
Lecture 11:
“GPGPU” computing and

the CUDA/OpenCL Programming Model

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today
▪ Some GPGPU history

▪ The CUDA (or OpenCL) programming model

▪ (if time) GRAMPS: An attempt to create programmable
graphics pipelines

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Early GPU-based scienti!c computation
Dense matrix-matrix multiplication [Larson and McAllister, SC 2001]

M x N frame bufferK x N texture 0

M x K texture 1

Set frame buffer blend mode to ADD
for k=0 to K
 Set texture coords
 Render 1 full-screen quadrilateral

P=(0,0)
st0=(k,1)
st1=(1,k)

P=(1,0)
st0=(k,1)
st1=(1,k)

P=(1,1)
st0=(k,0)
st1=(0,k)

P=(0,1)
st0=(k,0)
st1=(1,k)

A B C
M

N

M

K

N

K

Note: this work followed [Percy 00], which modeled OpenGL with
multi-texturing as a SIMD processor for multi-pass rendering
(we discussed this last time in the shade-tree example)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“GPGPU” 2002-2003

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Brook for GPUs
▪ Abstract GPU as a generic stream processor (C extension)

- Streams: 1D, 2D arrays of data
- Kernels: per-element processing of stream data **
- Reductions: stream --> scalar

▪ In#uences
- Data-parallel programing: ZPL, Nesl
- Stream programming: StreaMIT, StreamC/Kernel

▪ Brook runtime generates appropriate OpenGL calls

[Buck 04]

** Broke traditional stream processing model
 with in-kernel gather (more on this later)

kernel	
 void	
 scale(float	
 amount,	
 float	
 a<>,	
 out	
 float	
 b<>)
{
	
 	
 	
 b	
 =	
 amount	
 *	
 a;
}

//	
 note:	
 omitting	
 initialization
float	
 scale_amount;
float	
 input_stream<1000>;
float	
 output_stream<1000>;

//	
 map	
 kernel	
 onto	
 streams	

scale(scale_amount,	
 input_stream,	
 output_stream);

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Stream programming (“pure”)
▪ Streams

- Encapsulate per-element parallelism
- Encapsulate producer-consumer locality

▪ Kernels
- Functions (side-effect-free)
- Encapsulate locality (kernel’s working set de!ned by inputs, outputs, and

temporaries)
- Encapsulate instruction-stream coherence (same kernel applied to each

stream element)
▪ Modern implementations (e.g., StreaMIT, StreamC/KernelC) relied on static

scheduling by compiler to achieve high performance

Kernel 1 Kernel 2

Kernel 3

Stream 1 Stream 2

Stream 4 Stream 5

Stream
3

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

NVIDIA CUDA
▪ Alternative programming interface to Tesla-class GPUs

- Recall: Tesla was !rst “uni!ed shading” GPU

▪ Low level, re#ects capabilities of hardware
- Recall arguments in Cg paper

- Combines some elements of streaming, some of threading (like HW does)

▪ Today: open standards embodiment of this programming
model is OpenCL (Microsoft embodiment is Compute Shader)

[Ian Buck at NVIDIA, 2007]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)
//	
 CUDA	
 kernel	
 definition
__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)
{
	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id
	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];
}

//	
 note:	
 omitting	
 initialization	
 via	
 cudaMalloc()
float	
 scale_amount;
float*	
 input_array;
float*	
 output_array;

//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’
scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Bulk thread launch: logically spawns N threads

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

What is the behavior of this kernel?
//	
 CUDA	
 kernel	
 definition
__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)
{
	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id
	
 	
 	
 b[0]	
 =	
 amount	
 *	
 a[i];
}

//	
 note:	
 omitting	
 initialization	
 via	
 cudaMalloc()
float	
 scale_amount;
float*	
 input_array;
float*	
 output_array;

//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’
scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Bulk thread launch: logically spawns N threads

