simplified proof for modified one-pile game Steve Kieffer

Claim. $(2^k, *) \in P$ for all $k \ge 1$.

Proof. We prove the stronger claim that $(n, x) \in P$ when $n = 2^k m$, with $2 \nmid m$, and $0 < x < 2^k$, by induction on n. Base case n = 2 is easy.

In general, if player A takes y,

1.
$$A : (n, x)$$

2. $B : (n - y, y)$

then

Case 1: $2^{k-1} \le y \le x$. Then player B takes $2^k - y$, leaving

3.
$$A: (n-2^k, 2^k-y)$$

so the result follows by induction on n, since $n - 2^k = 2^{k+j} \left(\frac{m-1}{2^j}\right)$ for some $j \ge 1$, and $2^k - y < 2^k < 2^{k+j}$.

Case 2: $0 < y < 2^{k-1}$. Then there is some $0 < \ell < k$ such that $2^{\ell-1} \le y < 2^{\ell}$. So player *B* may take $2^{\ell} - y$, leaving

3.
$$A: (n-2^{\ell}, 2^{\ell}-y)$$

and again the result follows by induction on n, since $n - 2^{\ell} = 2^{\ell}(2^{k-\ell}m - 1)$, and $2^{\ell} - y < 2^{\ell}$.