Lecture 11:
“GPGPU" computing and
the CUDA/OpenCL Programming Model

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Today
m Some GPGPU history

m The CUDA (or OpenCL) programming model

m (if time) GRAMPS: An attempt to create programmable
graphics pipelines

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Early GPU-based scientific computation

Dense matriX'matrix mUItiplication [Larson and McAllister, S5C2001]

T ¢

M
Kx N texture 0 M x N frame buffer
P=(0,1) P=(1,1)
st0=(k,0) st0=(k,0)
M st1=(1,k) st1=(0,k)
M x K texture 1 ®
Set frame buffer blend mode to ADD
fork=0to K
Set texture coords
Render 1 full-screen quadrilateral ®
P=(0,0) P=(1Io)
st0=(k,1) st0=(k,1)
st1=(1,k) st1=(1,k)

Note: this work followed [Percy 00], which modeled OpenGL with
multi-texturing as a SIMD processor for multi-pass rendering

(we discussed this last time in the shade-tree example)
Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“GPGPU" 2002-2003

Coupled Map Lattice Simulation [Harris 02]

Sparse Matrix Solvers [Bolz 03]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Brook for GPUs .

m Abstract GPU as a generic stream processor (C extension)

- Streams: 1D, 2D arrays of data
- Kernels: per-element processing of stream data **
= Reductions: stream --> scalar

B [nfluences

- Data-parallel programing: ZPL, Nes|
= Stream programming: StreaMIT, Stream(/Kernel

m Brook runtime generates appropriate OpenGL calls

kernel void scale(float amount, float a<>, out float b<>)

{
}

b = amount * a;

// note: omitting initialization
float scale_amount;

float input_stream<1000>;

float output stream<1000>;

// map kernel onto streams
** Broke traditional stream processing model scale(scale_amount, input_stream, output_stream);

with in-kernel gather (more on this later)
Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Stream programming (“pure”)

B Streams
- Encapsulate per-element parallelism

- Encapsulate producer-consumer locality

® Kernels
= Functions (side-effect-free)
- Encapsulate locality (kernel’s working set defined by inputs, outputs, and
temporaries)
= Encapsulate instruction-stream coherence (same kernel applied to each
stream element)
B Modern implementations (e.g., StreaMIT, Stream(/Kernel() relied on static
scheduling by compiler to achieve high performance

(

>

Stream 1

Kernel 1

~

Stream 2

>

s

\

Kernel 2

2

>

Stream 4

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

U

Kernel 3

>

J

Stream 5

NVI D IA CU DA [lan Buck at NVIDIA, 2007]

m Alternative programming interface to Tesla-class GPUs

/| M M /4
[] Brnidae ’
- Recall: Tesla was first “unified shading” GPU |
»stnbution GssinDUOr
e e e e e e o e e
| e e | e e e | s
onnejaoan)a | Rl (= b e e e
EEIEE EE EE | IEEEE S EEIEEY EEEE CETEEHEE
I _11[‘[_#‘1,_.“_ L‘ CEEE (T ﬁl ooloollos|na
CIEIC] ool allzz|a EE EEEE ERER EE
_JUI[_JLJ” L_IL_%‘_JL {_,[_J¥ %_I_J] L_l[_ _JL_J %_J_J] JL LJL E_JI_] IL_J_“_JL, f_JL_J %_,LJ]

‘ o (e -- --] (e

IRAM DRAM JRAM

—— & - & \ J L d ——

m Low level, reflects capabilities of hardware
= Recall arguments in Cg paper

= Combines some elements of streaming, some of threading (like HW does)

m Today: open standards embodiment of this programming
model is OpenCL (Microsoft embodiment is Compute Shader)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)

// CUDA kernel definition
__global void scale(float amount, float* a, float* b)

{
int 1 = threadIdx.x; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

What is the behavior of this kernel?

// CUDA kernel definition
__global void scale(float amount, float* a, float* b)

{
int 1 = threadIdx.x; // CUDA builtin: get thread id

b[@] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Can system find producer-consumer?

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)
{
int i = threadIdx.Xx; // CUDA builtin: get thread id
b[i] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

float* tmp_array;

scale<<1,N>>(scale_amount, input_array, tmp_array);
scale<<1,N>>(scale_amount, tmp _array, output_array);

Kernel (scale) Kernel (scale)

U J & J

t | t |
| v | v

input_array tmp_array output_array

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)

// CUDA kernel definition
__global void scale(float amount, float* a, float* b)

{
int 1 = threadIdx.x; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

Question: What should N be?
Question: Do you normally think of “threads” this way?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)

// CUDA kernel definition Given this implementation: each invocation
{_global_ void scale(float amount, float* a, float* b) of scale kernel is independent.

int 1 = threadIdx.x; // CUDA builtin: get thread id

b[i] = amount * a[i]; (bulk thread launch semantics no different
} than sequential semantics)

// note: omitting initialization via cudaMalloc()

float scale_amount; CUDA system has flexibility to parallelize any

float* input_array; wav it pleases
float* output_array; yiep :

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

In many cases, thinking about a CUDA kernel as a stream processing kernel,
and CUDA arrays as streams is perfectly reasonable.

