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Lecture 6

More Examples of Data Flow Analysis: 
Global Common Subexpression Elimination; Global Common Subexpression Elimination; 

Constant Propagation/Folding

I. Available Expressions Analysis

II. Eliminating CSEs

III C t t P ti /F ldi

Carnegie Mellon

III.Constant Propagation/Folding

Reading: 9.2.6, 9.4
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Global Common Subexpressions

ldc t3 = 0
t3

sub t5 = a, b
ld t6 1

add t1 = x, y
add t2 = c, d

cpy x = t3
add t4 = x, y
cpy m = t4 

ldc t6 = -1
cpy c = t6

sub t7 = a, b
cpy m = t7
add t8 = x, y
add t9 = c, d
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• Availability of an expression E at point P
• DEFINITION: Along every path to P in the flow graph:

– E must be evaluated at least once
– no variables in E redefined after the last evaluation

• Observations: E may have different values on different paths
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Formulating the Problem

• Domain: 
• a bit vector, with

a bit for each textually unique expression in the program
• Forward or Backward?• Forward or Backward?
• Lattice Elements?
• Meet Operator?

• check: commutative, idempotent, associative
• Partial Ordering

• Top?
• Bottom?
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• Boundary condition: entry/exit node?
• Initialization for iterative algorithm?
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Transfer Functions

• Can use the same equation as reaching definitions
• out[b] = gen[b]  (in[b] - kill[b])

• Start with the transfer function for a single instructionStart with the transfer function for a single instruction
• When does the instruction generate an expression?
• When does it kill an expression?

• Calculate transfer functions for complete basic blocks
• Compose individual instruction transfer functions
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Composing Transfer Functions

• Derive the transfer function for an entire block

1

in1

• Since out1 = in2 we can simplify:
• out2 = gen2 U ((gen1 U (in1 - kill1)) - kill2)

t2  2 U ( 1 kill2) U (i 1 (kill1 U kill2))

2

out2 = gen2 U (in2 – kill2)

out1 = gen1 U (in1 – kill1) = in2
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• out2 = gen2 U (gen1 - kill2) U (in1 - (kill1 U kill2))
• out2 = gen2 U (gen1 - kill2) U (in1 - (kill2 U (kill1 - gen2)))

• Result
• gen = gen2 U (gen1 - kill2)
• kill = kill2 U (kill1 - gen2)
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II. Eliminating CSEs

• Available expressions (across basic blocks)
– provides the set of expressions available at the start of a block

• Value Numbering (within basic block)g
– Initialize Values table with available expressions

• If CSE is an “available expression”, then transform the code
– Original destination may be:

• a temporary register
• overwritten
• different from the variables on other paths

– One solution: Copy the expression to a new variable at each 
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One solution: Copy the expression to a new variable at each 
evaluation reaching the redundant use
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III. Limitation: Textually Identical Expressions

• Commutative operations 

add t1 = x, y add t2 = y, x

– sort the operands

add t3 = x, y
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Further Improvements

• Examples
– Expressions with more than two operands

add t1 = x y add t3 = y x

– Textually different expressions may be equivalent
add t1 = x, y

add t1 = x, y
add t2 = t1, z

add t3 = y, x
add t4 = t3, z

add t5 = x, y
add t6 = t5, z
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beq t1, t2, L1
cpy z = x
add t3 = z, y
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Another Example

x = 1     
y = 1

x = x + 1
y = y + 1 
x = x + 1
y = y + 1
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Summary

Reaching Definitions Available Expressions

Domain Sets of definitions Sets of expressions

Transfer function f (x)Transfer function fb(x)
Generate U Propagate
direction of function forward: out[b] = fb(in[b]) forward: out[b] = fb(in[b])

Generate Genb: exposed definitions Genb: expressions evaluated

Propagate in[b]-Killb: definitions killed in[b]-Killb: expressions killed

Meet operation U (in[b]= U out[predecessors])  (in[b]=  out[predecessors])

Initialization out[entry] = 
out[b] = 

out[entry] = 
out[b] = all expressions 
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out[b] = out[b] = all expressions 

III. Constant Propagation/Folding

• At every basic block boundary, for each variable v
• determine if v is a constant
• if so, what is the value?

x = 2
m = x + e

e = 3  

p = e + 4  

e = 1   

Carnegie Mellon
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Semi-lattice Diagram

undef

... -3 -2 -1 0 1 2 3 ...

NAC

Carnegie Mellon

– Finite domain?
– Finite height? 
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Equivalent Definition

• Meet Operation: 

v1 v2 v1  v2
undef undef

undef c2 c2

NAC NAC

c1

undef c1

c2 c1, if c1 =c2
NAC otherwise

NAC NAC
undef NAC
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– Note: undef  c2 = c2! 
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NAC c2 NAC
NAC NAC

Example

x = 2x = 2

p = x      

Carnegie Mellon
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Transfer Function

• Assume a basic block has only 1 instruction 

• Let IN[b,x], OUT[b,x] 

– be the information for variable x at entry and exit of basic block b

• OUT[entry, x] = undef, for all x. 

• Non-assignment instructions: OUT[b,x] = IN[b,x] 

• Assignment instructions: (next page)
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Constant Propagation (Cont.)
• Let an assignment be of the form x3 = x1 + x2

• “+” represents a generic operator
• OUT[b,x] = IN [b,x], if x  x3

IN[b,x1] IN[b,x2] OUT[b,x3]IN[b,x1] IN[b,x2] OUT[b,x3]

undef
undef undef
c2 c2

NAC NAC

c1

undef undef
c2 c1 + c2

NAC NAC
d f NAC
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• Use: x ≤ y implies f(x) ≤ f(y) to check if framework is monotone
• [v1 v2 ... ]  [v1’ v2’ ... ], f([v1 v2 ... ])  f ([v1’ v2’ ... ])
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NAC
undef NAC
c2 NAC
NAC NAC
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Distributive?

x = 2 
y = 3 

x = 3 
y = 2 

• Iterative solutions is not precise!
– it is also not wrong
– it is conservative

z = x + y 
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Summary of Constant Propagation

• A useful optimization
• Illustrates:

– abstract execution
– an infinite semi-lattice
– a non-distributive problem
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Other Optimizations

• Copy Propagation:

• Dead Code Elimination:
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