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Cerebellar cortex: its simulation and the relevance of 
Marr's theory 
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SUMMARY 

Marr's theory of the cerebellar cortex as an  associative learning device is one of the best examples of a 
theory that directly relates the function o f a  neural system to its neural structure. However, although he 
assigned a precise function to each of the identified cell types of the cerebellar cortex, many of the crucial 
aspects of the implementation of his theory remained unspecified. We attempted to resolve these 
difficulties by constructing a computer simulation which contained a direct representation of the 
13000 mossy fibres and the 200 000 granule cells associated with a single Purkinje cell of the cerebellar 
cortex, together with the supporting Golgi, basket and stellate cells. In  this paper we present a detailed 
explanation of Marr's theory based upon an analogy between Marr's cerebellar model and an  abstract 
model called the associative net. Although some of' Marr's assumptions contravene neuroanatomical 
findings, we found that in general terms his conclusion that each Purkinje cell can learn to respond to a 
large number of different patterns of activity in the mossy fibres is substantially correct. However, we 
fbund that this system has a lower capacity and acts more stochastically than he envisaged. The  
biologically realistic simulated structure that we designed can be used to assess the computational 
capabilities of other network theories of the cerebellum. 

learning of motor coordination (Ito 1984; Gilman et
1.  INTRODUCTION 

al. 1981). 
The cerebellum is a part of the brain that is thought to Although the gross function of' the cerebellum is 
be involved in motor control. I t  has long been held, as understood, there is no consensus on how it achieves 
a result of lesion studies, that it is implicated in the this function. Its regular structure, which has under- 
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gone much detailed neuroanatomical investigation, 
provides many hints. There are four main schools of 
thought: the cerebellum either acts as a pattern 
associator (see, for example, Marr 1969; Albus 1971; 
Gilbert 1974), as a device for mapping between 
vectors (the tensor network theory of Pellionisz & 
LlinAs (1982), described also in Churchland ( 1986)), 
as a biological timing device (Braitenberg & Onesto 
1961), or as part of a circuit to implement classical 
conditioning (('l'hompson 1990). 

Most thcorics of the ccr~cbcllum have been formu- 
lated at  the algorithmic level; that is, mathcmatical 
rcjuations arc set up to simulate the action of the 
various cell types, without being directly subject to the 
constraints of the neuroanatomy. One such theory is 
due to the late David Marr (1969). He  proposcd that 
cach output cell of the ccrebellum controls an  clcmen- 
tal movement of' the body in response to the specific 
contexts in which the movement occurs; and that a 
process of associating these contexts with movement 
commarlds takes place. Although his proposcd impl(:- 
mentation was spelled out in much detail, it remains 
essentially a mathematical model and very few physi- 
cal constraints were used. He  did, however, suggest a 
neurobiological interpretation for the constituent cle- 
lnents of his theory, and he idcntified a particular type 
of synapse as constituting the modifiable element. The  
theory of Albus (1971) ascribes a similar role of 
pattern association to the cerebellum, but by means of 
a slightly different mechanism. However, to marly 
people these two theories arc identical, and they 
constitute the 'YIarr-Albus' thcory (Ito 1984) of the 
ccrebellum. 

Given that the cerebellar cortex has the most 
regular anatomy of any brain region and that there is 
a wealth of structural information available, we 
decided that it would be possible to construct an  
accurate full-scale modcl of a small part of the 
ccrcbcllum that could be used to test the computa- 
tional validity of thcorics of the cerebellum. MTe 
focused on Marr's theory because we felt it to be 
computationally the most tractable. 

Our  goal was to construct a computer model of the 
cells and connections influcncing a single output ccll 
that would embody as much of the anatomical 
structure as possible. Besides being useful as a tool to 
investigate the feasibility and performance of Marr's 
theory, the simulated structure would be also useful as 
a model of the cerebellum in its own right that could 
be adapted to test other theories. 

'l'he project involved a number of steps. 

1. C:ollation and evaluation of current neuroana-
tomical data to establish the values of the parameters 
needed to construct the model. 

2. C:onstruction of a full-scale computer-simulated 
model of the basic cerebellar unit as identified by 
Marr. 'l'his unit comprises a population of some 13 000 
mossy fibres that make synapses with 200 000 granule 
cells which contact one Purkinje (output) cell, 
together with a smaller number of supporting cells 
(Golgi cells, and basket and stellate cells). 

3. Use of the simulated structure to test Marr's 

claims for his theory: that the cells of the cerebellum 
can interact in the way he outlined to efficiently 
associate input (mossy fibre) patterns with output 
(Purkinje cell) patterns, and particularly that cach 
output cell can lcarn to respond to approximately 200 
difr'erent contexts. Marr  recognized that simulation 
would constitute the most direct method of testing, 
but in his day it was impossible to simulate a full-size 
system. 

This paper makes three main contributions. 

1. Marr's own paper is not easy to read, and we 
provide what we consider to be a clear, step-by-step 
explanation of it. 

2. I t  describes how a computer simulation of part of 
the ccrcbcllum can be constructed. 'l'his may seem a 
straightforward task, but in reality it is still difficult to 
obtain values fbr all the key anatomical parameters. I t  
is also not always obvious how to generate, in the 
simulated model, the anatomical structure observed in 
real-life. 

3. Using our model of the cerebcllum, we were able 
to test Marr's theory by forcing his sometimes rathrr 
vague ideas to be integrated with the modelled 
neuroanatomy. In  the process of implementing the 
thcory, we idcntified several anomalies which we had 
to resolve, leading to changes in the basic model. 
Marr's estimate that each Purkinje ccll can lcarn to 
respond to 200 different contexts is fbund to be of tllc 
right order of' magnitude, even though some of the 
assumptiolls he used in obtaining that figure arc 
shown to be incorrect. 

