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Markov Decision Processes 

Manuela M. Veloso 
 

Carnegie Mellon University 
Computer Science Department 

15-780 Graduate AI – Spring 2013 
Readings: 

•  Russell & Norvig: chapter 17, 17.1-3. 

Planning under Uncertainty 
•  Motivation: Uncertainty everywhere – discuss; 

in particular robotics, cyber and physical world 
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Planning under Uncertainty! 
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Exploding Blocks World 

(define (domain exploding-blocks-world-pre)  
(:action put-down-block-on-table  

 :parameters (?b - block)  
 :precondition  
 (and (holding ?b)  
         (not (destroyed-table)) )  

:effect  
          (and (not (holding ?b))  
          (on-top-of-table ?b)  
          ((probabilistic .3   (and (detonated ?b)    

     (destroyed-table)))) ) 
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The Triangle TireWorld 
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•  At every move, flat tire 0.5 probability 

•  Spare tires at some locations only 

•  L2, L3, L4 have spare tires 

•  L1 does not 

PDDL Representation 
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Markov Decision Processes 
•  Finite set of states, s1,..., sn 

•  Finite set of actions, a1,..., am 
•  Probabilistic state,action transitions: 

•  Markov assumption: State transition function only 
dependent on current state, not on the “history” of how 
the state was reached.  

•  Reward for each state, r1,..., rn 
•  Process: 

–  Start in state si 
–  Receive immediate reward ri 
–  Choose action ak ∈ A 
–  Change to state sj with probability  
–  Discount future rewards 
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Markov Systems with Rewards 
•  Finite set of n states, si 

•  Probabilistic state matrix, P, pij 

•  “Goal achievement” - Reward for each state, ri 

•  Discount factor - γ 

•  Process/observation: 

–  Assume start state si 
–  Receive immediate reward ri 
–  Move, or observe a move, randomly to a new state 

according to the probability transition matrix 
–  Future rewards (of next state) are discounted by γ 

Example – Markov System with Reward 

•  States 
•  Rewards in states 
•  Probabilistic transitions between states 
•  Markov: transitions only depend on current state 
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Solving a Markov System with Rewards 
•  V*(si) - expected discounted sum of future rewards 

starting in state si 

•    V*(si) = ri + γ[pi1V*(s1) + pi2V*(s2) + ... pinV*(sn)] 

Value Iteration to Solve a Markov System 
with Rewards 

•  V1(si) - expected discounted sum of future rewards 
starting in state si for one step. 

•  V2(si) - expected discounted sum of future rewards 
starting in state si for two steps. 

•  ... 

•  Vk(si) - expected discounted sum of future rewards 
starting in state si for k steps. 

•  As k → ∞Vk(si) → V*(si) 

•  Stop when difference of k + 1 and k values is smaller 
than some ∈. 
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3-State Example 

3-State Example: Values γ = 0.5 
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3-State Example: Values γ = 0.9 

3-State Example: Values γ = 0.2 
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Solving an MDP 
•  Find an action to apply to each state. 
•  A policy is a mapping from states to actions. 

•  Optimal policy - for every state, there is no other action 
that gets a higher sum of discounted future rewards. 

•  For every MDP there exists an optimal policy. 

•  Solving an MDP is finding an optimal policy. 

•  A specific policy converts an MDP into a plain Markov 
system with rewards. 

Value Iteration 
•  V*(si) - expected discounted future rewards, if we start 

from state si, and we follow the optimal policy. 
•  Compute V* with value iteration: 

–  Vk(si) = maximum possible future sum of rewards 
starting from state si for k steps. 

•  Bellman’s Equation: 

•  Dynamic programming 
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Policy Iteration 
•  Start with some policy π0(si). 
•  Such policy transforms the MDP into a plain Markov 

system with rewards.  
•  Compute the values of the states according to the 

current policy. 

•  Update policy: 

•  Keep computing  

•  Stop when πk+1 = πk. 
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Nondeterministic Example 
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Nondeterministic Example 
π*(s) = D, for any s= S1, S2, S3, and S4, γ = 0.9. 
------------------------------------------------------------- 
V*(S2) = r(S2,D) + 0.9 (1.0 V*(S2)) 
V*(S2) = 100 + 0.9 V*(S2) 
V*(S2) = 1000. 
 

V*(S1) = r(S1,D) + 0.9 (1.0 V*(S2)) 
V*(S1) = 0 + 0.9 x 1000 
V*(S1) = 900. 
 

V*(S3) = r(S3,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3)) 
V*(S3) = 0 + 0.9 (0.9 x 1000 + 0.1 V*(S3)) 
V*(S3) = 81000/91. 
 

V*(S4) = r(S4,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S4)) 
V*(S4) = 40 + 0.9 (0.9 x 1000 + 0.1 V*(S4)) 
V*(S4) = 85000/91. 
 

Summary: Markov Models 

•  Plan is a Policy 
–  Stationary: Best action is fixed 
–  Non-stationary: Best action depends on time 

•  States can be discrete, continuous, or hybrid 

Passive Controlled 

Fully Observable Markov Models MDP 

Hidden State HMM POMDP 

Time Dependent Semi-Markov SMDP 
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Tradeoffs 

•  MDPs 
+ Tractable to solve 
+ Relatively easy to specify 
– Assumes perfect knowledge of state 

•  POMDPs 
+ Treats all sources of uncertainty uniformly 
+ Allows for taking actions that gain information 
– Difficult to specify all the conditional probabilities 
– Hugely intractable to solve optimally 

•  SMDPs 
+ General distributions for action durations 
– Few good solution algorithms 

Summary 

•  Planning under uncertainty 
•  Markov Models with Reward 
•  Value Iteration 
•  Markov Decision Process 
•  Value Iteration 
•  Policy Iteration 
•  POMDPs (later) 
•  Reinforcement Learning (later) 


