allows arbitrary casts:
Allows expressing weakly-typed languages, like C
Front-ends can implement safe languages
Also easy to define a type-safe subset of LLVM

See also: docs/LangRef.html
1

Lowering source-level types to LLVM

m Source language types are lowered:
Rich type systems expanded to simple type system
Implicit & abstract types are made explicit & concrete
m Examples of lowering:
References turn into pointers: 1& > T*
Complex numbers: complex float > { float, float }
Bitfields: struct X { int Y:4; int z:2; } > {32}
Inheritance:class T : s { int X; 3 > {sS, i32}
Methods: class T { void foo(); } > void foo(T*)
m Same idea as lowering to machine code

LLVM Program Structure

m Module contains Functions/GlobalVariables
Module is unit of compilation/analysis/optimization

m Function contains BasicBlocks/Arguments
Functions roughly correspond to functions in C

m BasicBlock contains list of instructions
Each block ends in a control flow instruction

m Instruction is opcode + vector of operands
All operands have types
Instruction result is typed

Tutorial Overview

Introduction to the running example
LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler
The LLVM Virtual Instruction Set
IR overview and type-system
m LLVM C++ IR and important API's
Basics, PassManager, dataflow

Important LLVM Tools
opt, code generator, JIT

m Assignment 1

LLVM Coding Basics

m Written in modern C++, uses the STL:
Particularly the vector, set, and map classes

m LLVM IR is almost all doubly-linked lists:
Module contains lists of Functions & GlobalVariables
Function contains lists of BasicBlocks & Arguments
BasicBlock contains list of Instructions

m Linked lists are traversed with iterators:

Function *M = ..
for (Function::iterator I = M->begin(); 1 = M->end(Q); ++1) {
BasicBlock &BB = *1;

See also: docs/ProgrammersManual.html
18

LLVM Pass Manager

m Compiler is organized as a series of ‘passes’:
Each pass is one analysis or transformation
m Four types of Pass:
ModulePass: general interprocedural pass
CallGraphSCCPass: bottom-up on the call graph
[FunctionPass: process a function at a time J
e

BasicBlockPass: process a basic block at a tim

m Constraints imposed (e.g. FunctionPass):
FunctionPass can only look at “current function”
Cannot maintain state across functions

See also: docs/WritingAnLLVMPass. html
19

LLVM Dataflow Analysis

m LLVM IR is in SSA form:
use-def and def-use chains are always available
All objects have user/use info, even functions

m Control Flow Graph is always available:
Exposed as BasicBlock predecessor/successor lists
Many generic graph algorithms usable with the CFG

m Higher-level info implemented as passes:
Dominators, CallGraph, induction vars, aliasing, GVN, ...

See also: docs/ProgrammersManual . html
20

Tutorial Overview

m Introduction to the running example

m LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler

m The LLVM Virtual Instruction Set
IR overview and type-system

m LLVM C++ IR and important API's
Basics, PassManager, dataflow

m Important LLVM Tools
opt, code generator, JIT

m Assignment 1

LLVM tools: two flavors

m “Primitive” tools: do a single job
llvm-as: Convert from .II (text) to .bc (binary)
llvm-dis: Convert from .bc (binary) to .1l (text)
llvm-link: Link multiple .bc files together
llvm-prof: Print profile output to human readers
llvmc: Configurable compiler driver

m Aggregate tools: pull in multiple features
gccas/gcecld: Compile/link-time optimizers for C/C++ FE
bugpoint: automatic compiler debugger
llvm-gcc/llvm-g++: C/C++ compilers

See also: docs/CommandGuide/

opt tool: LLVM modular optimizer

m Invoke arbitrary sequence of passes:
Completely control PassManager from command line
Supports loading passes as plugins from .so files

opt -load foo.so -passl -pass2 -pass3 x.bc -0 y.bc

m Passes “register” themselves:

61: RegisterOpt<SimpleArgPromotion> X(“simpleargpromotion”,
“Promote “by reference® arguments to “by value®™);

m From this, they are exposed through opt:

> opt -load libsimpleargpromote.so —help

-sccp - Sparse Conditional Constant Propagation
-simpleargpromotion - Promote "by reference” arguments to by

-simplifycfg - Simplify the CFG

Running Arg Promotion with opt

m Basic execution with ‘opt’:
opt -simpleargpromotion in.bc -0 out.bc

Load .bc file, run pass, write out results
Use “-load filename.so” if compiled into a library
PassManager resolves all dependencies
m Optionally choose an alias analysis to use:
opt —basicaa —simpleargpromotion (default)
Alternatively, —-steens-aa, —anders-aa, —ds-aa, ..
m Other useful options available:

-stats: Print statistics collected from the passes
-time-passes: Time each pass being run, print output

LLC Tool: Static code generator

m Compiles LLVM - native assembly language

Currently for X86, Sparc, PowerPC (others in alpha)
Ilc file.bc -0 file.s -march=x86
as file.s —o file.o

m Compiles LLVM - portable C code
Ilc file.bc -o file.c -march=c
gcc —c File.c —o file.o

m Targets are modular & dynamically loadable:
Ilc —load libarm.so file.bc -march=arm

LLI Tool: LLVM Execution Engine

m LLI allows direct execution of .bc files
E.g.: 11i grep.bc -i foo *.c

m LLI uses a Just-In-Time compiler if available:
Uses same code generator as LLC

= Optionally uses faster components than LLC

Emits machine code to memory instead of “.s” file
JIT is a library that can be embedded in other tools

m Otherwise, it uses the LLVM interpreter:
Interpreter is extremely simple and very slow
Interpreter is portable though!

Tutorial Overview

Introduction to the running example
LLVM C/C++ Compiler Overview
High-level view of an example LLVM compiler
The LLVM Virtual Instruction Set
IR overview and type-system
m LLVM C++ IR and important API's
Basics, PassManager, dataflow

Important LLVM Tools
opt, code generator, JIT

m Assignment 1

Assignment 1

m Introduction to LLVM
Install and play with it

m Learn interesting program properties
Functions: name, arguments, return types, local or
global

m Local optimizations (within basic blocks)
Algebraic simplification
Strength reduction
Constant folding

