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Abstract. We discuss the problem of maximizing the number of coins, for
which, using just n weighings, one can tell whether all of them are of the same
weight or not, under condition that the weights of the coins are generic. The
first purpose of the paper is to show the connection between this problem and
a problem in lattice geometry. Using this approach, we are able to establish an
upper bound on the number of coins and also to disprove the conjecture that
the maximal number of coins is 2n by giving some quick algorithms for the
original problem. We also conjecture that the upper bound is asymptotically
tight.

1. Introduction

Let us begin with a description of the general counterfeit coin problem. We
start with a set S of m coins. We know that at most two different weights can
occur among them, but we do not know what these weights are. Those coins,
which have a weight different from the majority are called the counterfeit coins.
We are allowed to do an operation which we call a weighing. Each weighing is a
comparison of the weights of two chosen groups of coins. A weighing can have three
different outcomes: ”the first group is lighter”, ”the first group is heavier” and ”the
groups have the same weight”. Since we do not know the weights in advance, it may
happen that different coins differ very little (if at all) in weight, thus comparing
any two unequal groups will always show that the group with more coins is heavier,
which does not give us any information about the weights of the coins. For that
reason we will always compare groups of equal sizes. We are now ready to state
the promised problem.

The general counterfeit problem. Given a set of m coins of at most two
different weights. Determine the set C of the counterfeit coins. The solution is
called optimal if it uses as few weighings as possible.

The case when there is exactly one counterfeit coin has been known as a math-
ematical puzzle for a long time. As soon as |C| > 1 the problem turns out to be
hard and the minimum number of weighings is still unknown. However, a lower
bound can be easily achieved by the following information-theoretic argument. Let
c denote the cardinality of C. Then C can be each of

(
m
c

)
subsets of size c of

S. Observe that each weighing has 3 outcomes, it is clear that we need at least
log3

(
m
c

)
weighings. This lower bound turns out to be not far from the optimum.

In case it is known that c < k, for some fixed k, there is an algorithm which detects
all the counterfeit in log3

(
m
k

)
+ 15k steps [Py]. More natural is the case when c is

not known, for this authors in [HH] and [CHH] provided an algorithm which needs
a log3

(
m
c

)
steps, where a is a constant (the best constant known is 2 log2 3 [CHH]).

The following problem is closely related to the general counterfeit problem.
1
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The all-equal problem. Given a set S of m coins, decide if all the coins have
the same weight or not.

It can be shown that in general this problem cannot be solved faster than using
m−1 weighings, see [AK]. However if one imposes some very natural condition, this
bound can be significantly improved. The purpose of this paper is to consider the
all-equal problem under the assumption that the weights of the coins are generic.
Technically speaking we have the following condition.

Condition (*). If w1, . . . , wt are the different weights occuring among the coins,
then there are no integers λ1, . . . , λt such that not all λi’s are equal to 0 and the
following is true:

(1)
∑t

i=1 λiwi = 0,

(2)
∑t

i=1 λi = 0.

If the condition (*) is satisfied for some set of coins, we will say that these coins
have generic weights. We will refer to the all-equal problem with this additional
condition imposed on the occuring weights as the generic all-equal problem.

Although the definition may seem somewhat technical it has a very natural
meaning. Imagine that we have compared two groups of coins, A and B, and that
the outcome says that they are of equal weight. Then the condition (*) simply
means that for any weight w, the number of coins of weight w in A is the same as
that in B. Observe also that if the coins have at most two different weights then
(*) is satisfied.

Remark. We would like to point out that the weights w1, . . . , wt are generic if
and only if they are affinely independent considered as vectors over Q. For more
insight into this terminology see, for example, page 36 in Oxley, [Ox].

It is clear that the algorithm which solves the generic all-equal problem should
stop as soon as the weighing is not balanced. Thus its objective is to perform a
certain number of weighings, such that: if all of them are balanced then all the coins
must have the same weight.