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Can system !nd producer-consumer?
//	
 CUDA	
 kernel	
 definition
__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)
{
	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id
	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];
}

//	
 note:	
 omitting	
 initialization	
 via	
 cudaMalloc()
float	
 scale_amount;
float*	
 input_array;
float*	
 output_array;
float*	
 tmp_array;

scale<<1,N>>(scale_amount,	
 input_array,	
 tmp_array);
scale<<1,N>>(scale_amount,	
 tmp_array,	
 output_array);

Kernel (scale) Kernel (scale)

input_array tmp_array output_array

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)
//	
 CUDA	
 kernel	
 definition
__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)
{
	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id
	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];
}

//	
 note:	
 omitting	
 initialization	
 via	
 cudaMalloc()
float	
 scale_amount;
float*	
 input_array;
float*	
 output_array;

//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’
scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Bulk thread launch: logically spawns N threads

Question: What should N be?
Question: Do you normally think of “threads” this way?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)
//	
 CUDA	
 kernel	
 definition
__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)
{
	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id
	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];
}

//	
 note:	
 omitting	
 initialization	
 via	
 cudaMalloc()
float	
 scale_amount;
float*	
 input_array;
float*	
 output_array;

//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’
scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Given this implementation: each invocation
of scale kernel is independent.

(bulk thread launch semantics no different
than sequential semantics)

CUDA system has #exibility to parallelize any
way it pleases.

In many cases, thinking about a CUDA kernel as a stream processing kernel,
and CUDA arrays as streams is perfectly reasonable.

(programmer just has to do a little indexing in the kernel to get a reference
to stream inputs/outputs)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Convolution example
//	
 assume	
 len(A)	
 =	
 len(B)	
 +	
 2
__global__	
 void	
 convolve(float*	
 a,	
 float*	
 b)
{
	
 	
 	
 //	
 ignore	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	

	
 	
 	
 b[i]	
 =	
 a[i]	
 +	
 a[i+1]	
 +	
 a[i+2];
}

Note “adjacent” threads load same data.
Here: 3x input reuse (reuse increases with width of convolution !lter)

B[0] B[1] B[2]

A[0] A[1] A[2] A[4]A[3]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA thread hierarchy
#define	
 BLOCK_SIZE	
 4

__global__	
 void	
 convolve(float*	
 a,	
 float*	
 b)
{
	
 	
 	
 __shared__	
 float	
 input[BLOCK_SIZE	
 +	
 2];

	
 	
 	
 int	
 bi	
 =	
 blockIdx.x;	

	
 	
 	
 int	
 ti	
 =	
 threadIdx.x;

	
 	
 	
 input[bi]	
 =	
 A[ti];
	
 	
 	
 if	
 (bi	
 <	
 2)
	
 	
 	
 {
	
 	
 	
 	
 	
 	
 input[BLOCK_SIZE+bi]	
 =	
 A[ti+BLOCK_SIZE];
	
 	
 	
 }	
 	

	
 	
 	
 __syncthreads();	
 	
 	
 //	
 barrier

	
 	
 	
 b[ti]	
 =	
 input[bi]	
 +	
 input[bi+1]	
 +	
 input[bi+2];
}

//	
 allocation	
 omitted	

//	
 assume	
 len(A)	
 =	
 N+2,	
 len(B)=N
float*	
 A,	
 *B;

convolve<<BLOCK_SIZE,	
 N/BLOCK_SIZE>>(A,	
 B);

CUDA threads are grouped into thread blocks

Threads in a block are not independent.
They can cooperate to process shared data.

