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Today
▪ Some GPGPU history

▪ The CUDA (or OpenCL) programming model

▪ (if time) GRAMPS: An attempt to create programmable 
graphics pipelines
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Early GPU-based scienti!c computation
Dense matrix-matrix multiplication [Larson and McAllister, SC 2001]

M x N frame bufferK x N texture 0

M x K texture 1

Set frame buffer blend mode to ADD
for k=0 to K
     Set texture coords
     Render 1 full-screen quadrilateral
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Note: this work followed [Percy 00], which modeled OpenGL with 
multi-texturing as a SIMD processor for multi-pass rendering
(we discussed this last time in the shade-tree example)
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“GPGPU” 2002-2003

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]
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Brook for GPUs
▪ Abstract GPU as a generic stream processor (C extension)

- Streams: 1D, 2D arrays of data
- Kernels: per-element processing of stream data **
- Reductions: stream --> scalar

▪ In#uences
- Data-parallel programing: ZPL, Nesl
- Stream programming: StreaMIT, StreamC/Kernel

▪ Brook runtime generates appropriate OpenGL calls

[Buck 04]

** Broke traditional stream processing model
      with in-kernel gather (more on this later)

kernel	
  void	
  scale(float	
  amount,	
  float	
  a<>,	
  out	
  float	
  b<>)
{
	
  	
  	
  b	
  =	
  amount	
  *	
  a;
}

//	
  note:	
  omitting	
  initialization
float	
  scale_amount;
float	
  input_stream<1000>;
float	
  output_stream<1000>;

//	
  map	
  kernel	
  onto	
  streams	
  
scale(scale_amount,	
  input_stream,	
  output_stream);
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Stream programming (“pure”)
▪ Streams

- Encapsulate per-element parallelism
- Encapsulate producer-consumer locality

▪ Kernels
- Functions (side-effect-free)
- Encapsulate locality (kernel’s working set de!ned by inputs, outputs, and 

temporaries)
- Encapsulate instruction-stream coherence (same kernel applied to each 

stream element)
▪ Modern implementations (e.g., StreaMIT, StreamC/KernelC) relied on static 

scheduling by compiler to achieve high performance

Kernel 1 Kernel 2

Kernel 3

Stream 1 Stream 2

Stream 4 Stream 5

Stream
3



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

NVIDIA CUDA
▪ Alternative programming interface to Tesla-class GPUs

- Recall: Tesla was !rst “uni!ed shading” GPU

▪ Low level, re#ects capabilities of hardware
- Recall arguments in Cg paper

- Combines some elements of streaming, some of threading (like HW does)

▪ Today: open standards embodiment of this programming 
model is OpenCL (Microsoft embodiment is Compute Shader)

[Ian Buck at NVIDIA, 2007]
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CUDA constructs (the kernel)
//	
  CUDA	
  kernel	
  definition
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)
{
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];
}

//	
  note:	
  omitting	
  initialization	
  via	
  cudaMalloc()
float	
  scale_amount;
float*	
  input_array;
float*	
  output_array;

//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Bulk thread launch: logically spawns N threads
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What is the behavior of this kernel?
//	
  CUDA	
  kernel	
  definition
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)
{
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id
	
  	
  	
  b[0]	
  =	
  amount	
  *	
  a[i];
}

//	
  note:	
  omitting	
  initialization	
  via	
  cudaMalloc()
float	
  scale_amount;
float*	
  input_array;
float*	
  output_array;

//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Bulk thread launch: logically spawns N threads
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Can system !nd producer-consumer?
//	
  CUDA	
  kernel	
  definition
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)
{
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];
}

//	
  note:	
  omitting	
  initialization	
  via	
  cudaMalloc()
float	
  scale_amount;
float*	
  input_array;
float*	
  output_array;
float*	
  tmp_array;

scale<<1,N>>(scale_amount,	
  input_array,	
  tmp_array);
scale<<1,N>>(scale_amount,	
  tmp_array,	
  output_array);

Kernel (scale) Kernel (scale)

input_array tmp_array output_array
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CUDA constructs (the kernel)
//	
  CUDA	
  kernel	
  definition
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)
{
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];
}

//	
  note:	
  omitting	
  initialization	
  via	
  cudaMalloc()
float	
  scale_amount;
float*	
  input_array;
float*	
  output_array;

//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Bulk thread launch: logically spawns N threads

Question:  What should N be?
Question:  Do you normally think of “threads” this way?