The reader has probably already recognized that the ”log3

(
m
c

)
” argument above

does not work any more, and we do not get any lower bound for the minimum
number of weighings. On the other hand, there is a very natural ”doubling” algo-
rithm: in the first step compare two coins, in the (k + 1)th step, weigh the set of
coins used in the first k steps with a set of new coins of the same cardinality. If
every weighing was balanced, it is trivial that all the coins have the same weight,
and the algorithm solves the problem in dlog2 me steps (i.e. in n steps we can solve
the generic all-equal problem for up to 2n coins).

For a while it has been believed that log2 m is the best one can do. Authors
in [HH] have also attempted to prove this in Theorem 1, their proof however was
incomplete. In section 4 we will show that this is actually false.

In section 2 we shall discuss the background of this problem, which is, surpris-
ingly, related to lattice geometry, and has nothing to do with information theory.
This new approach will allow us to find an algorithm using essentially less steps
than log2 m, and hence to disprove the conjecture. Furthermore, we prove a lower
bound O(log m/ log log m), i.e. we prove that in n steps we can solve the problem
for at most exp(O(n log n)) coins (it does not matter here which base the log n has).

Finally, in section 4, we formulate a conjecture (Conjecture 4.1) claiming the
existence of an algorithm, which in n steps solves the problem for exp(cn log n)
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coins, for some positive constant c. This conjecture is equivalent to an interesting
question concerning arithmetics of the determinants of integer matrices.

So, the general question we will try to answer is:
What is the maximum size of a set of coins, the weight-uniformness of which can

be decided by n weighings ?
To start let us now state the problem in a more mathematical way. Let Ai and

Bi, i = 1, 2, ..., n, be the sets of coins we weigh in the ith step, |Ai| = |Bi|. If every
weighing was balanced and it is still possible that coins can have different weights,
then we take a set C, consisting of all the coins of some certain weight (not an
empty set). Because of the condition (*) we get |C ∩Ai| = |C ∩Bi| for every i. So
we end up with the following question:

Let S be a set of m elements. Consider n pairs Ai, Bi, i = 1, 2, ..., n, of subsets
of S, such that |Ai| = |Bi| and there is no proper subset C of S, the intersections
of which with Ai and Bi have the same cardinality for all i. What is the largest
value of m, for which one can find such a family of pairs, assuming that the value
of n is fixed ?

2. Translation into Linear Algebra Language

In this section we will introduce a new approach to the problem. The idea is to
apply linear algebra.

Assume that as above we have a set S, |S| = m, and pairs of subsets of S,
(Ai, Bi), i = 1, . . . , n, such that |Ai| = |Bi|. We will construct a set of m vectors
in Rn associated to this data. Let x be an element of S then we define vx ∈ Rn

by the rule that the ith coordinate of vx is equal to 1 if x belongs to Ai, −1 if x
belongs to Bi and 0 if x lies outside both Ai and Bi. Since we choose Ai and Bi

non-intersecting, vx is well-defined.
The condition that |Ai| = |Bi| will then simply translate into

∑

x∈S

vx = 0. (2.1)

Let W be the set of all the vectors in Rn with coordinates from the set {0, 1,−1}.
Obviously |W | = 3n and for any x ∈ S we have vx ∈ W . For any vector w from W ,
let λw count the number of occurences of w among {vx|x ∈ S}. Then the equation
2.1 translates into ∑

w∈W

λww = 0, (2.2)

where obviously λw is a non-negative integer for all w ∈ W .
Furthermore, what does it mean that there exists a subset C of S, such that

|C ∩Ai| = |C ∩Bi| ? It means exactly that
∑

x∈C

vx = 0

or in terms of vectors from W we get

λw = αw + βw ∀w ∈ W, (2.3)

such that
∑

w∈W αww =
∑

w∈W βww = 0 and αw, βw are non-negative integers for
all w ∈ W . The fact that C is a proper subset of S means that not all of α’s are
equal to 0 and not all of β’s are equal to 0.
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Let us now impose an order on the 3n vectors from W and consider all the
vectors λ ∈ R3n

such that equation 2.2 is satisfied. These vectors obviously form a
subspace which we will call T . Form a matrix M of size n × 3n by taking the vectors
from W as columns, then rkM = n and T is the kernel of M , hence dimT = 3n−n.
Let furthermore R3n

