
2/27/13

1

Markov Decision Processes

Manuela M. Veloso

Carnegie Mellon University
Computer Science Department

15-780 Graduate AI – Spring 2013
Readings:

•  Russell & Norvig: chapter 17, 17.1-3.

Planning under Uncertainty
•  Motivation: Uncertainty everywhere – discuss;

in particular robotics, cyber and physical world

15-780 Spring
2013

Manuela Veloso 2

2/27/13

2

Planning under Uncertainty!

15-780 Spring
2013

Manuela Veloso 3

Exploding Blocks World

(define (domain exploding-blocks-world-pre)
(:action put-down-block-on-table

 :parameters (?b - block)
 :precondition
 (and (holding ?b)
 (not (destroyed-table)))

:effect
 (and (not (holding ?b))
 (on-top-of-table ?b)
 ((probabilistic .3 (and (detonated ?b)

 (destroyed-table)))))
15-780 Spring

2013
Manuela Veloso 4

2/27/13

3

The Triangle TireWorld

15-780 Spring
2013

Manuela Veloso 5

•  At every move, flat tire 0.5 probability

•  Spare tires at some locations only

•  L2, L3, L4 have spare tires

•  L1 does not

PDDL Representation

15-780 Spring
2013

Manuela Veloso 6

2/27/13

4

7

Markov Decision Processes
•  Finite set of states, s1,..., sn

•  Finite set of actions, a1,..., am
•  Probabilistic state,action transitions:

•  Markov assumption: State transition function only
dependent on current state, not on the “history” of how
the state was reached.

•  Reward for each state, r1,..., rn
•  Process:

–  Start in state si
–  Receive immediate reward ri
–  Choose action ak ∈ A
–  Change to state sj with probability
–  Discount future rewards

)action takeand current (next prob kij
k
ij assp ===

. kijp

2/27/13

5

Markov Systems with Rewards
•  Finite set of n states, si

•  Probabilistic state matrix, P, pij

•  “Goal achievement” - Reward for each state, ri

•  Discount factor - γ

•  Process/observation:

–  Assume start state si
–  Receive immediate reward ri
–  Move, or observe a move, randomly to a new state

according to the probability transition matrix
–  Future rewards (of next state) are discounted by γ

Example – Markov System with Reward

•  States
•  Rewards in states
•  Probabilistic transitions between states
•  Markov: transitions only depend on current state

2/27/13

6

Solving a Markov System with Rewards
•  V*(si) - expected discounted sum of future rewards

starting in state si

•  V*(si) = ri + γ[pi1V*(s1) + pi2V*(s2) + ... pinV*(sn)]

Value Iteration to Solve a Markov System
with Rewards

•  V1(si) - expected discounted sum of future rewards
starting in state si for one step.

•  V2(si) - expected discounted sum of future rewards
starting in state si for two steps.

•  ...

•  Vk(si) - expected discounted sum of future rewards
starting in state si for k steps.

•  As k → ∞Vk(si) → V*(si)

•  Stop when difference of k + 1 and k values is smaller
than some ∈.

2/27/13

7

3-State Example

3-State Example: Values γ = 0.5

2/27/13

8

3-State Example: Values γ = 0.9

3-State Example: Values γ = 0.2

2/27/13

9

Solving an MDP
•  Find an action to apply to each state.
•  A policy is a mapping from states to actions.

•  Optimal policy - for every state, there is no other action
that gets a higher sum of discounted future rewards.

•  For every MDP there exists an optimal policy.

•  Solving an MDP is finding an optimal policy.

•  A specific policy converts an MDP into a plain Markov
system with rewards.

Value Iteration
•  V*(si) - expected discounted future rewards, if we start

from state si, and we follow the optimal policy.
•  Compute V* with value iteration:

–  Vk(si) = maximum possible future sum of rewards
starting from state si for k steps.

•  Bellman’s Equation:

•  Dynamic programming

() ()} γ{max
1

1 ∑
=

+ +=
N

j

j
nk

ijiki
n sVprsV

2/27/13

10

Policy Iteration
•  Start with some policy π0(si).
•  Such policy transforms the MDP into a plain Markov

system with rewards.
•  Compute the values of the states according to the

current policy.

•  Update policy:

•  Keep computing

•  Stop when πk+1 = πk.

() ()} γ{maxargπ
1 ∑+=
+

j
j

a
ijiai sVprs k

k

π

Nondeterministic Example

2/27/13

11

Nondeterministic Example
π*(s) = D, for any s= S1, S2, S3, and S4, γ = 0.9.

V*(S2) = r(S2,D) + 0.9 (1.0 V*(S2))
V*(S2) = 100 + 0.9 V*(S2)
V*(S2) = 1000.

V*(S1) = r(S1,D) + 0.9 (1.0 V*(S2))
V*(S1) = 0 + 0.9 x 1000
V*(S1) = 900.

V*(S3) = r(S3,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3))
V*(S3) = 0 + 0.9 (0.9 x 1000 + 0.1 V*(S3))
V*(S3) = 81000/91.

V*(S4) = r(S4,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S4))
V*(S4) = 40 + 0.9 (0.9 x 1000 + 0.1 V*(S4))
V*(S4) = 85000/91.

Summary: Markov Models

•  Plan is a Policy
–  Stationary: Best action is fixed
–  Non-stationary: Best action depends on time

•  States can be discrete, continuous, or hybrid

Passive Controlled

Fully Observable Markov Models MDP

Hidden State HMM POMDP

Time Dependent Semi-Markov SMDP

2/27/13

12

Tradeoffs

•  MDPs
+ Tractable to solve
+ Relatively easy to specify
– Assumes perfect knowledge of state

•  POMDPs
+ Treats all sources of uncertainty uniformly
+ Allows for taking actions that gain information
– Difficult to specify all the conditional probabilities
– Hugely intractable to solve optimally

•  SMDPs
+ General distributions for action durations
– Few good solution algorithms

Summary

•  Planning under uncertainty
•  Markov Models with Reward
•  Value Iteration
•  Markov Decision Process
•  Value Iteration
•  Policy Iteration
•  POMDPs (later)
•  Reinforcement Learning (later)

