
Heterogeneous Client Programming
Graphics & OpenCL

(with the luxury of hindsight)

David Blythe

Intel

Overview

• Blythe Intro

• Definitions

• Short history of graphics parallel programming

• Critique of GPGPU

• Future

2

I like to think about “global architecture”

Microsoft Windows Graphics Stack circa 2007 (source: Blythe)

3

Think about: Top Down vs. Bottom Up Design

• Top down -> portable,usable abstractions with
implementation latitude

– E.g., in-order pipeline with out-of-order implementation

• Bottom Up -> abstractions that reflect hw
implementation/architecture choices

– NUMA, non-coherent caches

– VGA register interface is not a good abstraction
• VGA compatibility still haunts the PC graphics industry

4

Market Segmentation

• Lots of ways to slice the pie
– Data Center

• HPC, Cloud, ….

– Workstation

– Client
• Desktop

• Laptop/Notebook

• Netbook/Slate

• Ultramobile (handheld)

– Embedded
• Automotive, Point of Sale, …

5

Client characteristics

• Single socket (or socket + I/O devices)
– Long term everything is SoC

– Don’t sweat over multi-socket, clusters, …

• Large volume of non-specialist programmers
– einstein, elvis, mort persona space

– cf. HPC addresses complexity problems by including application
engineer with the machine

• End customer cares about the final experience
– 100’s of millions of end customers

– most of the interesting experiences involve pixels

=> experiences need to be easy-ish to produce

6

GPU Success Story

• Visual experiences are compelling
– High demand for more sophisticated experiences => aggressive

evolution

• Successful API abstractions
– “3D pipeline”

– Portable, stable, easy-ish to use, …

– “linear” evolution of APIs (evolution vs. revolution)

• Happy coincidence
– Most successful parallel programming model (to date)

• Metrics: # programmers, # devices, ….

– Not something that was carefully planned out 

7

8

Parallel Programming & Graphics

9

Multi-processor mainframes/mincomputers/workstations – e.g.,
Raytracing

1980s

Custom VLSI (Silicon Graphics, …)
Pipelined parallelism, e.g., geometry engine
Parallel pipelines (cf. sort first, middle, last)

1980s

SIMD/tiny-vector processing for vertices/pixels
Commodity parts & ASICs

1990s

Developer-exposed programmability (shaders) 2000-2006

GPGPU
Generalization of shader capabilities (flow control, integers, ld/st, …)

2007+

Heterogeneous programming 2011+

Select GPU Evolution details

• Why is/was the pipeline the way it was

• What changed

+ free editorial commentary

10

Mid-1990s Pipeline Characteristics

• Async pipeline, no/minimal read back

– Fire & forget (result goes to display)

– Allows deep pipeline, buffering, overlapped CPU execution, “add-in” card model

• Non-CPU accessible framebuffer, textures

– Allows replication, data layout transforms, …

• In-order pipeline

– Implementations can go temporarily out-of-order

• Immutable, non-CPU accessible display lists

– Allowed hw-specific implementations, minimal book keeping

• CPU mutable geometry data (vertices, vertex attributes)

– Caused implementations to do nasty hacks to allow caching

• Abstraction decoupled from implementation:

– SW API/driver model that supports multiple implementations (simultaneously) => Rich ecosystem

– Mixture of fixed-function and (unexposed) programmable elements

11

Changes to 1990s Pipeline

• Async pipeline, no/minimal read back

– Fire & forget (result goes to display)

– Allows deep pipeline, buffering, overlapped CPU execution, “add-in” card model

– Major tension point (on-die integration?)

• Non-CPU accessible framebuffer, textures

– Allows replication, data layout transforms, …

– Restriction replaced with mine-yours access (release consistency)

• In-order pipeline

– Implementations can go temporarily out-of-order

• Immutable, non-CPU accessible display lists

– Allowed hw-specific implementations, minimal book keeping

– Concept added to DX11, removed from OpenGL ES

• CPU mutable geometry data (vertices, vertex attributes)

– Caused implementations to do nasty hacks to allow caching

– Replaced with mine-yours access (and the ever-popular NO_OVERWRITE)

• Abstraction decoupled from implementation:

– SW API/driver model that supports multiple implementations (simultaneously) => Rich ecosystem

