
1

Lecture 6

More Examples of Data Flow Analysis:
Global Common Subexpression Elimination; Global Common Subexpression Elimination;

Constant Propagation/Folding

I. Available Expressions Analysis

II. Eliminating CSEs

III C t t P ti /F ldi

Carnegie Mellon

III.Constant Propagation/Folding

Reading: 9.2.6, 9.4

Todd C. Mowry 15-745: GCSE & Constants 1

Global Common Subexpressions

ldc t3 = 0
t3

sub t5 = a, b
ld t6 1

add t1 = x, y
add t2 = c, d

cpy x = t3
add t4 = x, y
cpy m = t4

ldc t6 = -1
cpy c = t6

sub t7 = a, b
cpy m = t7
add t8 = x, y
add t9 = c, d

Carnegie Mellon

• Availability of an expression E at point P
• DEFINITION: Along every path to P in the flow graph:

– E must be evaluated at least once
– no variables in E redefined after the last evaluation

• Observations: E may have different values on different paths

Todd C. Mowry15-745: GCSE & Constants 2

Formulating the Problem

• Domain:
• a bit vector, with

a bit for each textually unique expression in the program
• Forward or Backward?• Forward or Backward?
• Lattice Elements?
• Meet Operator?

• check: commutative, idempotent, associative
• Partial Ordering

• Top?
• Bottom?

Carnegie Mellon

• Boundary condition: entry/exit node?
• Initialization for iterative algorithm?

Todd C. Mowry15-745: GCSE & Constants 3

Transfer Functions

• Can use the same equation as reaching definitions
• out[b] = gen[b] (in[b] - kill[b])

• Start with the transfer function for a single instructionStart with the transfer function for a single instruction
• When does the instruction generate an expression?
• When does it kill an expression?

• Calculate transfer functions for complete basic blocks
• Compose individual instruction transfer functions

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 4

2

Composing Transfer Functions

• Derive the transfer function for an entire block

1

in1

• Since out1 = in2 we can simplify:
• out2 = gen2 U ((gen1 U (in1 - kill1)) - kill2)

t2 2 U (1 kill2) U (i 1 (kill1 U kill2))

2

out2 = gen2 U (in2 – kill2)

out1 = gen1 U (in1 – kill1) = in2

Carnegie Mellon

• out2 = gen2 U (gen1 - kill2) U (in1 - (kill1 U kill2))
• out2 = gen2 U (gen1 - kill2) U (in1 - (kill2 U (kill1 - gen2)))

• Result
• gen = gen2 U (gen1 - kill2)
• kill = kill2 U (kill1 - gen2)

Todd C. Mowry15-745: GCSE & Constants 5

II. Eliminating CSEs

• Available expressions (across basic blocks)
– provides the set of expressions available at the start of a block

• Value Numbering (within basic block)g
– Initialize Values table with available expressions

• If CSE is an “available expression”, then transform the code
– Original destination may be:

• a temporary register
• overwritten
• different from the variables on other paths

– One solution: Copy the expression to a new variable at each

Carnegie Mellon

One solution: Copy the expression to a new variable at each
evaluation reaching the redundant use

Todd C. Mowry15-745: GCSE & Constants 6

III. Limitation: Textually Identical Expressions

• Commutative operations

add t1 = x, y add t2 = y, x

– sort the operands

add t3 = x, y

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 7

Further Improvements

• Examples
– Expressions with more than two operands

add t1 = x y add t3 = y x

– Textually different expressions may be equivalent
add t1 = x, y

add t1 = x, y
add t2 = t1, z

add t3 = y, x
add t4 = t3, z

add t5 = x, y
add t6 = t5, z

Carnegie Mellon

beq t1, t2, L1
cpy z = x
add t3 = z, y

Todd C. Mowry15-745: GCSE & Constants 8

3

Another Example

x = 1
y = 1

x = x + 1
y = y + 1
x = x + 1
y = y + 1

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 9

Summary

Reaching Definitions Available Expressions

Domain Sets of definitions Sets of expressions

Transfer function f (x)Transfer function fb(x)
Generate U Propagate
direction of function forward: out[b] = fb(in[b]) forward: out[b] = fb(in[b])

Generate Genb: exposed definitions Genb: expressions evaluated

Propagate in[b]-Killb: definitions killed in[b]-Killb: expressions killed

Meet operation U (in[b]= U out[predecessors]) (in[b]= out[predecessors])

Initialization out[entry] =
out[b] =

out[entry] =
out[b] = all expressions

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 10

out[b] = out[b] = all expressions

III. Constant Propagation/Folding

• At every basic block boundary, for each variable v
• determine if v is a constant
• if so, what is the value?

x = 2
m = x + e

e = 3

p = e + 4

e = 1

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 11

Semi-lattice Diagram

undef

... -3 -2 -1 0 1 2 3 ...

NAC

Carnegie Mellon

– Finite domain?
– Finite height?

Todd C. Mowry15-745: GCSE & Constants 12

4

Equivalent Definition

• Meet Operation:

v1 v2 v1 v2
undef undef

undef c2 c2

NAC NAC

c1

undef c1

c2 c1, if c1 =c2
NAC otherwise

NAC NAC
undef NAC

Carnegie Mellon

– Note: undef c2 = c2!

Todd C. Mowry15-745: GCSE & Constants 13

NAC c2 NAC
NAC NAC

Example

x = 2x = 2

p = x

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 14

Transfer Function

• Assume a basic block has only 1 instruction

• Let IN[b,x], OUT[b,x]

– be the information for variable x at entry and exit of basic block b

• OUT[entry, x] = undef, for all x.

• Non-assignment instructions: OUT[b,x] = IN[b,x]

• Assignment instructions: (next page)

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 15

Constant Propagation (Cont.)
• Let an assignment be of the form x3 = x1 + x2

• “+” represents a generic operator
• OUT[b,x] = IN [b,x], if x x3

IN[b,x1] IN[b,x2] OUT[b,x3]IN[b,x1] IN[b,x2] OUT[b,x3]

undef
undef undef
c2 c2

NAC NAC

c1

undef undef
c2 c1 + c2

NAC NAC
d f NAC

Carnegie Mellon

• Use: x ≤ y implies f(x) ≤ f(y) to check if framework is monotone
• [v1 v2 ...] [v1’ v2’ ...], f([v1 v2 ...]) f ([v1’ v2’ ...])

Todd C. Mowry15-745: GCSE & Constants 16

NAC
undef NAC
c2 NAC
NAC NAC

5

Distributive?

x = 2
y = 3

x = 3
y = 2

• Iterative solutions is not precise!
– it is also not wrong
– it is conservative

z = x + y

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 17

Summary of Constant Propagation

• A useful optimization
• Illustrates:

– abstract execution
– an infinite semi-lattice
– a non-distributive problem

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 18

Other Optimizations

• Copy Propagation:

• Dead Code Elimination:

Carnegie Mellon
Todd C. Mowry15-745: GCSE & Constants 19