+ denote the positive cone of R3n

, i.e. the cone defined by the
equations: xi ≥ 0, i = 1, 2, . . . , 3n. We denote K = T ∩ R3n

+ and let Z be all the
vectors from K with integer coordinates. K is obviously a polyhedral cone and
the vectors λ, α and β in equation 2.3 are all from Z. To restate the existence of a
subset C of S with the properties mentioned above we need the notion of an integral
Hilbert basis. This notion was first introduced by [GP]. The following definition is
a slight reformulation of the one in Chapter 16 of [Sc].

Definition 2.1. Given a polyhedral cone K, let Z be the set of all the integer
vectors in K. A finite set of vectors {a1, a2, . . . , at} from Z is called an integral
Hilbert basis if each integral vector b in K is a nonnegative integral combination
of a1, a2, . . . , at.

In general an integral Hilbert basis does not have to exist (i.e. the set of gener-
ators described above does not have to be finite), hence the set of the sums of the
coordinates of its vectors does not have to be bounded. However this is true in our
case, because the polyhedral cone K above is defined by rational equations, hence
it is a rational cone. The following appears as Theorem 16.4 in [Sc].

Theorem 2.2. Each rational polyhedral cone K has an integral Hilbert basis. If
K is pointed there is a unique minimal integral Hilbert basis (minimal relative to
taking subsets).

It is easy to see that the unique minimal integral Hilbert basis of K consists of
exactly those vectors from Z, which cannot be written as a sum of two other vectors
from Z. Let us denote this set by H. Every algorithm (i.e. a family of pairs of
sets (Ai, Bi)), which in n steps decides whether m given coins are all of the same
weight or not, gives rise to a vector v, in H, such that the sum of its coordinates is
equal to m. In fact this correspondence is a bijection, because starting from such
a vector we can easily read off the vectors {vx|x ∈ S} and hence see which pairs of
sets (Ai, Bi) we are to take in the set S.

To clarify what we are doing, let us shortly summarize the discussion above. We
have W - the set consisting of 3n vectors in Rn with coordinates ±1, 0. We consider
the polyhedral cone K = T ∩ R3n

+ , where T is the set of all linear dependencies of
vectors from W (T is a subspace of R3n

). Because of Theorem 2.2 K has a unique
minimal integral Hilbert basis, which we denote by H. The question now is: What
is the maximum of the sum of the coordinates of vectors in H?

From the fact that H is finite we immediately derive that there is a function
f(n), such that if m > f(n), then there is no algorithm which in n steps decides
whether all the given m coins are of the same weight or not. An explicit bound
f(n) = exp(O(n log n)) will be obtained in the next section (Corollary 3.5).

3. The upper bound

For the sake of brevity, we call the sum of the coordinates of a vector x the
weight of x, and denote it by w(x). A direct approach to estimate the maximum
weight of vectors in a minimal Hilbert basis H might be to determine the basis
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explicitly, and then to optimize the function w on that. Although we know all the
boundary hyperplanes of the cone, this approach seems to be very difficult because
of the high dimension of the space. Our idea here is to estimate the weights of the
vectors in H via the weights of the so-called generator vectors of K, which we
can compute directly from the matrix M .

We call a half-line starting from the origin a generator half-line if it is the
intersection of K with some hyperplane. A vector x = OX, where X 6= O being
a point on a generator half-line is called a generator vector (or shortly just a
generator). We quote here some standard results on generator half-lines and
vectors.

Lemma 3.1. If K is a cone determined by a finite number of half-spaces, then
there are finitely many generator half-lines, and K is the convex hull of those.