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

CUDA constructs (the kernel)
//	
  CUDA	
  kernel	
  definition
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)
{
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];
}

//	
  note:	
  omitting	
  initialization	
  via	
  cudaMalloc()
float	
  scale_amount;
float*	
  input_array;
float*	
  output_array;

//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Given this implementation: each invocation 
of scale kernel is independent.

(bulk thread launch semantics no different 
than sequential semantics)

CUDA system has #exibility to parallelize any 
way it pleases.

In many cases, thinking about a CUDA kernel as a stream processing kernel, 
and CUDA arrays as streams is perfectly reasonable.

(programmer just has to do a little indexing in the kernel to get a reference 
to stream inputs/outputs)
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Convolution example
//	
  assume	
  len(A)	
  =	
  len(B)	
  +	
  2
__global__	
  void	
  convolve(float*	
  a,	
  float*	
  b)
{
	
  	
  	
  //	
  ignore	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  
	
  	
  	
  b[i]	
  =	
  a[i]	
  +	
  a[i+1]	
  +	
  a[i+2];
}

Note “adjacent” threads load same data.
Here: 3x input reuse (reuse increases with width of convolution !lter)

B[0] B[1] B[2]

A[0] A[1] A[2] A[4]A[3]
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CUDA thread hierarchy
#define	
  BLOCK_SIZE	
  4

__global__	
  void	
  convolve(float*	
  a,	
  float*	
  b)
{
	
  	
  	
  __shared__	
  float	
  input[BLOCK_SIZE	
  +	
  2];

	
  	
  	
  int	
  bi	
  =	
  blockIdx.x;	
  
	
  	
  	
  int	
  ti	
  =	
  threadIdx.x;

	
  	
  	
  input[bi]	
  =	
  A[ti];
	
  	
  	
  if	
  (bi	
  <	
  2)
	
  	
  	
  {
	
  	
  	
  	
  	
  	
  input[BLOCK_SIZE+bi]	
  =	
  A[ti+BLOCK_SIZE];
	
  	
  	
  }	
  	
  

	
  	
  	
  __syncthreads();	
  	
  	
  //	
  barrier

	
  	
  	
  b[ti]	
  =	
  input[bi]	
  +	
  input[bi+1]	
  +	
  input[bi+2];
}

//	
  allocation	
  omitted	
  
//	
  assume	
  len(A)	
  =	
  N+2,	
  len(B)=N
float*	
  A,	
  *B;

convolve<<BLOCK_SIZE,	
  N/BLOCK_SIZE>>(A,	
  B);

CUDA threads are grouped into thread blocks

Threads in a block are not independent.
They can cooperate to process shared data.

1. Threads communicate through 
__shared__ variables

2. Threads barrier via __syncthreads()

“shared” scratch storage: #oat input[6]

bi=0 bi=1 bi=2 bi=3
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CUDA thread hierarchy
//	
  this	
  code	
  will	
  launch	
  96	
  threads
//	
  6	
  blocks	
  of	
  16	
  threads	
  each

dim2	
  threadsPerBlock(4,4);
dim2	
  blocks(3,2);	
  
myKernel<<blocks,	
  threadsPerBlock>>();

Thread blocks (and the overall “grid” of blocks) can be 1D, 2D, 3D
(Convenience: many CUDA programs operate on n-D grids)

Thread blocks represent independent execution

Threads in a thread block executed simultaneously on same 
GPU core

Why on the same core?
Why simultaneously?