1. Threads communicate through
__shared__ variables

2. Threads barrier via __syncthreads()

“shared” scratch storage: #oat input[6]

bi=0 bi=1 bi=2 bi=3

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

CUDA thread hierarchy
//	
 this	
 code	
 will	
 launch	
 96	
 threads
//	
 6	
 blocks	
 of	
 16	
 threads	
 each

dim2	
 threadsPerBlock(4,4);
dim2	
 blocks(3,2);	

myKernel<<blocks,	
 threadsPerBlock>>();

Thread blocks (and the overall “grid” of blocks) can be 1D, 2D, 3D
(Convenience: many CUDA programs operate on n-D grids)

Thread blocks represent independent execution

Threads in a thread block executed simultaneously on same
GPU core

Why on the same core?
Why simultaneously?

Source: CUDA Programming Manual

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The common way to think about CUDA
(thread centric)

▪ CUDA is a multi-threaded programming model

▪ Threads are logically grouped together into blocks and gang scheduled
onto cores

▪ Threads in a block are allowed to synchronize and communicate through
barriers and shared local memory

▪ Note: Lack of communication between threads in different blocks gives
scheduler some #exibility (can “stream” blocks through the system)**

** Using global memory atomic operations provide a form of inter-thread block communication (more on this in a second)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Another way to think about CUDA
(like a streaming system: thread block centric)

▪ CUDA is a stream programming model (recall Brook)

- Stream elements are now blocks of data

- Kernels are thread blocks (larger working sets)

▪ Kernel invocations independent, but are multi-threaded

- Achieves additional !ne-grained parallelism

▪ Think: Implicitly parallel across thread blocks (kernels)

▪ Think: Explicitly parallel within a block

Canonical CUDA thread block program:

Threads cooperatively load block of
data from input arrays into shared mem

Threads cooperatively write block of
data to output arrays

__syncThreads();	
 //	
 barrier

__syncThreads();	
 //	
 barrier

Threads perform computation,
accessing shared mem

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Choosing thread-block sizes
Question: how many threads should be in a thread block?

Recall from GPU core lecture:
How many threads per core?
How much shared local memory per core?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“Persistent” threads
▪ No semblance of streaming at all any more
▪ Programmer is always thinking explicitly parallel
▪ Threads use atomic global memory operations to cooperate

//	
 Persistent	
 thread:	
 Run	
 until	
 work	
 is	
 done,	
 processing	
 multiple	
 work
//	
 elements,	
 rather	
 than	
 just	
 one.	
 Terminates	
 when	
 no	
 more	
 work	
 is	
 available
__global__	
 void	
 persistent(int*	
 ahead,	
 int*	
 bhead,	
 int	
 count,	
 float*	
 a,	
 float*	
 b)
{
	
 	
 	
 	
 int	
 in_index;
	
 	
 	
 	
 while	
 (
 (in_index	
 =	
 read_and_increment(ahead))	
 <	
 count)
	
 	
 	
 	
 {	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 load	
 a[in_index];

	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 do	
 work
	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 out_index	
 =	
 read_and_increment(bhead);
	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 write	
 result	
 to	
 b[out_index]
	
 	
 	
 	
 }
}

//	
 launch	
 exactly	
 enough	
 threads	
 to	
 fill	
 up	
 machine
//	
 (to	
 achieve	
 sufficient	
 parallelism	
 and	
 latency	
 hiding)
persistent<<numBlocks,blockSize>>(ahead_addr,	
 bhead_addr,	
 total_count,	
 A,	
 B);

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Questions:

What does CUDA system do for the programmer?

How does it compare to OpenGL?

Quick aside: why was CUDA successful?

1. Provides access to a cheap, very fast machine

2. SPMD abstraction allows programmer to write scalar code, have it
(almost trivially) mapped to vector hardware

3. More like thread programming than streaming: arbitrary in-kernel
gather (+ GPU hardware multi-threading to hide memory latency)
- More familiar, convenient, and #exible in comparison to more principled data-

parallel or streaming systems
[StreamC/KernelC, StreamMIT, ZPL, Nesl, synchronous data-#ow, and many others]

- The !rst program written is often pretty good

- 1-to-1 with hardware behavior

Note: Five years later... one Intel employee (with LLVM
and a graphics background)

(Kayvon’s personal opinion)

