Markov Decision Processes

Manuela M. Veloso

Carnegie Mellon University
Computer Science Department

15-780 Graduate AI - Spring 2013

Readings:

• Russell & Norvig: chapter 17, 17.1-3.

Planning under Uncertainty

 Motivation: Uncertainty everywhere – discuss; in particular robotics, cyber and physical world

ring 2013

Exploding Blocks World

The Triangle TireWorld

- · At every move, flat tire 0.5 probability
- · Spare tires at some locations only
- · L2, L3, L4 have spare tires
- · L1 does not

Manuela Veloso 5 15-780 Spring 2013

PDDL Representation

Figure 2: MDP representation of the triangle tireworld of size 1. Black arrows represent the move action, which has 2-resulting states each one with probability 0.5. Gray arrows represent the change-tire action. States in bold are goal states

Markov Decision Processes

- Finite set of states, $s_1, ..., s_n$
- Finite set of actions, $a_1, ..., a_m$
- Probabilistic state, action transitions: $p_{ij}^{k} = \text{prob} \left(\text{next} = s_{j} \mid \text{current} = s_{i} \text{ and take action } a_{k} \right)$
- Markov assumption: State transition function only dependent on current state, not on the "history" of how the state was reached.
- Reward for each state, $r_1, ..., r_n$
- Process:
 - Start in state s_i
 - Receive immediate reward r_i
 - Choose action $a_k \in A$
 - Change to state s_j with probability p_{ij}^k . Discount future rewards

Markov Systems with Rewards

- Finite set of *n* states, *s_i*
- Probabilistic state matrix, P, p_{ii}
- "Goal achievement" Reward for each state, r,
- Discount factor γ
- Process/observation:
 - Assume start state s_i
 - Receive immediate reward r_i
 - Move, or observe a move, randomly to a new state according to the probability transition matrix
 - Future rewards (of next state) are discounted by γ

Example – Markov System with Reward

- States
- Rewards in states
- · Probabilistic transitions between states
- · Markov: transitions only depend on current state

Solving a Markov System with Rewards

- $V^*(s_i)$ expected discounted sum of future rewards starting in state s_i
- $V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$

Value Iteration to Solve a Markov System with Rewards

- $V^1(s_i)$ expected discounted sum of future rewards starting in state s_i for one step.
- $V^2(s_i)$ expected discounted sum of future rewards starting in state s_i for two steps.
- •
- V^k(s_i) expected discounted sum of future rewards starting in state s_i for k steps.
- As $k \to \infty V^k(s_i) \to V^*(s_i)$
- Stop when difference of k + 1 and k values is smaller than some ∈.

3-State Example

3-State Example: Values γ **= 0.5**

0 0 0 0 1 4 0 -8	3
1 4 0 -8	
2 5.0 -1.0 -10	1.0
3 5.0 -1.25 -10.	75
4 4.9375 -1.4375 -11	.0
5 4.875 -1.515625 -11.10	9375
6 4.8398437 -1.5585937 -11.18	5625
7 4.8203125 -1.5791016 -11.17	8711
8 4.8103027 -1.5895996 -11.18	9453
9 4.805176 -1.5947876 -11.19	4763
10 4.802597 -1.5973969 -11.19	7388
11 4.8013 -1.5986977 -11.19	8696
12 4.8006506 -1.599349 -11.19	9348
13 4.8003254 -1.5996745 -11.19	9675
14 4.800163 -1.5998373 -11.19	9837
15 4.8000813 -1.5999185 -11.19	9919