Source: CUDA Programming Manual
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The common way to think about CUDA
(thread centric)

▪ CUDA is a multi-threaded programming model

▪ Threads are logically grouped together into blocks and gang scheduled 
onto cores

▪ Threads in a block are allowed to synchronize and communicate through 
barriers and shared local memory

▪ Note: Lack of communication between threads in different blocks gives 
scheduler some #exibility (can “stream” blocks through the system)**

** Using global memory atomic operations provide a  form of inter-thread block communication (more on this in a second)
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Another way to think about CUDA
(like a streaming system: thread block centric)

▪ CUDA is a stream programming model (recall Brook)

- Stream elements are now blocks of data

- Kernels are thread blocks (larger working sets)

▪ Kernel invocations independent, but are multi-threaded

- Achieves additional !ne-grained parallelism

▪ Think: Implicitly parallel across thread blocks (kernels)

▪ Think: Explicitly parallel within a block

Canonical CUDA thread block program:

Threads cooperatively load block of 
data from input arrays into shared mem

Threads cooperatively write block of 
data to output arrays

__syncThreads();	
  //	
  barrier

__syncThreads();	
  //	
  barrier

Threads perform computation, 
accessing shared mem
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Choosing thread-block sizes
Question: how many threads should be in a thread block?

Recall from GPU core lecture:
How many threads per core?
How much shared local memory per core?
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“Persistent” threads
▪ No semblance of streaming at all any more
▪ Programmer is always thinking explicitly parallel
▪ Threads use atomic global memory operations to cooperate

//	
  Persistent	
  thread:	
  Run	
  until	
  work	
  is	
  done,	
  processing	
  multiple	
  work
//	
  elements,	
  rather	
  than	
  just	
  one.	
  Terminates	
  when	
  no	
  more	
  work	
  is	
  available
__global__	
  void	
  persistent(int*	
  ahead,	
  int*	
  bhead,	
  int	
  count,	
  float*	
  a,	
  float*	
  b)
{
	
  	
  	
  	
  int	
  in_index;
	
  	
  	
  	
  while	
  (	
  (in_index	
  =	
  read_and_increment(ahead))	
  <	
  count)
	
  	
  	
  	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  load	
  a[in_index];

	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  do	
  work
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  int	
  out_index	
  =	
  read_and_increment(bhead);
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  write	
  result	
  to	
  b[out_index]
	
  	
  	
  	
  }
}

//	
  launch	
  exactly	
  enough	
  threads	
  to	
  fill	
  up	
  machine
//	
  (to	
  achieve	
  sufficient	
  parallelism	
  and	
  latency	
  hiding)
persistent<<numBlocks,blockSize>>(ahead_addr,	
  bhead_addr,	
  total_count,	
  A,	
  B);
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Questions:

What does CUDA system do for the programmer?

How does it compare to OpenGL?



Quick aside: why was CUDA successful?

1. Provides access to a cheap, very fast machine

2. SPMD abstraction allows programmer to write scalar code, have it 
(almost trivially) mapped to vector hardware

3. More like thread programming than streaming: arbitrary in-kernel 
gather (+ GPU hardware multi-threading to hide memory latency)
- More familiar, convenient, and #exible in comparison to more principled data-

parallel or streaming systems
[StreamC/KernelC, StreamMIT, ZPL, Nesl, synchronous data-#ow, and many others]

- The !rst program written is often pretty good

- 1-to-1 with hardware behavior

Note: Five years later... one Intel employee (with LLVM 
and a graphics background)

(Kayvon’s personal opinion)



Modern CUDA/OpenCL: DAGs of kernel launches

Kernel 1 Kernel 2

Kernel 3

Kernel 4

Note: arrows are speci!ed dependencies 
between batch thread launches

Think of each launch like a draw() 
command in OpenGL (but application 
can turn off order, removing 
dependency on previous launch)



Part 2: Programmable Pipeline
(Programmable Pipeline Structure, Not Programmable Stages)