Clearly it follows that x is a generator vector iff x cannot be written as x = u+v,
u, v ∈ K, where u and v are independent from x.

Lemma 3.2. (Caratheodory) If K is the convex hull of p half-lines l1, l2, ..., lp in
a k-dimensional space, p > k, then for every x ∈ K, there is a set {i1, ..., ik} ⊂
{1, 2, ..., p}, such that x is contained in the convex hull of the k half-lines lij .

In other words we can ”triangulate” our cone, i.e. divide it into simplicial cones.
Now we are going to describe the generators of the cone K defined in Chapter 2.

For x ∈ K,x 6= 0, let xi1 , ..., xil+1 be the non-zero coordinates of x. Denote by x̄ the
(l+1)-dimensional vector (xi1 , ..., xil+1), and Mx the submatrix of M formed by the
columns labeled i1, i2, . . . , il+1. The following Lemma characterizes the generators
of K.

Lemma 3.3. x is a generator of K if and only if
(a) x̄ is a positive vector and Mxx̄ = 0
(b) rk(Mx) = l, where l + 1 is the length of x̄.

Proof: Let x be a generator. Condition (a) is immediate since K is a non-
negative cone and Mx = 0. For convenience, suppose that x̄ consists of the first
l + 1 coordinates of x, x̄ = (x1, x2, . . . , xl+1). Assume rk(Mx) < l. It follows that
dimKer(Mx) ≥ 2, hence one can find a vector x̄′ ∈ Rl+1 independent from x̄ and
Mxx̄′ = Mxx̄ = 0. Extend x̄′ to a 3n-dimensional vector x′ = (x̄′, 0, 0, 0, . . . , 0),
obviously Mx′ = Mx = 0. Since xi, i = 1, . . . , l + 1 are positive, there are positive
numbers α and β such that u = αx − x′ and v = βx − αx + x′ are non-negative
vectors. Trivially u, v ∈ K, since they satisfy Mu = Mv = 0. Note that the
independence of x̄ and x̄′ implies that of u and v. This is a contradiction because
βx = u + v and βx itself is also a generator. This proves condition (b).

To prove the converse implication, one just recognizes that if x = u+ v, x, u, v ∈
K and xk = 0, then uk = vk = 0. So if x satisfies (a) and x = u+ v, then x̄ = ū+ v̄
(if ū or v̄ has length smaller than that of x̄, we extend it by some zeros). Moreover,
Mu = Mv = 0, so Mxu = Mxv = Mxx = 0. But by (b) Mx is an n × (l + 1)
matrix of rank l, this means the equation Mxy = 0 has only one solution up to
scalar multiplication. Thus u and v are scalar multiples of x. This completes the
proof. ¤

We are now particularly interested in the integral generators. We call the integral
generator vector with the minimal sum of coordinates on each generator half-line
a minimal generator. Since K is rational, each generator half-line contains such
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a vector (it is easily read from the previous Lemma, too). It is also clear that
a minimal generator is contained in the minimal Hilbert basis. We are going to
estimate the weights of the minimal generators.

First we need the following observations. Let L be a full ranked l × (l + 1)
submatrix of M , then the equation Ly = 0 has a non-trivial integral solution

y = (det L1,− detL2, . . . , (−1)l det Ll+1),

where Li is the l by l submatrix obtained from L by deleting the ith column.
Let

g(L) =
∑l+1

i=1 | detLi|
g.c.d.(|det Li|)l+1

i=1

. (3.1)

Consider a minimal generator x with the corresponding submatrix Mx of l + 1
columns. By Lemma 3.3, Mx has rank l. So Mx contains an l × (l + 1) full
ranked submatrix L, and x̄ is a non-trivial positive solution of the equation Ly = 0.
Moreover, x is minimal, hence x̄ = (|det L1|/d, | detL2|/d, ..., | detLl+1|/d), where
d = g.c.d.(| detLi|)l+1

i=1 (remember x̄ is positive). Thus w(x) = w(x̄) = g(L).
Denote

γ(n) = max g(L),
where L runs over the set of all l× (l +1) full ranked submatrices of M , l ≤ n such
that Ly = 0 has a positive solution. Note that M consists of all possible {0,+1,−1}
column vectors, readers can easily see that γ(n) takes the same value if we allow L
to run over a larger set, namely over all l× (l + 1) (l ≤ n) full rank submatrices of
M .