The plan of the paper is as follows. I n  5 2, a brief 
survey of the anatomy of the cerebellum is given. 
Some associative memory theory is then described in 
9 3 and is used to explain Marr's ideas about the 
functioning of the cerebellum. In  5 4 the steps takcn to 
establish the parameters for the simulated modcl are 
given, together with a description of how it was 
constructed and the differences between it and Marr's 
original model. In 5 5 we describe the simulation tests 
we carried out. The  results are then discussed in $ 6. 

2 .  T H E  CEREBELLUM 

( a )  The function of the cerebellum 

'l'he cerebellum is a part of the brain that is 
involved in motor control. I t  is not essential to motor 
control, but it enables greater rapidity, smoothness, 
precision and complexity of movements. Animals and 
humans with damaged or destroyed cerebella are still 
able to perform movements, but these movements will 
be slow, inexact and uncoordinated (Gilman rt al. 
1981; Garlson 1977). 'l'he cerebellum seems to be 
responsible for the activation oflarge sets of sometimc:~ 
spatially distinct muscles in a quick, well-timed and 
synchronized sequence. Humans are born with no 
capacity to perform many complex actions such as 
walking, writing and speaking, but can acquire the 
ability to perform them after extended practice. This 
process of acquisition, or learning, is thought to take 
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Figurc 1 .  Cerebellar ncurons. Pu =Purkinje cell, Go= Golgi 
cell, Gr  =granule cell, Pa =parallel fibrc, St =stellatc ccll, 
Ba =basket cell, C1= climbing fibrc and Mo =mossy fibrc. 
From Llinks (1975). Copyright acknowlcdged to Scientific 
American Inc. 

place in the cerebellum. The cerebellum is also 
involved with movements that are even more auto-
matic such as the maintenance of stance and posture, 
and saccadic eye movements. 

An example of the kind of movement in which the 
cerebellum is involved is given in Carlson (1977): 

Tor examplc, if you hold your arm straight out in front 
of you, it is possible for you to movc it rapidly so that 
your hand dcscribes a circlc. Try this and movc your 
arm as rapidly as you can. You will notc that in doing 
so, you cugage not only the muscles of your arm, 
shoulder and ncck, but also those of your trunk and 
(especially if you stand) your legs. A phcnomenal 
numbcr of musclcs are callcd into action, and at 
precisely thc correct timc. Just considering thc arm 
movement alonc, various muscles must begin and end 
thcir contractions at  preciscly the corrcct time In ordcr 
to producc a smooth motion (aftcr all a singlc muscle 
cannot producc a circular motion at  the end of the 
arm) 

In  computational terms, the cerebellum can be seen 
as a device that relieves the cerebral cortex of the 
burden of conscious control of movements, freeing its 
computational capacity for other tasks. I t  also enables 
a more complex and coordinated control of the 
muscles than would be available with the cerebral 
cortex alone. 

Finally, it needs to be appreciated that the vast 
majority of complex movements that we are able to 
perform have only been acquired after years of 
practice and experience, and are not hard-wired. 
During this learning there is a gradual transformation 

Phil. Tr~ns .R.Soc. Lond. B (1992) 

from total conscious cerebral control to an  automatic 
unconscious execution of the movements involving the 
cerebellum. 

( b )  The structure of the cerebellum 

There are two sets of inputs to the cerebellum, 
through the mossy fibres and through the climbing 
fibres. The  mossy fibres are thought to relay informa- 
tion about the state of the body (positions of limbs, 
rotations of joints, resistances to rotations, etc.). The 
climbing fibres relay information from the inferior 
olive, and this information was thought by Marr  to be 
the product of higher-level processing in the cerebral 
cortex. A third type of input to the cerebellum, 
through the aminergic fibres, has been discovered 
since Marr's time and so was uot iilcluded in his 
model. This third type of input may signal reward, 
and could be incorporated fairly easily into Marr's 
model (Gilbert 1974) although it will not be consi- 
dered here. 

The inhibitory Purkinje cells are the only output 
cells of the cerebellum. Each Purkinje cell axon affects 
the contraction of an  individual muscle, or group of 
muscles, in the body. The  Purkinje cells are contacted 
directly by the climbing fibres. They are also con-
tacted by the parallel fibres, the axons of the granule 
cells. The granule cells themselves are innervated by 
the mossy fibres, the second set of inputs to the 
cerebellum. 

Besides the granule cells, the cerebellum has three 
other types of interneuron. These are the Golgi cells, 
the basket cells and the stellate cells. 

An overview of the neuroanatomy follows, which 
should be read in conjunction with figures 1-7. 

(i) Purkinje cells 
Each Purkinje cell has a very flat and fan-like two- 

dimensional dendritic tree which intercepts and makes 
synapses with a large number (ca. 200 000) of parallel 
fibres (the axons of the granule cells (see figure 5 ) ) .  I t  
also receives synaptic contacts from several basket and 
stellate cells and a single climbing fibre. 

(ii) Climbing jbres 
Each Purkinje cell is innervated by just one climb- 

ing fibre which makes extensive contacts on the 
dendritic tree of that Purkinje cell (see figure 5). The 
contacts are sufficiently extensive that firing of 
the climbing fibre automatically induces firing of the 
Purkinje cell. A particular climbing fibre may inner- 
vate more than one Purkinje cell. 

(iii) Mossy Fibres 
The mossy fibres travel 'underneath' the cerebellar 

cortex proper, with each fibre sending out an  oc-
casional branch which 'ascends' to the cortex and then 
branches further to form a cluster of on average 
7.5 axon terminals. Each of these axon terminals has 
contacts with, on average, 20 granule cell dendrites so 
that each mossy fibre cluster of axon terminals 
contacts of the order of 150 granule cells. 
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-ebellar neurons. From Baron (1987). Copyright acknowledged to Lawrence Erlbaum Associates I 

Figure 3. Cerebellar neurons. Mo =mossy fibrc, Ba =basket 
ccll, St =stellate ccll, C1= climbing fibrc and Go=Golgi 
cell. From Eccles el al. (1967). Copyright acknowledged to 
Springer--Vcrlag. 