Modern CUDA/OpenCL: DAGs of kernel launches

Kernel 1 Kernel 2

Kernel 3

Kernel 4

Note: arrows are speci!ed dependencies
between batch thread launches

Think of each launch like a draw()
command in OpenGL (but application
can turn off order, removing
dependency on previous launch)

Part 2: Programmable Pipeline
(Programmable Pipeline Structure, Not Programmable Stages)

Graphics pipeline pre Direct3D 10

Vertex Rasterization Fragment Pixel Ops
triangles fragmentsvertices

Graphics pipeline circa 2007

Vertex Rasterization Fragment Pixel Ops
triangles fragmentsvertices

Primitive
triangles

Memory

Added new stage

Added ability to dump intermediate results out to memory for reuse

[Blythe, Direct3D 10]

Pipeline circa 2010

Vertex Rasterization Fragment Pixel OpsPrimitive

Added three new stages (new data #ows needed to support high-quality surfaces)

Forked off a separate 1-stage pipeline
(with relaxed data-access and communication/sync rules)

DomainTessellateHull

Compute

Memory

[Direct3D 11, OpenGL 4]

(a.k.a. “OpenCL/CUDA)

Modern graphics pipeline: highly con!gurable structure

Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsPrimitive

Vertex Rasterization Fragment Pixel Ops

Vertex Rasterization Pixel Ops

Vertex PrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsDomainTessellateHull

Direct3D 11, OpenGL 4 pipeline con!gurations

Vertex Primitive

Data-Parallel
Compute

Modern graphics pipeline: highly con!gurable structure
Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsPrimitive

Vertex Rasterization Fragment Pixel Ops

Vertex Rasterization Pixel Ops

Vertex PrimitiveDomainTessellateHull

Data-Parallel
Compute

Vertex Rasterization Fragment Pixel OpsDomainTessellateHull

Direct3D 11, OpenGL 4 pipeline con!gurations

Vertex Primitive

Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull Split

Kayvon‘s Micropolygon Rendering Pipeline
[Fatahalian 09, Fisher 09, Fatahalian 10, Boulos 10, Brunhaver 10]

Current realities / trends in interactive graphics
▪ Rapid parallel algorithm development in community
▪ Increasing machine performance

- “Traditional” discrete GPU designs

- Emerging hybrid CPU + GPU platforms (“accelerated” many-core CPUs)

Space of candidate algorithms for future real-time use is growing rapidly

Global illumination algorithms

Credit: NVIDIA

Ray tracing:
for accurate re#ections, shadows

Credit: Ingo Wald

Credit: Bratincevic

Alternative shading structures (“deferred shading”)

Vertex FragmentPixel OpsRast

For more efficient scaling to many lights (1000 lights, [Andersson 09])

Simulation

Challenge
▪ Future interactive systems → broad application scope

- Not a great !t for current pipeline structure

- Pipeline structure could be extended further, but complexity is growing
unmanageable

▪ Must retain high efficiency of current systems
- Future hardware platforms (especially CPU+accelerator hybrids) will be

designed to run these workloads well

- Continue to leverage !xed-function processing when appropriate

Option 1: discard pipeline structure, drop to lower-level frameworks

CUDA / OpenCL / ComputeShader

Data-Parallel
Compute

Challenge

Strategy: make the structure of the pipeline programmable
GRAMPS: A Programming Model for Graphics Pipelines
[Sugerman, Fatahalian, Boulos, Akeley, Hanrahan 2009]

▪ Future interactive systems → broad application scope
- Not a great !t for current pipeline structure

- Pipeline structure could be extended further, but complexity is growing
unmanageable

▪ Must retain high efficiency of current systems
- Future hardware platforms (especially CPU+accelerator hybrids) will be

designed to run these workloads well

- Continue to leverage !xed-function processing when appropriate

GRAMPS programming system: goals
▪ Enable development of application-de!ned graphics pipelines