3-State Example: Values γ **= 0.9**

_	Iteration	SUN	WIND	HAIL
	0	0	0	0
	1	4	0	-8
	2	5.8	-1.8	-11.6
	3	5.8	-2.6100001	-14.030001
	4	5.4355	-3.7035	-15.488001
	5	4.7794	-4.5236254	-16.636175
	6	4.1150985	-5.335549	-17.521912
	7	3.4507973	-6.0330653	-18.285858
	8	2.8379793	-6.6757774	-18.943516
	9	2.272991	-7.247492	-19.528683
	50	-2.8152928	-12.345073	-24.633476
	51	-2.8221645	-12.351946	-24.640347
	52	-2.8283496	-12.3581295	-24.646532
			111	
	86	-2.882461	-12.412242	-24.700644
	87	-2.882616	-12.412397	-24.700798
	88	-2.8827558	-12.412536	-24.70094

3-State Example: Values γ = 0.2

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	4.4	-0.4	-8.8
3	4.4	-0.44000003	-8.92
4	4.396	-0.452	-8.936
5	4.3944	-0.454	-8.9388
6	4.39404	-0.45443997	-8.93928
7	4.39396	-0.45452395	-8.939372
8	4.393944	-0.4545412	-8.939389
9	4.3939404	-0.45454454	-8.939393
10	4.3939395	-0.45454526	-8.939394
11	4.3939395	-0.45454547	-8.939394
12	4.3939395	-0.45454547	-8.939394

Solving an MDP

- Find an action to apply to each state.
- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Value Iteration

- $V^*(s_i)$ expected discounted future rewards, if we start from state s_i and we follow the optimal policy.
- Compute V^* with value iteration:
 - $V^k(s_i)$ = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_i) = \max_k \{r_i + \gamma \sum_{j=1}^N p_{ij}^k V^n(s_j)\}$$

· Dynamic programming

Policy Iteration

- Start with some policy $\pi_0(s_i)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to the current policy.
- Update policy:

$$\pi_{k+1}(s_i) = \operatorname{arg\,max}_a \{r_i + \gamma \sum_j p_{ij}^a V^{\pi_k}(s_j)\}$$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Nondeterministic Example

Nondeterministic Example

 $\pi^*(s) = D$, for any s = S1, S2, S3, and S4, $\gamma = 0.9$.

```
 \begin{array}{l} V^*(S2) = r(S2,D) + 0.9 & (1.0 \ V^*(S2)) \\ V^*(S2) = 100 + 0.9 \ V^*(S2) \\ V^*(S2) = 1000. \\ \\ V^*(S1) = r(S1,D) + 0.9 & (1.0 \ V^*(S2)) \\ V^*(S1) = 0 + 0.9 \ x & 1000 \\ V^*(S1) = 900. \\ \\ V^*(S3) = r(S3,D) + 0.9 & (0.9 \ V^*(S2) + 0.1 \ V^*(S3)) \\ V^*(S3) = 0 + 0.9 & (0.9 \ x & 1000 + 0.1 \ V^*(S3)) \\ V^*(S3) = 81000/91. \\ \\ V^*(S4) = r(S4,D) + 0.9 & (0.9 \ V^*(S2) + 0.1 \ V^*(S4)) \\ V^*(S4) = 40 + 0.9 & (0.9 \ x & 1000 + 0.1 \ V^*(S4)) \\ V^*(S4) = 85000/91. \\ \end{array}
```

Summary: Markov Models

- Plan is a Policy
 - Stationary: Best action is fixed
 - Non-stationary: Best action depends on time
- States can be discrete, continuous, or hybrid

	Passive	Controlled
Fully Observable	Markov Models	MDP
Hidden State	НММ	POMDP
Time Dependent	Semi-Markov	SMDP

Tradeoffs

MDPs

- + Tractable to solve
- + Relatively easy to specify
- Assumes perfect knowledge of state

POMDPs

- + Treats all sources of uncertainty uniformly
- + Allows for taking actions that gain information
- Difficult to specify all the conditional probabilities
- Hugely intractable to solve optimally

SMDPs

- + General distributions for action durations
- Few good solution algorithms

Summary

- · Planning under uncertainty
- Markov Models with Reward
- Value Iteration
- Markov Decision Process
- Value Iteration
- Policy Iteration
- POMDPs (later)
- Reinforcement Learning (later)