Lecture 18: **Light-Field Cameras** (Plenoptic Cameras)

Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Continuing theme: computational photography

- **Cameras capture light, extensive processing produces desired image**
- **Today:**
 - Capturing light fields (not just photographs) with a handheld camera
 - Implications for photography

Recall: light-field

Light field is a 4D function (represents light in free space: no occlusion)

Two-plane parameterization:

Light ray described by connecting point on (u,v) plane with point on (s,t) plane

More general: plenoptic function (Adelson and Bergen 1991)

$$P = P(x, y, \lambda, t, V_x, V_y, V_z)$$

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

[Image credit: Levoy and Hanrahan 96]

Light field inside a camera

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Decrease aperture size

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Defocus

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Defocus

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Stanford Camera Array

640 x 480 tightly synchronized, repositionable cameras

Custom processing board per camera

Tethered to PCs for additional processing/storage

Wilburn et al. 2005

Captured light field

Synthetic aperture

Simulate image formation by virtual camera with large aperture Shift and add images

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Wilburn et al. 2005

Refocused synthetic aperture image

Plenoptic camera

Adelson and Wang, 1992

Measure plenoptic function for single lens stereo application

Handheld light field camera

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Ng et al. 2005

Each sensor pixel records a beam of light Id plane of focus Ray space plot

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

U

Pixel 1

X

Captured light field

16 MP sensor 296 x 296 micolens array 12 x 12 pixels per microlens

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Ray space plot

Sub-aperture image

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sub-aperture images

Each image displays light incident on sensor from a small region of aperture

Note slight shift in perspective

(Z1) (Z2) Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Image: Ng et al. 2006

Digital refocusing

Digital refocusing

Reparameterization

Refocused photograph

Integrate all light arriving at point (x',y') on F' plane

$$E_{(\alpha \cdot F)}(x',y') = \frac{1}{\alpha^2 F^2} \int \int L_F \left(u(1-1/\alpha) + x'/\alpha, v(1-1/\alpha) + y'/\alpha, u, v \right) \, du \, dv$$

$$E_{(\alpha \cdot F)}(x',y') = \frac{1}{\alpha^2 F^2} \iint L_F^{(u,v)} \left(u(1-1/\alpha) + x'/\alpha, v(1-1/\alpha) + y'/\alpha \right) \, du \, dv$$

Sum of shifted, scaled sub-aperture images

Shift image by ($u(1-1/\alpha), v(1-1/\alpha)$)

Define L_F^(u,v) **to be sub-aperture image from lens region (u,v)**

Scale image by α (can ignore, invariant of lens position)

Video

Potential advantages of light-field cameras (For traditional photography)

- **Remove (or significantly simplify) auto-focus**
 - **Diminished shutter lag**
- **Better low light shooting**
 - Shoot with aperture wide open (traditional camera has shallow depth of field = high possibility of misfocus)
 - Can digitally refocus after the shot
 - Can digitally extend depth of field
- New lens form factors, capabilities
 - **Correct for aberrations digitally**

Cool new applications

- **Interactive pictures**
 - Post shot refocusing
 - Parallax
- Stereo (3D!)
- **Extended depth of field**

Lytro consumer light field camera

11 Megapixel ("Megaray") camera F/2 8x zoom lens

Other computational cameras

Pelican Imaging

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Raytrix Plenoptic Camera

Trends

- No free lunch: sense directional information at cost of spatial resolution
 - Ng's original prototype: 16 MP sensor, 300x300 images
- Light field cameras will make use of increasing sensor pixel densities
 - More directional resolution = increased refocusing capability
 - More spatial resolution at fixed directional resolution
 - Few reasons to make larger resolution sensors for traditional cameras today
- **High resolution cameras pose challenges!**
 - **Computation challenges**
 - **Storage challenges**
 - **Transfer challenges**

Sense - process - communicate

Where to perform computation? What representation to transmit? Full light field? Single image?

Future consumer light field camera ~ 50-100 MP

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Cloud Storage/ Processing

Summary

Light field photography

- From camera user's perspective, very much like traditional photography
- Capture light field in a single exposure
- Perform (large amounts of) computation to compute final image

Happy Thanksgiving! Take some great pictures!