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xx
f(f(xx,t),t)

•• x(x(tt): a moving point.): a moving point.

•• f(x,f(x,tt):): x’s x’s velocity. velocity.

( , )tx f x
i
= ( , )tx f x
i
=

1x1x

2x2x

A Canonical
 Differential Equation

A CanonicalA Canonical
 Differential Equation Differential Equation

SB2SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED MODELING
Thursday, September 22, 11



defines a vector
field over x.

The differential
equation

( , )tx f x
i
= ( , )tx f x
i
=

Vector FieldVector FieldVector Field
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Start Here

Pick any starting point,
and follow the vectors.

Integral CurvesIntegral CurvesIntegral Curves
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Given the starting point,
follow the integral curve.

Initial Value ProblemsInitial Value ProblemsInitial Value Problems
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• Simplest numerical
solution method

• Discrete time steps

• Bigger steps, bigger
errors.

Euler’s MethodEuler’sEuler’s Method Method

( ) ( ) ( , )t t t t tx x f x+ Δ = + Δ( ) ( ) ( , )t t t t tx x f x+ Δ = + Δ
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Two Problems

•Accuracy

•Instability
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Accuracy
Consider the equation:

ẋ =
�

0 1
�1 0

⇥
x

What do the integral curves 
look like?
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Error turns x(t) from a
circle into the spiral of
your choice.

Problem I:  InaccuracyProblem I:  InaccuracyProblem I:  Inaccuracy
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Problem 2: Instability
• Consider the following system:

�
ẋ = �x
x(0) = 1
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Problem 2: Instsability

SB2

Initial Value Problems

Given the starting point,
follow the integral curve.

Euler’s Method

x(t + Δt) = x(t) + Δt f(x,t)

• Simplest numerical 
solution method

• Discrete time steps

• Bigger steps, bigger 
errors.

Problem I:  Inaccuracy

Error turns x(t) from a
circle into the spiral of
your choice.

Problem II:  Instability

to Neptune!

To Neptune!
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Accuracy of Euler Method

ẋ = f(x)
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) =
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) =
constant

Thursday, September 22, 11



Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + . . .
constant
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + . . .
constant linear
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + . . .
constant linear

Thursday, September 22, 11



Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + . . .
constant linear everything 

else
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + O(h2)
constant linear everything 

else
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + O(h2)
constant linear everything 

else

Euler step
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + O(h2)
constant linear everything 

else

Euler step error
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + O(h2)
constant linear everything 

else

Euler step error

Therefore, Euler’s method has error 
O(h2)... it is !rst order.
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Accuracy of Euler Method

ẋ = f(x)
Consider Taylor Expansion about x(t)...

x(t + h) = x(t) + hf(x(t)) + O(h2)
constant linear everything 

else

Euler step error

Therefore, Euler’s method has error 
O(h2)... it is !rst order.

How can we get to O(h3) error?
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The Midpoint Method
• Also known as second order Runge-Kutte:

k1 = h(f(x0, t0)

k2 = hf(x0 +
k1

2
, t0 +

h

2
)

x(t0 + h) = x0 + k2 + O(h3)
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aa

bb

cc

a. Compute an Euler step

b. Evaluate f at the midpoint

c. Take a step using the
midpoint value

The Midpoint MethodThe Midpoint MethodThe Midpoint Method

( , )t tΔ = Δx f x( , )t tΔ = Δx f x

mid( ) ( )t t t t+ Δ = + Δx x fmid( ) ( )t t t t+ Δ = + Δx x f

mid ,
2 2

t t+ Δ + Δ 
=  

 

x x
f fmid ,

2 2

t t+ Δ + Δ 
=  

 

x x
f f
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x(t0 + h) = x0 + h
q�

i=1

wiki

q-Stage Runge-Kutta
General Form:

ki = f

�

⇤x0 + h
i�1⇧

j=1

�ijkj

⇥

⌅

where:

Find the constant that ensure accuracty O(hn).
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4th-Order Runge-Kutta

k2 = hf(x0 +
k1

2
, t0 +

h

2
)

k3 = hf(x0 +
k2

2
, t0 +

h

2
)

k4 = hf(x0 + k3, t0 + h)

k1 = hf(x0, t0)

x(t0 + h) = x0 +
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4 + O(h5)
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4th-Order Runge-Kutta

k2 = hf(x0 +
k1

2
, t0 +

h

2
)

k3 = hf(x0 +
k2

2
, t0 +

h

2
)

k4 = hf(x0 + k3, t0 + h)

k1 = hf(x0, t0)

x(t0 + h) = x0 +
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4 + O(h5)

Why so popular?
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Order vs. Stages

Order

Stages

1 2 3 4 5 6 7 8

1 2 3 4 6 7 9 11
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• Euler’s method is 1st Order.

• The midpoint method is 2nd Order.

• Just the tip of the iceberg.  See
Numerical Recipes for more.

• Helpful hints:

– Don’t use Euler’s method (you will
anyway.)

– Do use adaptive step size.

More methods…More methods…More methods…
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• Generic operations:

– Get dim(x)

– Get/set x and t

– Deriv Eval at current (x,t)

• Write solvers in terms of these.

– Re-usable solver code.

– Simplifies model implementation.

Modular ImplementationModular ImplementationModular Implementation
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Get/Set State

Deriv Eval

System
Dim(state)

Solver

Solver InterfaceSolver InterfaceSolver Interface
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void eulerStep(Sys sys, float h) {

float t = getTime(sys);

vector<float> x0, deltaX;

t = getTime(sys);

x0 = getState(sys);    

deltaX = derivEval(sys,x0, t);

setState(sys, x0 + h*deltaX, t+h);

}

void eulerStep(Sys sys, float h) {

float t = getTime(sys);

vector<float> x0, deltaX;

t = getTime(sys);

x0 = getState(sys);    

deltaX = derivEval(sys,x0, t);

setState(sys, x0 + h*deltaX, t+h);

}

A Code FragmentA Code FragmentA Code Fragment
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Question

• What sorts of common physical 
phenomena are not well modeled by 
differential equations?
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Student Answers

What sorts of phenomena are not well modeled?

electrons - probabilistic WRONG
theory of relativity WRONG
sudden forces - not continuous
interactions between multiple particles WRONG
anything nondeterministic WRONG
shattering

Thursday, September 22, 11


