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Readings:
* Russell & Norvig: chapter 17, 17.1-3.

Planning under Uncertainty

* Motivation: Uncertainty everywhere — discuss;
in_particular robotics, cyber and physical world
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Exploding Blocks World

(define (domain exploding-blocks-world-pre)
(:action put-down-block-on-table
:parameters (?b - block)
:precondition
(and (holding ?b)
(not (destroyed-table)) )
-effect
(and (not (holding ?b))
(on-top-of-table ?b)
((probabilistic .3 (and (detonated ?b)
(destroyed-table)))) )
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The Triangle TireWorld

» At every move, flat tire 0.5 probability

+ Spare tires at some locations only

L1

L, L2

L4 * L2, L3, L4 have spare tires

¢ L1 does not
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PDDL Representation

(:action move-car

:parameters (?from - location ?to - location)
:precondition (and (car-at ?from) (road 7from 7to) (mot (flat-tire)))
:effect (and (car-at ?to) (not (car-at ?from))
(probabilistic 0.5 (flat-tire))
)

(:action changetire

)

:parameters (?loc - location)
:precondition (and (spare-in ?loc) (car-at 7loc) (flat-tire))
:effect (and (not (spare-in ?loc)) (not (flat-tire)))
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Figure 2: MDP representation of the triangle tireworld of size 1. Black arrows
represent the move action, which has 2 resulting states each one with probability
0. 5 Gray arrows represent the change-tlre action. States in bold are goal states

- PN o ra

Markov Decision Processes

* Finite set of states, sy4,..., s
* Finite set of actions, ay,..., a
+ Probabilistic state,action transitions:
pfj‘. = prob (next =, | current = s; and take action a, )
» Markov assumption: State transition function only

dependent on current state, not on the “history” of how
the state was reached.

* Reward for each state, r,..., r
* Process:

— Start in state s,

— Receive immediate reward r,

— Choose action ¢, € 4

— Change to state s, with probability py
— Discount future réwards
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Markov Systems with Rewards

* Finite set of n states, s,

* Probabilistic state matrix, P, p;

« “Goal achievement” - Reward for each state, r;
» Discount factor - y

* Process/observation:

— Assume start state s,

— Receive immediate reward r,

— Move, or observe a move, randomly to a new state
according to the probability transition matrix

— Future rewards (of next state) are discounted by y

Example — Markov System with Reward

172
172 ( 12 HAIL 172
_ S W 5
12 172

- States

* Rewards in states

* Probabilistic transitions between states

* Markov: transitions only depend on current state
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Solving a Markov System with Rewards

* V*(s;) - expected discounted sum of future rewards
starting in state s,

o V) =t alpa Vi(sy) + paV(sy) + - pn V()]

Value lteration to Solve a Markov System
with Rewards

« V(s,) - expected discounted sum of future rewards
starting in state s, for one step.

« V2(s,) - expected discounted sum of future rewards
starting in state s, for two steps.

« VX(s;) - expected discounted sum of future rewards
starting in state s, for k steps.

o Ask— =Vs) — V(s)

» Stop when difference of £ + 1 and k values is smaller
than some &




3-State Example

1/2

3-State Example: Values y = 0.5

[teration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 50 -1.0 -10.0
3 5.0 -1.25 -10.75
4 49375 -1.4375 -11.0
5 4.875 -1.515625 | -11.109375
6 4.8398437 | -1.56585937 | -11.15625
7 4.8203125 | -1.5791016 | -11.178711
8 4.8103027 | -1.5895996 | -11.189453
9 4.805176 | -1.5947876 | -11.194763
10 4.802597 | -1.5973969 | -11.197388
11 4.8013 -1.5986977 | -11.198696
12 4.8006506 | -1.599349 | -11.199348
13 4.8003254 | -1.5996745 | -11.199675
14 4800163 | -1.5998373 | -11.199837
15 4.8000813 | -1.56999185 | -11.199919
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3-State Example: Values y = 0.9