It is clear from the previous argument that the maximum weight of a minimal
generator is γ(n). Now we are ready to state the next theorem.

Theorem 3.4. Let f(n) be the maximum weight of a vector in the minimal Hilbert
basis H, then

γ(n) ≤ f(n) ≤ 3n − 1
2

γ(n)

Proof: The first inequality is immediate since every minimal generator is an
element of the Hilbert basis. Observe that if z is a column vector of M , then so is
−z, hence for every element y of the Hilbert basis, y has at most (3n−1)/2 positive
coordinates. Let K ′ be the intersection of K and the hyperplanes yi = 0, where yi

are the zero coordinates of y. It is clear that y is an element of the Hilbert basis
of K ′ and K ′ has dimension at most (3n − 1)/2. On the other hand, if y is written
as a positive combination of some vectors of K, then those vectors should also be
contained in K ′.

Due to Lemma 3.1, y can be expressed as a positive combination of minimal
generators. Moreover, by Lemma 3.2 and the above note, we need at most (3n−1)/2
terms in the combination. So y can be written in the form

y =
(3n−1)/2∑

i=1

αixi

where xi are minimal generators, and αi are non-negative coefficients. Since H is
the minimal Hilbert basis, we know that y − xi /∈ K, thus αi < 1 for every i. This
yields
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w(y) ≤
(3n−1)/2∑

i=1

αiw(xi) <

(3n−1)/2∑

i=1

w(xi) < (3n − 1)γ(n)/2

proving the theorem. ¤

Corollary 3.5. f(n) ≤ (3n − 1)(n + 1)(n+1)/2

2
Proof: Take a l by l +1 matrix L, with Li being its l× l submatrices. The sum∑l
i=1 | detLi| can be seen as the determinant of a (l +1)× (l +1) matrix L′, which

is an extension of L by an appropriate (−1, 1) row.
Note that |detL′| is the volume of the parallelepiped spanned by its column

vectors, which is not larger than the product of their norms. Since L′ is a {0, 1,−1}
matrix, the norm of each column vector is at most (l + 1)1/2, which is not larger
than (n + 1)1/2. Consequenly, γ(n) ≤ (n + 1)(n+1)/2. This concludes the claim,
using the second inequality in Theorem 3.4. ¤

Due to Section 2, the corollary means that one cannot determine the uniformness
of weights of more than (3n−1)(n+1)(n+1)/2

2 coins, using n weighings. It is also easy
to see that the value γ(n) can be achieved by an n×(n+1) matrix. We believe that
expn log n is the right order of magnitude of γ(n) and of f(n) (Conj. 4.2). There
are n× (n+1) matrices L, where the numerator of g(L) already has this order (for
example, we can obtain one by adding a column to an n × n Hadamard matrix).
However, it seems not so trivial to make the denominator small at the same time.

4. The algorithms which perform better than 2n

In this section we will construct vectors from the minimal Hilbert basis H with
the sum of coordinates larger than 2n. It will then, through the bijection established
in Section 2, result in algorithms which perform better than 2n.

The first non-trivial example is for n = 3, m = 10. Consider the matrix

L =



−1 1 1 −1
0 −1 1 −1
1 0 −1 −1




The rank of L is equal to 3, hence the kernel of L is a line. In fact this line is
spanned by the vector v = (4, 2, 3, 1) and g(L) = 10. If we properly complete v
with zeroes it will lie in the polyhedral cone K (for n = 3). In fact, by Lemma 3.3
it is a minimal generator.