(iv) Granule cell5 
T h e  axons of the granule cells (the parallel fibres) 

arc aligned pcrperldicularly to the flat dendritic trees 
of the Purkinje cells. This arrangement of parallel 
fibres and Purkirijc cells provides the greatest possible 
number of parallel fibrc to Purkinje cell contacts per 
unit volume, and also has the effect that very few 
parallel fibres contact a n  individual Purkiri.je cell more 
than once. Each granule cell is contacted by on 
average 4.5 mossy fibrcs. 

(v) Gol<gz cells 
'They have two dcndritic systems, one which 

ascends to takc input from the parallel fibres and the 

Phil. Trans. R. Soc. I,ond. B (1992) 

other which dcsccrids to takc input from the mossy 
fibres. Their axons branch profbsely and make many 
inhibitory synaptic connections with granule cell 
dcridritcs (see figure 6) .  

(vi) Basket and stellate cells 

These two types of neuron lie at  different levels in 
the cerebellar cortex, and they make inhibitory cori- 
nections with different parts of'thc Purkirijc ccll. Both 
basket arid stellate cells are innervated by the same 
source (parallel fibres) arid send their axons to the 
same destination (Purkinje cells). They arc generally 
assumed to be functionally equivalent (see figure 7 ) .  

3. MARR'S THEORY OF THE CEREBELLUM 

I n  his 'Theory of ccrebcllar cortcx' Mar r  (1969) 
addressed the problem, described in 5 1, of how thc 
gross function of the cerebellum might be achieved by 
its neural machinery. 'This section presents a n  cxpla- 
nation of that theory (which is the first of the three 
contributions of our paper mentioned in $ 1). 

Mar r  suggested that the cercbcllum learns the 
urlcoriscious execution of movement through pattern 
association. T h e  patterns heirlg associated are those of 
proprioceptive information (state of the body) in the 
input axons, the mossy fibres, with those of motor 
control (activations ofmusclcs) in the output neurons, 
the Purkinje cells. During learning, the conscio~~s 
iristructions as to which outputs to associate with the 
giver1 mossy fibrc context arc carried along the 
climbing fibres to the appropriate Purkin.je cells. After 
learning, the contexts alone will activate the relevant 
output patterns, and the execution of movements can 
be carried out  automatically with no guidance from 
thc cerebral cortcx. 



Cerebellum: .simulation and Marr's theory 'I'. Tyrrell and D. Willshaw 243 

. . 
to remote Purkinje cells 

Figure 4. Schematic diagram of the arrangement of neurons in thc ccrcbellum. 

( a )  The associative net 

As a way of' introducing Marr's theory, we describe 
a more abstract formalization of associative memory, 
the associative net ( A N ) ,  also known variously as the 
associative matrix, correlation matrix, or  Willshaw 
Net (Willshaw et al. 1969). The  associative net is a 
simple computational device which acts as a pattern 
associator. Marr's whole theory can be viewed as an  
implementation of the associative net in the cerebel- 
lum (although he tiid not express it in these terms). 

There are a set of' input lines and a set of' output 
lines with a set of binary-valued modifiable synapsrs 
; ~ ttheir intersections. Each input and each output line 
can be set to either a high (excited) or a low state. 

Purkinje cell dendritic 
arborization 

I ! 
Purkinje cell body 

Purkinje cell axon 

4w climbing fibre 

'The AN is able to form links or associations between 
patterns in its input and patterns in its output. O n  
subsequent re-presentations of a stored input pattern, 
the net is able to make use of the associations stored to 
respond with the corresponding output pattern. The  
net therefore has two states: learning mode when it is 
forming associations, and discriminating mode when it 
is deciding whether or not to respond to an  input 
pattern, and, if' so, with what output pattern. 

I t  is able to carry out this function in the following 
way. 

I .  Initial state. Each input line has a synapse with 

ascending dendrites 

descending dendrites 

descending axons 

Figure 5. 	Intertwining of climbing fibre around extensive Figure 6. Structurc of the Golgi ccll. From Albus (1971). 
dcndritic arborization of Purkin,je cell. Copyright acknowledged to Elsevicr Science Publishers Ltd. 
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synapses have been turned C)N by other associations, 
no output lines will be active and so there will be no 
response from the system (see figure 8d) .  

( b )  The cerebellum as an associative net 

The following comparisons can be made between 
components of the associative net and the cells of the 
cerebellum: (i) the parallel fibres are the input lines of 
the AN; (ii) the Purkinje cells are the output lines; (iii) 
the synapses between parallel fibres and Purkinje cells 
are the synapses in the AN; (iv) the climbing fibres 
signal whether the net should be in learning or 
discriminating mode (i.e. they tell each output line 
(Purkinje cell) whether it should be active in the given 
input pattern); and (v) the basket and stellate cells 
perform the thresholding operation on the output 
lines, as explained below. 

T o  implement the thresholding operation biologi- 
cally, information about how many parallel fibres are 
activated and have modified synapses is required. This 
information is available to the output cell directly, 
through the depolarizing effect that they can be 
assumed to have on the Purkinje cell dendrites. 
However, the total number of activated parallel fibres, 
which is also required, is unknown. Marr  assumes that 
this information is provided by the basket and stellate 
cells which sample the parallel fibre activity and 
provide an  inhibitory signal which is proportional to 
the total excitation in the parallel fibres. There will be 
a competition between the excitation received through 
the parallel fibres with modified synapses and the. -
inhibition received through the basket and stellate 
cells. This competition will result in the Purkinje cell 
(output line) firing only when it is part of an  output 
pattern associated with the input pattern. The imple- 
mentation of this is described in 3 4. 

( c )  The improved associative net 

The analogy with the associative net, as developed 
so far, is not sufficient to explain the whole anatomy of 
the cerebellar cortex (as described in S, 2b). The theory 
still needs to account for the existence of the granule 
cells (why do the mossy fibres not synapse directly 
onto the Purkinje cells, instead of indirectly via the 
granule cells?), the complex nature of the connections 
between the mossy fibres and the granule cells, and 
the existence of the Golgi cells. As will be explained 
below, these provide the machinery for solving three 
specific problems in the associative net scheme. 