– Mixture of fixed-function and (unexposed) programmable elements
12

Other 1990s pipeline badness

• Slow pipeline state changes (texture change)
=> batching added to the vernacular
– Batching affects application structure adversely
– Add “instancing” to turn state change into an “indexing problem”

• Every problem can be solved by adding a level of indirection

• State machine model too unwieldy (increased flexibility)
– For programmer:

• “Register combiners” for multi-texture composition
• Straw that broke the camels back?
=> shaders

– For pipeline implementer:
• State updates too fine-grain
=> refactor state into “state objects”

• Too many optional features (hard to write portable programs)

=> remove optional features 13

Mid-2000s (shader) characteristics

• Separate specialized/typed memories

– Constant buffers, scratch, buffers, textures, render targets

– Optimization of cache structures (read only, uniform access, …)

• Controlled “side effects” to memory (mid-pipe stream out, pixel writes)

– Allow replay-based context switching, vertex shader caching, …

• No simultaneous read/write access to a resource

– E.g., read texture & write to it as render target

– Determinism, implementation optimizations

• No scatter (writes go to pixel location determined by rasterization, or stream out)

– Implementation optimizations, performance

• No cross-item (vertex, pixel) communication

– Scheduling optimizations, simplicity

• No atomic ops, sync ops

– Performance 

14

Changes to Mid-2000s pipeline)

• Separate specialized/typed memories
– Constant buffers, scratch, buffers, textures, render targets
– Optimization of cache structures (read only, uniform access, …)
– Remove: ????

• Controlled “side effects” to memory (mid-pipe stream out, pixel writes)
– Allow replay-based context switching, vertex shader caching, …
– R/M/W everywhere ????

• No simultaneous read/write access to a resource
– E.g., read texture & write to it as render target
– Determinism, implementation optimizations
– Remove???? - determinism is so 2000s

• No scatter (writes go to pixel location determined by rasterization, or stream out)
– Implementation optimizations, performance
– Add scatter (add load/store)

• No cross-item (vertex, pixel) communication
– Scheduling optimizations, simplicity
– R/M/W to “shared local memory” and “global memory”

• No atomic ops, sync ops
– Performance 
– Add atomics, barriers (fences too)

 15

More shader-pipeline badness

• JIT compilation model
– Computationally expensive to compile from source
– Difficult to build a robust caching system

• cf. .net “gac”
• Increase complexity with upgradeable/removable GPUs

• Lack of standardized compiler (front ends)
– Compilers are hard (front ends too)

• Not really that many C/C++ compilers, fewer front ends

– Poor developer experience with inconsistent
implementations

=> Microsoft HLSL produces “standard” intermediate
representation

16

Idea

• Hmmm, maybe we could apply this graphics
programming model to other things

or

• When all you have is a GPU, everything looks like
a pixel

=> enter OpenCL (and DirectCompute) as
“Compute” APIs

17

“Compute” API Design

What parts to keep, what parts to “improve”?

• Remove graphics concepts
– Rasterizing a primitive to launch work

– Vertices, primitives, pixels, …

– Complex 3D pipeline

– Graphics API interop?

• Keep
– Shader/kernel concept

– 1D,2D,3D inputs, outputs to memory

• Rename
– Draw*-> NDRange

– Pixel -> Work Item

– Texture -> Image

• Add
– Shared local memory

– Atomic operations, barriers

– Events

– Multi-device contexts (e.g., CPU+GPU
devices)

– Lots of implementation characteristics to
query

– Work item, work group IDs

18

OpenCL Execution Model

19

OpenCL Execution Model (source: OpenCL 1.2 spec)

OpenCL Conceptual Device Architecture

20

OpenCL Conceptual Device Architecture (source: OpenCL 1.2 spec)

Local Memory (LM)

• Allow multiple SIMD elements (work items) to
cooperate on a data structure
– Efficient gather & scatter to scratchpad

• Efficiency requires compromise
– Not all cores can share a single LM (scalability)

• Why?
– How many disjoint memory accesses/clock?

– Most memory systems are cache-line oriented

– How many distinct cache lines reads/clock?