Now if we wish to reconstruct the algorithm, all we have to do is to choose the
Ai’s and Bi’s properly. In fact it can be read from your matrix (see section 2). Our
choice is illustrated below.

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
A1 = {1, 2, 3, 4, 10} B1 = {5, 6, 7, 8, 9},

A2 = {1, 2, 3, 4} B2 = {7, 8, 9, 10},
A3 = {7, 8, 9} B3 = {5, 6, 10}.

Let us now observe the following fact. If we can solve the problem for m1 coins
in n1 steps and for m2 coins in n2 steps, then very often we can solve it for m1 ·m2

coins in n1 + n2 steps. Let us make more precise what we mean by that.
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Assume there are matrices M1 and M2 such that Mi has size ni × (ni + 1) and
rank ni. Let x = (c1, . . . , cn1+1) be a non-zero integer solution of M1 · x = 0
(resp. y = (d1, . . . , dn2+1) - a non-zero integer solution of M2 · y = 0), such that
gcd(c1, . . . , cn1+1) = 1 (resp. gcd(d1, . . . , dn2+1) = 1). Set m1 =

∑n1+1
j=1 |cj |, m2 =∑n2+1

j=1 |dj |. Assume that one of the integers d1, . . . , dn2+1 is relatively prime with
m1, say gcd(d1,m1) = 1.

We construct a new matrix M of size (n1 + n2)× (n1 + n2 + 1) as shown on the
Picture 1.

M1 0

A M̃2

Picture 1.

where M̃2 is M1 without its first column v1 and A consists of the column v repeated
n1 + 1 times.

Claim. The matrix M corresponds to a weighing algorithm, which solves the
all equal problem for m1 ·m2 coins using n1 + n2 weighings.

Proof of the Claim. It is clear that rk M = n1 + n2. Observe that

q = (q1, . . . , qn1+n2+1) = (c1d1, . . . , cn1+1d1,m1d2, . . . , m1dn2+1)

is a non-zero integer solution to M · x = 0. Let us show that gcd(q1, . . . ,
qn1+n2+1) = 1. Let d = gcd(q1, . . . , qn1+n2+1). Note that

gcd(q1 + · · ·+ qn1+1, qn1+2, . . . , qn1+n2+1) =

= gcd(m1d1, . . . , m1dn2+1) = m1 gcd(d1, . . . , dn2+1) = m1. (4.1)

On the other hand

gcd(q1 . . . , qn1+1) = gcd(c1d1, . . . , cn1+1d1) = d1.

So d | d1 and d |m1, hence d | gcd(d1, m1) = 1 and then d1 = 1.
Since

∑n1+n2+1
i=1 |qi| = m1 ·m2 we have shown the Claim. ¤

Assume now we have found a matrix M of size n× (n + 1) such that rk M = n.
Let x = (c1, . . . , cn+1) be a minimal non-zero integer solution to M · x = 0, let
m =

∑n+1
i=1 |ci|. Assume gcd(c1, m) = 1. According to what we have proved before,

we can solve the all equal problem for mt coins in tn weighings for any integer
t ≥ 1, since after t − 1 applications of the argument before we get a nt × (nt + 1)
matrix with the first entry in the minimal non-zero integer solution vector equal to
ct and gcd(ct,mt) = 1.

We gave an example of an algorithm, which in 3 steps solves the problem for 10
coins, using the technique above we can solve the problem for 10t coins in 3t steps.
In terms of m and n we get m = 10n/3 = (2.1544 . . . )n.