I. Saturation. The major problem is that the capa- 
city is severely limited. As more and more associations 
are made, more and more of the synapses become 
modified. As the proportion of modified synapses 
increases then the probability of the net making 
incorrect responses to unlearned input patterns (i.e. 
producing false positives) also increases. This pheno- 
menon is known as saturation (see figure 9). Satu-
ration imposes a limit on the capacity of the network. 
As more associations are learned, the performance of 
the system gradually degrades. 

I'hil. 	 Trans. R. Sac. Land. B (1992) 

(a) 	 I4 I312 I1 

1 	 0 0 1 0  

N 	 0 1 0 1  


1 0 0 0 
u 

; 
T 1 0 1 0  


0 1 1 1  


0 0 0 1  


N 1 1 0 0  


0 0 1 0 

S 

0 0 1 1 0 0 0 1  0 1  
1 0 1 0 0 0 1 0  0 2  
1 0 1 0 1 0 1 0  0 3  
0 1 1 0 0 0 1 0  0 4  

OUTPUTLINES 

threshold = 39IIIIIII 
0 0 1 0 0 0 1 0  

OUTPUT LINES 
Figure 9. Saturation in the associative net: (a) turning on 
more synapses with more associations; (b) two false positives 
when presenting an unlearned pattern. 

2. Subsets. A problem with the associative net as 
applied to this case is that it responds to subsets of 
learned contexts as well as to the learned contexts 
themselves (see figure 10). Although in many other 
cases this phenomenon is a desirable property of 
associative memories, it is our feeling that for this task 
it is better to construct the net so that it only responds 
to a subset if that subset has been learned explicitly. 
For example, if the cerebellum had learned an  
association between mossy fibres signalling the three 
states 'mouth open', 'hand holding cup', and 'hand 
near mouth' and a Purkinje cell contributing to the 
action 'turn hand to pour contents of cup into mouth' 
then it would be undesirable to trigger the response 
for a subset of the mossy fibre pattern (e.g. just 'mouth 
open' and 'hand holding cup' alone). 

3. Separating .rimilar patterns with biological thresholding. 
The anatomy is not so precise and exact that each 
basket or stellate cell makes one, and only one, contact 
with each parallel fibre, but rather each cell has 
sparsely distributed sets of dendrites which can only 
sample the activity in the parallel fibres (see figure 7) .  
These cells therefore cannot provide a n  exact measure 
of the input activity. T o  make certain that a Purkinje 
cell responds to all learned patterns it is necessary to 
reduce the threshold on the number of modified 
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threshold = 2i i i i i i i  
0 0 1 1 0 0 0 1  

OUTPUT LINES 

Figure 10 Kc~pondlng to subset in the associative net. 

synapses on activated input lincs that must be 
exceeded fbr a Purkinje cell to fire. 'l'his produces a 
problem of conhsing similar input contexts. Since 
slightly lower thresholds arc required to accept all 
lcarncd contcxts, it will become more likely that some 
unlearned contexts which arc very similar to lcarncd 
contcxts will be recognized as well. 

How7 can these problcms be o\.ercome; or a t  least their 
cfl'ccts be reduced? 1'0solve the first problem, the 
proportion of the input ncurons that arc excited per 
pattern needs to be reduced. T o  achieve this reduction 
it is obviously not sensible to just turn off the activity 
in somc of the input lincs since then different pattcrns 
would become identical. A better idea is to transform 
the input into a much largcr set ofneurons. A similar 
number of neurons in the larger set can be excited 
(preserving information and therefore the ability to 
discriminate between pattcrns), while a t  the same 
time a smaller proportion of'the input neurons will be 
excited in the largcr set (thus turning on a smaller 
proportion of the synapses with cach association and 
thereby increasing the capacity of the net). This 
scheme is shown in figure 11, with the method fbr 
deciding the mapping between excited first layer 
ncurons and cxcitcd second layer ncurons left at 
present as a black box. 

'This transformation of inputs into a much largcr set 
will hclp with the second and third problcms if' it has 

0 0 1 1 0 0 0 1  

OUTPUT LINES 
1:ignre 1 1 .  Expanding the input of the assoriativc net into a 
larger size pattern, but with a similar nurnbcr of excited 
ncurons. 

the following properties: (i) given that pattern A in 
the first input layer produces pattern B in the second 
layer, a subset of A must not produce a subset of B; (ii) 
two similar first layer input patterns must be trans- 
formed into patterns in the second layer that are less 
similar. 

The  transformation therefore needs to be complex. 
Just repeating the first layer pattern several times over 
in the larger second layer pattern and thcn inhibiting 
somc lincs would not hclp greatly with subset recogni- 
tion and pattern separation. 

( d )  The cerebellum as  an improved associative net 

There is a need fbr an expansion of sufficient 
complexity of the original input pattern into a pattern 
in a largcr set of input lincs with a lower average 
excitation. I-Icrc this need is linked to the existence of 
the granule cells, the complicated mossy fibrc to 
granule cell connections and the Golgi cells. 

There arc approximately 13000 mossy fibres that 
contact the approximately 2 0 0 0 0 0  granule cells that 
thcn synapse with one particular Purkinje ccll (see 
$ 4a) .  l 'hus there arc about 15 times more granule 
cclls than mossy fibres for a particular Purkinjc ccll. 
'I'hc mossy fibre to granule cell connections arc shown 
schematically in figure and were discussed in $ 2b. 
Each granulc cclls is contacted by on average 
4.5 mossy fibres. 