(programmer just has to do a little indexing in the kernel to get a reference
to stream inputs/outputs)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Convolution example

// assume len(A) = len(B) + 2
__global _ void convolve(float* a, float* b)

{

// ignore

int 1 = threadIdx.x;

b[i] = a[i] + a[i+1] + a[i+2];
}

Note “adjacent” threads load same data.
Here: 3x input reuse (reuse increases with width of convolution filter)

AlO] | | A[1]| | Al2]| | AI3] | | AI4]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA thread hierarchy

#define BLOCK SIZE 4

__global void convolve(float* a, float* b)

{
__shared__ float input[BLOCK_SIZE + 2];

int bi
int ti

blockIdx.x;
threadIdx.Xx;

input[bi] = A[ti];
if (bi < 2)
{

}

input[BLOCK _SIZE+bi] = A[ti+BLOCK_SIZE];

__syncthreads(); // barrier

b[ti] = input[bi] + input[bi+l] + input[bi+2];
}

// allocation omitted
// assume len(A) = N+2, len(B)=N
float* A, *B;

convolve<<BLOCK_SIZE, N/BLOCK_SIZE>>(A, B);

CUDA threads are grouped into thread blocks

Threads in a block are not independent.
They can cooperate to process shared data.

1. Threads communicate through
__shared__ variables

2. Threads barriervia __syncthreads()

'

“shared” scratch storage: float input[6]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA thread hierarchy

// this code will launch 96 threads
// 6 blocks of 16 threads each

dim2 threadsPerBlock(4,4);
dim2 blocks(3,2);
myKernel<<blocks, threadsPerBlock>>();

Thread blocks (and the overall “grid” of blocks) can be 1D, 2D, 3D
(Convenience: many CUDA programs operate on n-D grids)

Thread blocks represent independent execution

Threads in a thread block executed simultaneously on same
GPU core

Why on the same core?

Why simultaneously?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Grid

Block (0, 0)

Block (1, 0)

4

Block (1, 1)

Block (1, 1)

Source: CUDA Programming Manual

The common way to think about CUDA

(thread centric)

m CUDAis a multi-threaded programming model

m Threads are logically grouped together into blocks and gang scheduled
onto cores

m Threads in a block are allowed to synchronize and communicate through
barriers and shared local memory

B Note: Lack of communication between threads in different blocks gives
scheduler some flexibility (can “stream” blocks through the system)**

** Using global memory atomic operations provide a form of inter-thread block communication (more on this in a second)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Another way to think about CUDA

(like a streaming system: thread block centric)

®m CUDAis a stream programming model (recall Brook)
Canonical CUDA thread block program:

- Stream elements are now blocks of data \ [\
= Kernels are thread blocks (larger working sets)

Threads cooperatively load block of

data from input arrays into shared mem
__syncThreads(); // barrier

m Kernel invocations independent, but are multi-threaded |

Threads perform computation,
accessing shared mem

= Achieves additional fine-grained parallelism

__syncThreads(); // barrier

Threads cooperatively write block of

B Think: Implicitly parallel across thread blocks (kernels) EDDOIEuETE

B Think: Explicitly parallel within a block

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Choosing thread-block sizes

Question: how many threads should be in a thread block?

Recall from GPU core lecture:

How many threads per core?

How much shared local memory per core?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“Persistent” threads

®m No semblance of streaming at all any more
m Programmer is always thinking explicitly parallel
m Threads use atomic global memory operations to cooperate

// Persistent thread: Run until work is done, processing multiple work
// elements, rather than just one. Terminates when no more work is available
__global void persistent(int* ahead, int* bhead, int count, float* a, float* b)
{

int in_index;

while ((in_index = read_and _increment(ahead)) < count)

{ // load a[in_index];

// do work

int out_index = read_and_increment(bhead);
} // write result to b[out_index]

}

// launch exactly enough threads to fill up machine
// (to achieve sufficient parallelism and latency hiding)
persistent<<numBlocks,blockSize>>(ahead addr, bhead addr, total count, A, B);

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Questions:

What does CUDA system do for the programmer?