- Producer-consumer locality is important

- Accommodate heterogeneity in workload

- Many algorithms feature both regular data parallelism and irregular
parallelism (recall: current graphics pipelines encapsulate irregularity
in non-programmable parts of pipeline)

▪ High performance: target future GPUs (embrace heterogeneity)
- Throughput (“accelerator”) processing cores

- Traditional CPU-like processing cores

- Fixed-function units

GRAMPS overview
▪ Programs are graphs of stages and queues

- Expose program structure

- Leave stage internals largely unconstrained

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

GRAMPS primitives

Writing a GRAMPS program
1. Design application graph and queues
2. Implement the stages
3. Instantiate graph and launch

RasterizerVertex Fragment Pixel Ops

Memory

Frame bufferVertex buffers Light descriptions

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

Assembly

Queues

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Bounded size, operate at granularity of “packets” (structs)
- Packets are either:

1. Completely opaque to system
2. Header + array of opaque elements

▪ Queues are optionally FIFOs (to preserve ordering)

Assembly

“Thread” and custom HW stages

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Preemptible, long-lived and stateful (think pthreads)
- Threads orchestrate: merge, compare repack inputs

▪ Manipulate queues via in-place reserve/commit
▪ Custom HW stages are logically just threads, but implemented by HW

Assembly

“Shader” stages

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Anticipate data-parallel execution
- De!ned per element (like graphics shaders today)
- Automatically instanced and parallelized by GRAMPS

▪ Non-preemptible, stateless
- System has preserved queue storage for inputs/outputs

▪ Push: can output variable number of elements to output queue
- GRAMPS coalesces output into full packets (of header + array type)

Assembly

Queue sets (for mutual exclusion)

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Like N independent serial subqueues (but attached to a single instanced stage)
- Subqueues created statically or on !rst output
- Can be sparsely indexed (can think of subqueue index as a key)

Assembly

Graphics pipelines in GRAMPS

Ray$Tracing$Extension$

Rasteriza2on$Pipeline$(withraytracing$extension)$

Ray$Tracing$Graph$

Simple scheduler
▪ Use graph structure to set simple stage priorities

- Could do some dynamic re-prioritization based on queue lengths

▪ Only preempt Thread Stages on reserve/commit operations

GRAMPS recap
▪ Key abstraction is the computation graph: typed stages and queues

- Thread, custom HW, and “shader” stages

- A few types of queues

▪ Key underlying ideas:
- Structure is good

- Embrace heterogeneity in application and in target architecture

- Interesting graphics apps have tightly coupled irregular parallelism
and regular data parallelism (should be encoded in structure)

▪ Alternative to current design of CUDA/OpenCL
- They are giving up structure, not providing it

GRAMPS from a graphics perspective
▪ Set out to make graphics pipeline structure programmable

▪ Result: Lower level abstraction than today’s pipeline: lost domain
knowledge of graphics (graphics pipelines are implemented on top of
GRAMPS)
- Good: now programmable logic controls the !xed-function logic

(in the current graphics pipeline it is the other way around)

▪ Experience: mapping key graphics abstractions to GRAMPS
abstractions efficiently requires a knowledgable graphics programmer
- Coming up with the right graph is hard (setting packet sizes, queue sizes has

some machine dependence, some key optimizations are global)

Graphics abstractions today
▪ Real-time graphics pipeline still hanging in there (Direct3D 11 / OpenGL 4)

▪ But lots of algorithm development in OpenCL/Direct3D compute shader/CUDA

- Good: makes GPU compute power accessible. Triggering re-evaluation of
best practices in !eld

- Bad: community shifting too-far toward only thinking about current GPU-
style data-parallelism

▪ CPU+GPU fusion will likely trigger emergence of alternative high-level
frameworks for niches in interactive graphics

- Example: NVIDIA Optix: new framework for ray tracing

- Application provides key kernels, Optix compiler/runtimes schedules

- Built on CUDA