In order to improve this constant, all one has to do is to find proper matrices.
This has been done with the help of computer. Below we give a table illustrating
the best values we could achieve. We denote the maximum of the function g, that
we could achive by s(n). Values of s(n) n = 1, 2, 3, 4 are equal to the actual values
of γ(n) and it is plausible to think that the same is true for n = 5, 6, 7, 8.
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n s(n) c

1 2 2.0
2 4 2.0
3 10 2.1544
4 30 2.3403
5 114 2.5785
6 454 2.7723
7 2 234 3.0091
8 9 966 3.1609
9 48 490 3.3161
10 259 606 3.4788
11 1 471 258 3.6366
12 6 590 538 3.7003
13 42 021 372 3.8585
14 307 393 727 4.0389
15 2 132 870 658 4.1872

We end this section with the following conjecture.

Conjecture 4.1. There exists a positive constant c and an algorithm, which in n
steps solves the generic all-equal problem for at least exp(cn log n) coins.

The investigations above show that Conjecture 4.1 is equivalent to the following
purely combinatorial open problem.

Conjecture 4.2. There exists a series of matrices (Mn)∞n=1, and a positive con-
stant c such that

(1) Mn is an n× (n + 1) matrix of rank n;
(2) the entries of Mn are all 1,−1 or 0;
(3) g(Mn) ≥ exp(cn log n), see 3.1 for the definition of the function g.

There is a geometric interpretation of the Conjecture 4.2. Recall that Wn+1

denotes the set of points with coordinates {±1, 0} in the Euclidean space Rn+1.
Let Mn+1 be the set of hyperplanes H such that H goes through the origin and
some of the points from Wn+1 and it is spanned by these points. For each such
hyperplane H draw the line which goes through origin and is orthogonal to H. Let
xH be the first integer point which is hit by this line after the origin (on either
side). By distance from xH to origin we mean the sum of absolute values of the
coordinates of xH .

It is now easy to see that solving Conjecture 4.2 is equivalent to answering the
question: what is the asymptotic behaviour (as a function of n) of the distance
from xH to origin when H varies over the set Mn+1? Namely Conjecture 4.2 is
equivalent to the statement that there exists H ∈ Mn+1, such that the distance
from xH to origin is exp(cn log n).

5. Remark

Let us now turn back to the doubling algorithm mentioned in section 1. It is clear
that the number of weighings we have to make in this algorithm is not optimal. Still
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it has an interesting extremal property. Say that instead of the number of weighings
we want to minimize the total number of coins we have to put one the scales in
the whole process (assuming that after each weighing we remove all the coins off
the scales, so any coin may be counted many times). We call this the cost of the
process. Consider the doubling algorithm and assume m is a power of 2, (it is easy
to show that we have the same result without this assumption). At the first step we
have to weigh two coins together. At the second step this number is four, and it is
doubled at every new step. So the cost of the algorithm is 2+4+ · · ·+m = 2m−2.
There is another algorithm when this number also occurs, which is as follows. Pick
one coin and weigh it with all the remaining coins, each at the time. Trivially it
takes m−1 steps and at each step we need to put two coins on. So the total number
of coins we have to put on is again 2(m−1) = 2m−2. The interesting point is that
this coincidence is not just accidental. In fact 2m− 2 turns out to be the minimum
cost of an algorithm by which we can decide the uniformness of m coins.

Theorem 5.1. The cost of an algorithm deciding the uniformness of m coins is at
least 2m− 2.

Proof. Consider the set {1, 2, ...,m} representing the coins as the set of vertices
of some graph. Consider the system of subsets Ai, Bi, i = 1, 2, ..., n as defined
in section 1, where Ai, Bi represent the set of coins used at the ith step of the
concerned algorithm. Draw an arbitrary matching between the points in Ai and
Bi and let G be the graph we receive. If G is not connected, then take C as one
of its component. It follows from the construction that |C ∩ Ai| = |C ∩ Bi|, a
contradiction. Since G is connected, it has at least m − 1 edges. The conclusion
follows from the fact that the cost of the algorithm is exactly twice the number of
edges of G. ¤

Remark 5.2. (March ’96). The conjectures 4.1 and 4.2 have been recently proved
by N. Alon and V. H. Vu in [AV].
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