How does it compare to OpenGL?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Quick aside: why was CUDA successful?

(Kayvon’s personal opinion)

1. Provides access to a cheap, very fast machine

2. SPMD abstraction allows programmer to write scalar code, have it
(almost trivially) mapped to vector hardware FEF T Lo o

An open-source compiler for high-performance SIMD programming on the CPU

Note: Five years later... one Intel employee (with LLVM
and a graphics background)

3. More like thread programming than streaming: arbitrary in-kernel
gather (+ GPU hardware multi-threading to hide memory latency)

- More familiar, convenient, and flexible in comparison to more principled data-

parallel or streaming systems
[Stream(/KernelC, StreamMIT, ZPL, Nesl, synchronous data-flow, and many others]

- The first program written is often pretty good

- 1-to-1 with hardware behavior

Modern CUDA/OpenCL: DAGs of kernel launches

Block (0, 0)

Block (0, 1)

M
R D

Kernel 1

Block (1, 0) Block (2, 0)

M

Block (1,1) Block(2,1)

Kernel 2

Block (0, 0) Block (1, 0)

Block (0,1) Block (1, 1)

J

\v

g kernel3

Block (1, 0)

Block (1, 1)

A 4

Kernel 4

Block (0,0) Block(1,0) Block(2,0)

L R

Block (0,1) Block(1,1) Block (2, 1)

~N

Note: arrows are specified dependencies
between batch thread launches

Think of each launch like a draw()
command in OpenGL (but application
can turn off order, removing
dependency on previous launch)

Part 2: Programmable Pipeline

(Programmable Pipeline Structure, Not Programmable Stages)

Graphics pipeline pre Direct3D 10

=9 Pixel Ops

Graphics pipeline circa 2007 Blythe, Direct3D 10

vertices
IIIIEIII—>

triangles triangles fragments
- I+ - 11111~ Rasterlzatlon »DEB»M-»M-» Pixel Ops

l

Memory

Added new stage

Added ability to dump intermediate results out to memory for reuse

Pipeline Circa 201 0 [Direct3D 11, OpenGL 4]

smd Compute

|

Memory

Added three new stages (new data flows needed to support high-quality surfaces)

Forked off a separate 1-stage pipeline (a.k.a.“0pencL/cuDA)
(with relaxed data-access and communication/sync rules)

Modern graphics pipeline: highly configurable structure

R R R B W
o D e Em

oD e 2= om e
e

D == o e
== 3 e
=

—

—

Data-Parallel
Compute

Direct3D 11, OpenGL 4 pipeline configurations

Modern graphics pipeline: highly configurable structure

oS D
RN R

o [R M e
=

3 == e e
== 3 e
=

—

—

m
m

Data-Parallel
— —
Compute
Direct3D 11, OpenGL 4 pipeline configurations

m — m —>“ mma Tessellate *m — m mml Rasterization faume m mma Pixel Ops

Kayvon’s Micropolygon Rendering Pipeline
[Fatahalian 09, Fisher 09, Fatahalian 10, Boulos 10, Brunhaver 10]

Current realities / trends in interactive graphics

m Rapid parallel algorithm development in community
B [ncreasing machine performance
- “Traditional” discrete GPU designs
- Emerging hybrid CPU + GPU platforms (“accelerated” many-core cpus)

!

Space of candidate algorithms for future real-time use is growing rapidly

Global illumination algorithms

. . ";—:
Credit: \tmcevc
\%:; |

\ /42

'-;:: N\, J
. '\\ . K,

Y \' / >

TN

; ‘.Li-‘d ») -
, B PN :

Credit: NVIDIA

Ray tracing:
for accurate reflections, shadows

Credit: Ingo Wald

Alternative shading structures cuereressmading:

B ' - 1 s p B~ ke
A\ 4 4 IR, ot A
RN 1 y B [s
- 4 B~ < e s
. T > /. R - L ,"-"(
AR, e L PO e
] & > . s/ : S TN
N B Y g P NN ,"___-9 E
'-: > S N 7/ oy 3 - e
BN~ '3 et /£ Wi A7/ K .)
3 U o B : N

For more efficient scaling to many lights (1000 lights, [Andersson 09])

Simulation

Challenge

B Future interactive systems — broad application scope
- Not a great fit for current pipeline structure

= Pipeline structure could be extended further, but complexity is growing
unmanageable

m Must retain high efficiency of current systems

= Future hardware platforms (especially CPU+accelerator hybrids) will be
designed to run these workloads well