[teration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 5.8 -1.8 -11.6
3 5.8 -2,6100001 | -14.030001
4 5.4355 -3.7035 -15.488001
5 4.7794 -4.5236254 | -16.636175
6 4.1150985 -5.335549 -17.521912
7 3.4507973 | -6.0330653 | -18.285858
8 28379793 | -6.6757774 | -18.943516
9 2.272991 -7.247492 -19.528683
50 -2.8152928 | -12.345073 | -24.633476
51 -2.8221645 | -12.351946 | -24.640347
52 -2.8283496 | -12.3581295 | -24.646532
86 -2.882461 -12.412242 | -24.700644
87 -2.882616 -12.412397 | -24.700798
88 -2.8827558 | -12.412536 -24.70094

3-State Example: Values y = 0.2

[teration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 4.4 -0.4 -8.8
3 4.4 -0.44000003 -8.92
4 4.396 -0.452 -8.936
5 4.3944 -0.454 -8.9388
6 4.39404 -0.45443997 | -8.93928
7 4.39396 -0.45452395 | -8.939372
8 4.393944 -0.4545412 | -8.939389
9 4.3939404 | -0.45454454 | -8.939393
10 4.3939395 | -0.45454526 | -8.939394
11 4.3939395 | -0.45454547 | -8.939394
12 4.3939395 | -0.45454547 | -8.939394
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Solving an MDP

Find an action to apply to each state.
A policy is a mapping from states to actions.

Optimal policy - for every state, there is no other action
that gets a higher sum of discounted future rewards.

For every MDP there exists an optimal policy.
Solving an MDP is finding an optimal policy.

A specific policy converts an MDP into a plain Markov
system with rewards.

Value lteration

I*(s;) - expected discounted future rewards, if we start
from state s; and we follow the optimal policy.

Compute 7* with value iteration:

— V¥(s,) = maximum possible future sum of rewards
starting from state s, for & steps.

Bellman’ s Equation:
N

V"+l<si>=maxk{ri+yzpz;v"(sj>}
J=

Dynamic programming
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Policy Iteration

Start with some policy my(s;).

Such policy transforms the MDP into a plain Markov

system with rewards.

Compute the values of the states according to the

current policy.
Update policy:

n, (s,)=argmax, (. +v > pir ™ (s, )}
J

Keep computing

Stop when w, | = m,.

Nondeterministic Example
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Nondeterministic Example

n*(s) = D, for any s= S1, S2, S3, and S4, y =0.9.

V*(S2) = r(s2,D) + 0.9 (1.0 vV*(S2))

V*(s2) = 100 + 0.9 V*(S2)

V*(s2) = 1000.

V*(Sl) = r(s1,D) + 0.9 (1.0 V*(S2))

V*(S1l) = 0 + 0.9 x 1000

v*(sl) = 900.

V*(S3) = r(S3,D) + 0.9 (0.9 v*(s2) + 0.1 V*(S3))
V*¥(s3) =0+ 0.9 (0.9 x 1000 + 0.1 V*(S3))

V* (S3) = 81000/91.

V*(S4) = r(S4,D) + 0.9 (0.9 v*(s2) + 0.1 V*(S4))
V*(s4) = 40 + 0.9 (0.9 x 1000 + 0.1 V*(S4))

V* (S4) = 85000/91.

Summary: Markov Models

* Planis a Policy
— Stationary: Best action is fixed
— Non-stationary: Best action depends on time

« States can be , continuous, or
Passive Controlled
Fully Observable Markov Models MDP
Hidden State HMM POMDP
Time Dependent Semi-Markov SMDP
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Tradeoffs

« MDPs
+ Tractable to solve
+ Relatively easy to specify
— Assumes perfect knowledge of state
« POMDPs
+ Treats all sources of uncertainty uniformly
+ Allows for taking actions that gain information
— Difficult to specify all the conditional probabilities
— Hugely intractable to solve optimally
+ SMDPs

+ General distributions for action durations
— Few good solution algorithms

Summary

* Planning under uncertainty

* Markov Models with Reward

* Value lteration

« Markov Decision Process

« Value lteration

* Policy Iteration

« POMDPs (later)

» Reinforcement Learning (later)
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