21

Ripple Effects of LM

• Exposed to application programmer:
– compute unit, work group, work group size
– queries added to API

• Need to inspect kernel to determine WG size

• Implementation constraint
– WG and LM are scheduled together
– Gang scheduling

• Q: when should a programmer use LM versus global

memory?
– What if there is a local cache?
– What about structure-of-array vs. array-of-structure data

layout?

22

Adding a local cache

23

Local R/W
Cache

Local R/W
Cache

Atomics & Barriers

• What could go wrong?

– How are atomics implemented?

• Local vs. global memory

• Implemented in core or as remote (memory-side ops)

– If a programmer cares about performance:

• They will match algorithm to the implementation
– Not unique to compute, happens for graphics too

– How much parallelism is really achieved?

24

The “CPU” Device

• Lets allow OpenCL kernels to run on CPUs

– Seems like a good idea, esp. if no GPU present

• But, …

– CPU has different characteristics

• Temptation to convert async model to sync model

– E.g., sync kernel execution, sync callbacks, …

• Scatter/gather support & local memory?

– Write algorithms to match implementation

25

Multi-Device Context

• E.g., allow CPU and GPU device to share
buffers, images, programs,

• Does it really solve a problem?

– What if images have different tiling transforms

• Need to convert back/forth for CPU/GPU access

• Should a multi-device context with 2 different
GPU manufacturers work?

26

Does OpenCL Provide Enough
Abstraction?

27

Intel, nVidia, AMD SIMD execution models (source: realworldtech.com)

Future Enhancements (OpenCL 2.0)

• Tasking

• Fixed function integration/exposure

• Load sharing

• Exposed intermediate language

28

Tasking

• Multicore CPU programmers adopting tasking systems (task-
oriented parallelism)
– Boost, TBB, ConcRT, ….

– Break work into small tasks and let task system schedule/load balance

• Put it on the GPU too?
– OpenCL 1.0 has degenerate “task”

– 1 work item NDRange

• Enhance this with better syntax

AND

• Allow a kernel to submit new work

29

Tasking Complexities

• What is granularity of task?
• How does a task map to a hw-thread & core

– E.g., task runs at granularity of 1 hw-thread

• How does task scheduling interact with “gang
scheduling” threads in a work group?
– Do tasks interfere with work groups

• How should task spawning work?
– Spawn general NDRanges, tasks?
– Does it need hw scheduling/spawning support

• Using a GPU core to execute scheduling code seems inefficient
• Round trip through CPU/driver?

– Need to analyze real workloads to answer these questions

30

Fixed-Function Integration/Exposure

• Fixed-function for power efficiency
– Use for “well understood” primitives
– Already include in kernel language as intrinsic function

• E.g., texture sampler

• What if “work item granularity” isn’t right?
– E.g., operate on a block of pixels (input n x m, output n x m)
– Change effective work group size with conditionals on work item IDs
– OR integrate into task framework

• What about operations that aren’t suitable for invoking from a
kernel?
– Very coarse grain, don’t fit into kernel abstraction ….
– Could put in a different API and do API interop
– OR expose as “predefined” kernels

31

Exposed Intermediate Language (IL)

• Separate the front end compiler/language
evolution from the execution engine
– E.g., support C, C++, Haskell, …

– cf. ptex, FSAIL, …

• How low to go?
– What problem is being solved (requirements)?

• A way to avoid shipping source code with app?

• A way to avoid expensive JIT?

• A more stable/general code generation target?

• A portable version of one or more of the above?

32

Load Sharing

• Q: Is there an opportunity to use both CPU and GPU
devices simultaneously?

• A: It depends
– Is there sufficient power/thermal headroom for both?
– Trend for low power devices, doesn’t look promising

• Need to distinguish homogeneous and heterogeneous load

sharing
– E.g., data parallel vs. single thread/latency sensitive code
– Heterogeneous load sharing seems pretty interesting
– Don’t necessary run in parallel – use best processor for “task”
– Do OpenCL abstractions help for the whole hetero workload?

33

Summary

• GPUs have come a long way

• Compute hasn’t really proven itself
– At least not on client

• Real challenges around portable abstractions

• Programming model is awkward
– Abstractions, lack of language unification

• Lots of additions being proposed
– Not clear we are building on the right foundation

=> Lots of exploration left to do

34