Graphics pipeline pre Direct3D 10

Vertex Rasterization Fragment Pixel Ops
triangles fragmentsvertices



Graphics pipeline circa 2007

Vertex Rasterization Fragment Pixel Ops
triangles fragmentsvertices

Primitive
triangles

Memory

Added new stage

Added ability to dump intermediate results out to memory for reuse 

[Blythe, Direct3D 10]



Pipeline circa 2010

Vertex Rasterization Fragment Pixel OpsPrimitive

Added three new stages (new data #ows needed to support high-quality surfaces)

Forked off a separate 1-stage pipeline
(with relaxed data-access and communication/sync rules) 

DomainTessellateHull

Compute

Memory

[Direct3D 11, OpenGL 4]

(a.k.a. “OpenCL/CUDA)



Modern graphics pipeline: highly con!gurable structure

Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsPrimitive

Vertex Rasterization Fragment Pixel Ops

Vertex Rasterization Pixel Ops

Vertex PrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsDomainTessellateHull

Direct3D 11, OpenGL 4 pipeline con!gurations 

Vertex Primitive

Data-Parallel
Compute



Modern graphics pipeline: highly con!gurable structure
Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsPrimitive

Vertex Rasterization Fragment Pixel Ops

Vertex Rasterization Pixel Ops

Vertex PrimitiveDomainTessellateHull

Data-Parallel
Compute

Vertex Rasterization Fragment Pixel OpsDomainTessellateHull

Direct3D 11, OpenGL 4 pipeline con!gurations 

Vertex Primitive

Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull Split

Kayvon‘s Micropolygon Rendering Pipeline
[Fatahalian 09, Fisher 09, Fatahalian 10, Boulos 10, Brunhaver 10] 



Current realities / trends in interactive graphics
▪ Rapid parallel algorithm development in community
▪ Increasing machine performance

- “Traditional” discrete GPU designs

- Emerging hybrid CPU + GPU platforms  (“accelerated” many-core CPUs)

Space of candidate algorithms for future real-time use is growing rapidly 



Global illumination algorithms

Credit: NVIDIA

Ray tracing:
for accurate re#ections, shadows

Credit: Ingo Wald

Credit: Bratincevic



Alternative shading structures  (“deferred shading”)

Vertex FragmentPixel OpsRast

For more efficient scaling to many lights (1000 lights, [Andersson 09]) 



Simulation



Challenge
▪ Future interactive systems → broad application scope

- Not a great !t for current pipeline structure

- Pipeline structure could be extended further, but complexity is growing 
unmanageable

▪ Must retain high efficiency of current systems
- Future hardware platforms (especially CPU+accelerator hybrids) will be 

designed to run these workloads well 

- Continue to leverage !xed-function processing when appropriate

Option 1: discard pipeline structure, drop to lower-level frameworks

CUDA / OpenCL / ComputeShader

Data-Parallel
Compute



Challenge

Strategy: make the structure of the pipeline programmable
GRAMPS: A Programming Model for Graphics Pipelines
[Sugerman, Fatahalian, Boulos, Akeley, Hanrahan 2009]

▪ Future interactive systems → broad application scope
- Not a great !t for current pipeline structure

- Pipeline structure could be extended further, but complexity is growing 
unmanageable

▪ Must retain high efficiency of current systems
- Future hardware platforms (especially CPU+accelerator hybrids) will be 

designed to run these workloads well 

- Continue to leverage !xed-function processing when appropriate



GRAMPS programming system: goals
▪ Enable development of application-de!ned graphics pipelines

- Producer-consumer locality is important

- Accommodate heterogeneity in workload

- Many algorithms feature both regular data parallelism and irregular 
parallelism (recall: current graphics pipelines encapsulate irregularity 
in non-programmable parts of pipeline)

▪ High performance: target future GPUs  (embrace heterogeneity)
- Throughput (“accelerator”) processing cores