Marr  assumed that cach mossy fibre to granule cell 
synapse is unmodifiable and has unitary weight. Since 
cach granulc cell is contacted by more than one mossy 
fibre, the fiaction of' granulc cclls receiving some 
activation (a,() will exceed the fi-action of' activated 
mossy fibres (a,). Wlarr proposed that the fraction as 
of active parallel fibres can be made less than a,,, by 
means of the inhibition supplied by the Golgi cclls. By 
providing inhibition in proportion to the level of 
granule cell activity that would result without inhibi- 
tion, they are able to transform mossy fibre patterns of 
widely difkrcnt levels of activity into granulc ccll 
pattcrns with roughly the same level. Marr suggested 
that: (i) the Golgi ccll descending dendrites, which arc 
contacted by the mossy fibrcs, provide Fist prediction 
of rapidly changing granulc ccll activity (the uninhi- 
bited granulc ccll activity would be proportional to 
the mossy fibre activity), and (ii) the Golgi cell 
ascending dendrites, which are contacted by the 
parallel fibrcs, provide more accurate estimates of 
the actual granule cell activity for fine-tuning of' the 
inhibition when the mossy fibrc input is more stable. 
The  assumed eff'cct of'Golgi ccll inhibition is shown in 
figure 12. 

Because cach granule cell is cxcitcd by 1-7 mossy 
fibres (i.e. each granulc ccll sarriplcs a subsrt or, as 
Marr called it, a codon, of the mossy fibres) and is also 
inhibited by Crolgi cells, thr  trarisfbrrriation bctwcen 
first and second layers is sufficiently c:omplcx to allow 
for rejection of subsets and pattern separation (as 
demonstrated in 5 5 ) .  Changing of a k w  mossy fibre 
inputs will aKcct the excitation of' many granule cells, 
and for many of' those it will make the difycrcnce as to 
whcthcr or not thcy survive thc Golgi ccll inhibition. 
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, • will have roughly the same lcvcl of activity (regardless 
of a , )  and the transformation is complex, the pattern 

-,l'@.-subset of A is transformed; (iii) pattern separation: 
) -,.• l • because the transformation is complex, the granule 

ccll pattcrns will be more separated than the mossy 
fibre patterns provided that a,  is less than a,. 

w - - -
. - a  l 0. 

m o r n  INHIBrnN-----------------------------------------------------.----
mINHIRTTION 

4. CONSTRUCTION OF THE SIMULATION 

Figure 12. Assumed activity in the granule cells with and 
without Golgi ccll inhibition. Larger circles correspond to 
higher excitation. 

I .  Saturatton. T o  leswn the effect of saturation, the 
fraction a, of granule cells active in any input pattern 
must be less than the fi-action a, fbr the rnossy fibres. 

2. Preservation of information, '1'0 ensure that the 
number of possible granule cell patterns be no less 
than the number of possible mossy fibre patterns, a, 
must be large enough to satisfy 

where N , ,  N, are the numbers of mossy fibres and 
granule cells innervating one Purkinje cell. 

3. Pattern separation. The parameter that is crucial in 
determining whether a n  output cell should fire is the 
ratio of the number of activated input lines onto 
modified synapses to the total number of activated 
input lines. Therefore an appropriate measure of the 
separation between two patterns is the number of 
fibres at which activity differs divided by the mean 
number of active fibres, called 0 here. For two 
patterns of length N in which the probability of a 
component having value 1 is a,  0 equals 2 (1  - a ) ,  a 
decreasing function of a. 'Therefore, to obtain 
increased pattern separation in the granule cell layer 
as compared to the mossy fibre layer, 

a ,< a,. 

Note that this constraint is equivalent to the condition 
fbr reducing the eff'ect of saturation. 

These two constraints provide upper and lower 
bounds on the value of a,?. 

T o  summarize, the action of the mossy fibre to 
granule cell transformation has certain computational 
advantages, which are bought a t  the cost of the more 
elaborate machinery required. In  terms of the three 
problems described in 5 3c,  these are: (i) saturation: 
having a lower level of activity in the transformed 
input patterns allows more associations to be stored 
reliably; (ii) subsets: because all transformed patterns 

'I'his scction presents the second of the three contribu-
tions of this paper mentioned in § 1, i.c. how7 ~ 7 e  
constructed an  anatomically realistic simulation of 
part of the cerebellar cortex. 

Owing to the large nurnbcr of cells in the ccrcbel-
lum, wc were restricted to modelling only a small 
scction of it: that which contains all the cells forming 
thc two pathways (mossy fibrc and climbing fibrc) to 
a single output (Purkinje) neuron. Showing that each 
output neuron can learn when to fire and when not to 
fire is sufficient to demonstrate that the network as a 
whole can learn to produce the correct output pat-
terns for the respective input patterns; that is, it can 
learn to associate patterns and recall the associations 
correctly. This follows the approach of Marr, who 
assumed that the basic unit of the cerebellum is a 
Purkinje cell together with all the cells contacting it. 
We give here details of how the model was con-
structed, and the results we obtained with it are 
discussed in 5 5. 

The  following items are required for a complete 
specification of the model ( I ippmann,  1987): (i) the 
net topology (i.e. the numbers of cells and the 
connections between them); (ii) the node character-
istics (i.e. the function of its input that each cell uses to 
determine its response); and (iii) the training or 
learning rules (i.e. the rules governing changes in the 
synaptic weights). 

( a )  Net topology 

Most of the work in constructing the simulation 
involved producing the correct connectivity between 
the cells. This is a complex process, and only a short 
description of how it was done can be given here. 

Although the cerebellum has a fairly regular struc-
ture compared with other parts of the brain, there is 
considerable variation in the distribution of dendrites, 
numbers of dendrites, lengths of axons, numbers of 
connections, etc. among cells of the same type. 
Nothing is known rigidly or exactly. This lack of 
certainty was represented in the model by incorporat-
ing randomness into the numbers of dendrites, the 
positions of dendrites around the cell body, and so on. 