= Continue to leverage fixed-function processing when appropriate

Option 1: discard pipeline structure, drop to lower-level frameworks

I Data-Parallel
Compute

CUDA / OpenCL/ ComputeShader

Challenge

B Future interactive systems — broad application scope
- Not a great fit for current pipeline structure

= Pipeline structure could be extended further, but complexity is growing
unmanageable

m Must retain high efficiency of current systems

= Future hardware platforms (especially CPU+accelerator hybrids) will be
designed to run these workloads well

= Continue to leverage fixed-function processing when appropriate

Strategy: make the structure of the pipeline programmable

GRAMPS programming system: goals

m Enable development of application-defined graphics pipelines

= Producer-consumer locality is important
= Accommodate heterogeneity in workload

= Many algorithms feature both reqular data parallelism and irreqular
parallelism (recall: current graphics pipelines encapsulate irreqularity
in non-programmable parts of pipeline)

m High performance: target future GPUs (embrace heterogeneity)

= Throughput ("accelerator”) processing cores

- Traditional CPU-like processing cores

= Fixed-function units

GRAMPS overview

m Programs are graphs of stages and queues
- Expose program structure
- Leave stage internals largely unconstrained

('

Shader

Writing a GRAMPS program

1. Design application graph and queues
2. Implement the stages
3. Instantiate graph and launch

Accambliy ertex . ,
[Assembly H[X M Rasterizer H Fragment W PIxel Ops M
A < = x = *

n I N |

Vertex buffers Light descriptions Frame buffer

Memory

Queues

B Bounded size, operate at granularity of “packets” (structs)

— Packets are either:
1. Completely opaque to system
2. Header + array of opaque elements

m Queues are optionally FIFOs (to preserve ordering)

“Thread” and custom HW stages

B Preemptible, long-lived and stateful (think pthreads)

— Threads orchestrate: merge, compare repack inputs

® Manipulate queues via in-place reserve/commit
m Custom HW stages are logically just threads, but implemented by HW

“Shader” stages

B Anticipate data-parallel execution
— Defined per element (like graphics shaders today)
— Automatically instanced and parallelized by GRAMPS

B Non-preemptible, stateless
— System has preserved queue storage for inputs/outputs

B Push: can output variable number of elements to output queue

— GRAMPS coalesces output into full packets (of header + array type)

Queue sets (for mutual exclusion)

B Like N independent serial subqueues (but attached to a single instanced stage)
— Subqueues created statically or on first output
— (Can be sparsely indexed (can think of subqueue index as a key)

1 a . Y “'. ,?A
[Assembly H Jertex M Rasterizer H ‘ragment W PIxel Ops %

Graphics pipelines in GRAMPS

Rasterization Pipeline (with ray tracing extension)

Frame Buffer

Vertex Buffers

ﬁ—/

Ray Tracing Extension

Ray Tracing Graph

o
&=
=
o0
)
S
L)
—
(U

Simple scheduler

m Use graph structure to set simple stage priorities

= Could do some dynamic re-prioritization based on queue lengths

m Only preempt Thread Stages on reserve/commit operations

[Frame Buffer]

GRAMPS recap

m Key abstraction is the computation graph: typed stages and queues

= Thread, custom HW, and “shader” stages

- Afew types of queues

m Key underlying ideas:
- Structureis good
- Embrace heterogeneity in application and in target architecture

- Interesting graphics apps have tightly coupled irregular parallelism
and reqular data parallelism (should be encoded in structure)

B Alternative to current design of CUDA/OpenCL

= They are giving up structure, not providing it

GRAMPS from a graphics perspective

m Set out to make graphics pipeline structure programmable

m Result: Lower level abstraction than today’s pipeline: lost domain
knowledge of graphics (graphics pipelines are implemented on top of
GRAMPS)

= Good: now programmable logic controls the fixed-function logic
(in the current graphics pipeline it is the other way around)

m Experience: mapping key graphics abstractions to GRAMPS
abstractions efficiently requires a knowledgable graphics programmer

= Coming up with the right graph is hard (setting packet sizes, queue sizes has
some machine dependence, some key optimizations are global)

Graphics abstractions today

B Real-time graphics pipeline still hanging in there (Direct3D 11/ OpenGL 4)

B Butlots of algorithm development in OpenCL/Direct3D compute shader/CUDA

- Good: makes GPU compute power accessible. Triggering re-evaluation of
best practices in field

- Bad: community shifting too-far toward only thinking about current GPU-
style data-parallelism

®m (PU+GPU fusion will likely trigger emergence of alternative high-level
frameworks for niches in interactive graphics

- Example: NVIDIA Optix: new framework for ray tracing

- Application provides key kernels, Optix compiler/runtimes schedules
= Built on CUDA