- Traditional CPU-like processing cores

- Fixed-function units



GRAMPS overview
▪ Programs are graphs of stages and queues

- Expose program structure

- Leave stage internals largely unconstrained

Thread Stage

Shader Stage

Custom HW 
Stage

Queue

Push Queue

Queue Set

GRAMPS primitives



Writing a GRAMPS program
1. Design application graph and queues
2. Implement the stages
3. Instantiate graph and launch

RasterizerVertex Fragment Pixel Ops

Memory

Frame bufferVertex buffers Light descriptions

Thread Stage

Shader Stage

Custom HW 
Stage

Queue

Push Queue

Queue Set

Assembly



Queues

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW 
Stage

Queue

Push Queue

Queue Set

▪ Bounded size, operate at granularity of “packets” (structs)
- Packets are either:

1. Completely opaque to system
2. Header + array of opaque elements

▪ Queues are optionally FIFOs (to preserve ordering)

Assembly



“Thread” and custom HW stages

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW 
Stage

Queue

Push Queue

Queue Set

▪ Preemptible, long-lived and stateful (think pthreads)
- Threads orchestrate: merge, compare repack inputs

▪ Manipulate queues via in-place reserve/commit
▪ Custom HW stages are logically just threads, but implemented by HW

Assembly



“Shader” stages

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW 
Stage

Queue

Push Queue

Queue Set

▪ Anticipate data-parallel execution
- De!ned per element (like graphics shaders today)
- Automatically instanced and parallelized by GRAMPS

▪ Non-preemptible, stateless
- System has preserved queue storage for inputs/outputs

▪ Push: can output variable number of elements to output queue
- GRAMPS coalesces output into full packets (of header + array type)

Assembly



Queue sets (for mutual exclusion)

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW 
Stage

Queue

Push Queue

Queue Set

▪ Like N independent serial subqueues (but attached to a single instanced stage)
- Subqueues created statically or on !rst output
- Can be sparsely indexed (can think of subqueue index as a key) 

Assembly



Graphics pipelines in GRAMPS

Ray$Tracing$Extension$

Rasteriza2on$Pipeline$(with$ray$tracing$extension)$

Ray$Tracing$Graph$



Simple scheduler
▪ Use graph structure to set simple stage priorities

- Could do some dynamic re-prioritization based on queue lengths

▪ Only preempt Thread Stages on reserve/commit operations



GRAMPS recap
▪ Key abstraction is the computation graph: typed stages and queues

- Thread, custom HW, and “shader” stages

- A few types of queues

▪ Key underlying ideas:
- Structure is good 

- Embrace heterogeneity in application and in target architecture

- Interesting graphics apps have tightly coupled irregular parallelism 
and regular data parallelism (should be encoded in structure)

▪ Alternative to current design of CUDA/OpenCL
- They are giving up structure, not providing it



GRAMPS from a graphics perspective
▪ Set out to make graphics pipeline structure programmable

▪ Result: Lower level abstraction than today’s pipeline: lost domain 
knowledge of graphics (graphics pipelines are implemented on top of 
GRAMPS)
- Good: now programmable logic controls the !xed-function logic

(in the current graphics pipeline it is the other way around)

▪ Experience: mapping key graphics abstractions to GRAMPS 
abstractions efficiently requires a knowledgable graphics programmer
- Coming up with the right graph is hard (setting packet sizes, queue sizes has 

some machine dependence, some key optimizations are global)



Graphics abstractions today
▪ Real-time graphics pipeline still hanging in there (Direct3D 11 / OpenGL 4)

▪ But lots of algorithm development in OpenCL/Direct3D compute shader/CUDA

- Good: makes GPU compute power accessible. Triggering re-evaluation of 
best practices in !eld

- Bad: community shifting too-far toward only thinking about current GPU-
style data-parallelism

▪ CPU+GPU fusion will likely trigger emergence of alternative high-level 
frameworks for niches in interactive graphics

- Example: NVIDIA Optix: new framework for ray tracing

- Application provides key kernels, Optix compiler/runtimes schedules

- Built on CUDA