Owing to the large number of' parameters in the 
simulation whose values are only sketchily known, 
exploration of all regions of the parameter space 
would have been impossible and so we decided to 
explore only the most fivourable part of parameter 
space. We looked at the different estimates of the 
anatomical measurements that have been proposed 
and chose those which were most likely to allow the 
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simulation to work. I t  should be stressed that much of 
the anatomical information we used is sketchy, and 
that in many cases we had to make what we felt were 
plausible assumptions. Because of these factors, the 
simulation could only give us results of the nature, 
'what we know of the anatomy of the cerebellum is not 
incompatible with the theory that . . .', rather than of 
the nature, 'the anatomy of the cerebellum can be 
proven to implement . . .'. 

Although the schematic diagram of cerebellar struc- 
ture in figure 4 attempts to portray the cerebellum in 
two dimensions, in reality the granule cell bodies, 
Golgi cell bodies, etc. are not arranged in lines, or 
even in planes, but rather are positioned in three- 
dimensional layers. One simplification we made was 
that when generating cells and forming connections 
between them, we replaced the layers that lie in three 
dimensions by planes in two dimensions (figure 13). 

As far as possible, we represented the function of 
each type of cell as a computation carried out by 
individual cells at the cellular level, rather than 
treating all the cells of one type as a whole. The 
exception was the sampling by Golgi cells and by 
basket or stellate cells 'outside' the model. The 
processes from cells in both these classes extend a long 
way outside the modelled area of the cerebellar cortex. 
T o  model these connections explicitly would have 
meant increasing the size of the simulation by a factor 
of 20 or so (i.e. to about 4 x lo6 granule cells). T o  
make the simulation tractable we modelled the effect 
of the 'external' mossy fibres and granule cells sam- 
pled by the Golgi and basket or stellate cells impli- 
citly. This introduced an element of arbitrariness into 
the simulation, in that we had to estimate how 
different the external and internal excitations would 
be, but this was unavoidable. We decided to use a 
maximum of 5% diference between the average 
excitations of internal and external cells. 

The  model was built up by generating granule cells 
in a layer beneath the Purkinje cell, giving their axons 
(the parallel fibres) random lengths, and then retain- 
ing only those which were long enough to reach to the 
Purkinje cell. The granule cells that remained were 
each given a random number of dendritic termina- 
tions positioned randomly around the cell body. A 
layer of mossy fibres (all those that might contact the 
relevant granule cells) was then generated. Each 

mossy fibre was given a random number of axon 
terminals arranged around the cluster centre, each 
terminal being a random distance away from the 
centre. The mossy fibre to granule cell connections 
were then formed by linking each granule cell dendri- 
tic termination to the closest mossy fibre axon termi- 
nal. Finally the Golgi cell bodies were randomly 
positioned in a separate layer. They were given two 
sets of dendritic terminations and one set of axon 
terminals positioned randomly around the cell bodies. 
These were then connected to the closest parallel 
fibres, mossy fibre terminals and granule cell dendrites 
respectively. 

(i) Purkinje cell 
The key parameters are the shape and dimensions 

of the dendritic tree, about which there is little 
disagreement (Eccles et al. 1967; Ito 1984). The  
dendritic tree is a flat structure with a width of 
250 pm (Eccles et al. 1967) which is oriented perpendi- 
cularly to the large number of parallel fibres crossing 
it. 

(ii) Granule cells 
The key parameters are: (i) the length of the 

parallel fibres traversing the Purkinje cells; (ii) the 
number of granule cells innervating one Purkinje cell; 
and (iii) the number and dimensions of the granule 
cell dendrites. 

One figure for the number of granule cells innervat- 
ing one Purkinje cell is 200000 (Eccles et al. 1967). 
Fox et al. ( 1967) give a similar figure of 120 000. Some 
estimates of parallel fibre lengths give a range from 
2000 pm to 3000 pm (Eccles et al. 1967). Albus (197 1) 
estimatesz3000 pm. T o  obtain a plausible distribu- 
tion of granule cells, we carried out the following 
procedure. 

We calculated the average spacing between granule 
cells, which was that which would result if 200000 
granule cells were distributed regularly within a 
2500 pm x 250 pm rectangle (defined by the average 
length of a parallel fibre and the extent of the Purkinje 
cell dendritic tree assumed). This gave a value of 
1.77 pm for the spacing. 

T o  cater for the observed variation in parallel fibre 
length we then arranged granule cells at this spacing 
within a rectangle of 3000 pm x 250 pm (defined by 

plane onto which granule cell 
dendrites and mossy fibre plane of granule c e h  plane of Golgi c e h  
axon terminals are projected 

I I I 


plane of 

mossy fibres 


Figure 13. Assuming planes rather than layers in order to form connections easily. 
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the maximum length of a parallel fibre and the extent 
of the Purkinje cell dendritic tree assumed). 

Each of these granule cells was then given a parallel 
fibre with a length randomly chosen in the range 
2000-3000 pm, and those granule cells with a parallel 
fibre that did not reach the Purkinje cell were 
discarded. 

By this procedure, approximately 200 000 granule 
cells reach the Purkinje cell with a spread of parallel 
fibre lengths. Eccles et al. (1967) and Albus (1971) 
assumed that almost all of these parallel fibres synapse 
with the Purkinje cell. We made synaptic contacts 
between every parallel fibre arriving at the Purkinje 
cell. 

As well as putting out an axon, each granule cell 
puts out a number of short dendrites, claws, that 
contact the mossy fibres in a plane. There is some 
disagreement about the number and the length of the 
claws. We assume here that both quantities are 
randomly distributed. Following Marr, the number of 
claws is assumed to be between one and seven, with an 
average of 4.5 and the distance from the cell body to 
each claw is randomly chosen in the range 0-30 pm, 
and in a random direction. 

(iii) Mossy jibres 
The key parameters are: (i) the number of mossy 

fibres; and (ii) the number and distribution of mossy 
fibre axonal terminals in each cluster. 

Marr uses various observations about divergence 
and convergence at the mossy fibre to granule cell 
interchange to estimate that approximately 6000 
mossy fibres affect one Purkinje cell. He guesses that 
this number will be increased to 7000 by edge 
effects. We accounted for edge effects by assuming 
that these 6000 mossy fibres are found within the 
2500 pm x 250 pm rectangle, which gives a cell sepa- 
ration of 10.2 pm assuming uniform spacing. The 
mossy fibre terminals occur in clumps of some 20 
rosettes per mossy fibre, each on a stalk (Eccles et al. 
1967; Fox et al. 1967). Given that each axon terminal 
from one mossy fibre is on a stalk of length 0-120 pm, 
and the claw length is 0-30 pm, the area of space 
containing mossy fibres that might influence the 
granule cell population defined above (which were 
assumed to originate from an enlarged rectangle) then 
becomes enlarged by twice the stalk length and twice 
the claw length to a rectangle of dimensions 
3300 pm x 550 pm. The method of making contacts is 
now to place both granule cell claws and mossy fibre 
axon terminals in the same notional plane and join 
each claw to the closest axon terminal. Mossy fibres 
that make no contacts are then discarded. The effect 
of these two factors (increasing due to edge effects and 
discarding those making no contacts) is to increase the 
size of the mossy fibre population from 6000 to 13 000. 

(iv) 	The basket and stellate cells 
The cells assumed by Marr to set Purkinje cell 

thresholds are the off-beam cells (Eccles et al. 1967), 
that sample activity remotely. Because of the long- 
ranging dendrites of these off-beam basket and stellate 
cells, they sample cells that are too distant for them to 
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be modelled explicitly. Given that PI is the average 
activity of the parallel fibres internal to the model, 
the external activity PE is calculated as 
PE=PIx (0.95+ E ) ,  where c is the average of two 
random numbers in the range 0.0-0.10. 

(v) Golgi cells 
Marr's specification of the parameters for the Golgi 

cells is the most vague and disputable part of his 
theory. 

The key parameters are: (i) the number and 
distribution of the Golgi cells and their morphology; 
(ii) the number and distribution of the contacts made 
by the ascending and descending dendritic trees; and 
(iii) the number and distribution of the contacts made 
by the axonal system. 

(vi) The number and distribution of the Golgi cells and their 
mor,bhology 

Marr took his interpretation of the Golgi cell's 
structure from Eccles et al. (1967), and so assumed 
that the Golgi cells partition up the cerebellar cortex 
(in the plane of the parallel fibres) into small, 
contiguous, non-overlapping, tessellated, hexagonal 
prisms (see figure 14). However, this account is not 
only biologically implausible but inconsistent. Eccles et 
al. (1967) took the diameter of the non-overlapping 
hexagons to be 700 pm, but to be compatible with the 
widely accepted figure of one Golgi cell per nine to ten 
Purkinje cells, this figure would have to be nearer 
200 pm. 

In his related theory, Albus (197 1) assumed Golgi 
cells with roughly circular dendritic trees, with an 
average overlap of nine Golgi cells at any point on the 
cortex, and a diameter of z 600 pm (see figure 15). As 
well as being more biologically plausible, the figures 
used are consistent with one Golgi cell per nine to ten 
Purkinje cells. 

We calculated the diameter of the Golgi cell 
dendritic tree as follows. Looking from above, the 
average area of cortex occupied by a Purkinje cell is 

Figure 14. Marr's interpretation of the arrangement of Golgi 
cells. From Eccles et  al. (1967). Copyright acknowledged to 
Springer-Verlag. 
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Golgi arborization 

Figurc 15. Albus's interpretation of the arrangcment of 
Golgi cclls. From Alhus (1967). Copyright ack~lowlcdged to 
Llsrvicr Scicncc l'ublishers 1,tcl. 

(250+ 50) pm x 9 pm, or 2700 pm2, where 9 pm is the 
perpendicular distance from one Purkinje cell dendri- 
tic sheet to another, and 50 pm is the spacing between 
the ends of two Purkinje dendritic spreads (Eccles el al. 
1967). One  Golgi cell per ten Purkirlje cells thus 
requires one Golgi cell per 27000 pm2, and so, 
assuming that on average nine Golgi cells overlap 
each point in the cortex, the area covered by each 
Golgi cell is 243000 pm? This gives a diameter of 
approximately 550 pm. The  positions of the Golgi cells 
were generated by creating grid points 165 pm apart  
(so as to provide an  average of one Golgi cell per nine 
to ten Purkin,je cells) and then displacing the cells 
fk-om the grid positions by a random amount of up  to 
50 pm. The  dendritic and axonal terminations were 
then each placed a t  a random direction from the cell 
body of between 0 and 275 pm (corresponding to a 
diameter of 550 pm).  

(vii) C'ontact, on the de~cendzng dendrztzc, tree 
Marr  assumes that each Golgi cell has a 10:" 

chdnce of sampling each mossy fibre beneath it with a t  
least one of its dendrites; i.e. each mossy fibre has a 

chance of not being "lis We 
calculated the total number of mossy fibre axon 
terminals within a circle of radius 275 pm to be 
z 17 000. The  average number of axon terminals per 
cluster is taken as 3.751. 

?'he number gdd of Golgi cell descending dendrites 
needed so that each mossy fibre has a 10% chance of 
gctting sampled at least once is then given by the 
equation 

17 000 
gdd % ---- ln(0.90) % 500

3.75 

'This figure is of the samc order of magnitude as the 
figure of 200 descending dendrites quoted by Pellio- 

t '1 '0  allow Ibr- the fitct t l~a t  the mossy fibre rlustrrs are  qui t r  wide, it 
is :rssumcd ttiar on avcragr only I~a l f  of'thc axon t r rn~ i r~a l s  of'vat.li 
~ l u s t r r  will iitll in thc rangc oS any particular Golgi crll. 

rlisz & Szentagothai ( I to  1984,). In the simulation, 
each Golgi cell was given between 400 and 600 
descending derldritic terminations a t  distarlces ran-
domly distributed between 0 and 275 pm away fi-om 
the cell body. T'hese were then connected to the 
nearest mossy fibre axon terminal. 

(viii) O'ontacts made by the Golgi cell axon 

Albus assumes Golgi cells with 600 pm diameter 
axonal arborizations that inhibit 100000 granule cells. 
Marr,  assuming smaller size axonal arborizations, 
assumed that all the 4500 granule cells beneath a 
Golgi cell are inhibited. 

With a probabilistic distributiorl of axons, a vcry 
large number of axorls would be required for a high 
probability of inhibition of all the granule cells. We 
assumed the following. 

1. I'he Golgi cell axon terminations are distributed 
within a circle of radius equal to that of their dendritic 
trees. 'There arc 17 000 mossy fibre axon terminals 
(where the granule cell dendrites are contacted) 
within that area. 

2. Each Golgi cell axon termirlatiorl makes contact 
with one mossy fibre axon terminal, randomly chosen 
within the extent of the Golgi axonal tree. The  Golgi 
cell terminal inhibits all the granule cell dendrites 
which the mossy fibre terminal contacts. 

3. Eighty per cent of the granule cells beneath a 
particular Golgi cell are inhibited, via a t  least one of 
their four dendritesf, by that Golgi cell. 

'Fhe minimum value ga for the number of Golgi cell 
axorls is then given by the equation 

'This leads to 

I n  the simulation each Golgi cell was therefore 
constructed with between 6000 and 8000 distri-

buted randomly within 275 pm of the cell body. 
Pellionisz & Szentagothai ( I to  1984) estimated 
4800 axons, which is of the same order as our figurc.. 

(ix) Contacls on the ascending dendritic lree 
'This tree contacts the parallel fibres. Since the 

parallel fibres are much longer than the diamcter of  
the Golgi dendritic tree, its width rather than its area 
is relevant. If 200 000 parallel fibres intersect the 
dendritic tree of a Purkinje cell which is 250 pm wide, 
then 440 000 will intersect the ascending Golgi dendri- 
tic tree, which is 550 pm wide. 'I'he only data to 
suggest th(: rlumber ofascc:nding dendrites come from 
the various obsr.rvations that there are more ascending 
then descending dendrites. h 'e  assumed, in line with 
Marr,  that c:ach Golgi ccll samples approximatrly 
100/" of the parallel fibres passing through the dcndri- 

:	Although therc a r r  on a \ c r a s r  4.5 dcrldritcs p r r  grarlulc (cell, they 
arc  not very wirlr ranging arid hcrc wc hdve assumcd that ; r r l  

avrragv oS:rl,o~~t f i~u r  dcndritcs pcr gran111c cr11 \vill i;rll ir~sidc rlrr 
(h lg i  cell a r m .  
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tic trce, and each Golgi ccll was therefore given a 
random number of ascending dendrites, chosen from 
the range 35 000-53 000. The  parallel fibres that were 
contacted were chosen a t  random. 

This concludcs the description of how the static 
structure was gcnerated in the computer simulation. 
'The rest of this section describcs how the structure is 
used. 

( 6 )  Node characteristics 

All the synapses, except the modifiable ones 
between the parallel fibrcs and the Purkinje cell, arc 
assumed to have unitary wcights. 

(i) Golgi cells 
These are assumcd by Marr to make two estimates 

of the average excitation received by the granulc cells 
from the mossy fibres, which can be thought of as the 
number of cells that would fire in the absence of 
inhibition. Marr assumed that the higher of these two 
estimates is takcn to determine the amount of inhibi- 
tion to bc applied. We had to modify extensively his 
suggestions as to how such a schcmc might work. He 
had assumed onc-to-one Golgi to granulc cell conncc- 
tions within the smaller, hexagonal, non-ovcrlapping 
Golgi compartmcnts, which is biologically unrealistic. 
Our  proposal is as follows: the estimate obtained by 
the ascending system of Golgi cells is obtained directly 
by measuring the proportion of the parallel fibres that 
this cell contacts that are active. 'The estimate sup- 
plied by the descending system is obtained by mcasur- 
ing the proportion of the mossy fibres contacted that 
are active, and this estimate is then multiplied by a 
constant factor rcpresenting the mean number of 
dendrites per granule cell. Both values include an 
influence from 'external' sampling which could be up 
to 5% different from the internal estimate. 

The amount of inhibition supplied by a single Golgi 
cell is then calculated as 

wherc E is the larger of these two estimates of parallel 
fibre activity (in line with Marr's suggcstion) and fi 
and fiare two constants whose values are obtained 
cnipirically so as to give a good mapping between the 
mossy fibre excitation values and the final (inhibitcd) 
granule cell excitation values. 

(ii) Criteria for a good maj~fizy 
I t  is dcsirable to keep the average cxcitation of the 

granulc cells aftcr inhibition as low as possible so as to 
maximize thc capacity of the net. Marr suggested that 
the target excitation should be about 1%. However, 
the more a granule cell pattern is reduced by inhibi- 
tion, thc less information fk-om the original mossy 
pattern carries through and the more likely it is that 
two initially different granule cell patterns will get 
inhibited down to the same post-inhibitory granule 
cell pattern and so bc impossible to discriminate 
between. Also, a desirable mapping will map mossy 
fibre patterns with h i g h ~ r  than average excitation 
onto granule cell patterns with a similar higher than 
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average excitation so as to minimize the information 
lost; similarly for patterns with lower than average 
excitation. 

After some tests, we decided on an average target 
excitation of just over 1.0%. 'This figure gave the 
optimum balance between the factors of necding low 
excitations so as to increase the capacity and needing 
high excitations so as to avoid confusion of patterns. 

(iii) Granule cells 
These sum their excitatory inputs (from the mossy 

fibres) and inhibitory inputs (from the Golgi cells), 
and fire if the result is greater than zero. 

(iv) Purkirlje cells 
These sum their excitatory inputs (From the parallel 

fibres) and thcir inhibitory inputs (from the baskrt 
and stellate cells), and fire if the result is greater than 
zero. 

(v) Basket and stellate cells 
These are prcsumed to sum the cxcitation coming 

through thcir dendritic connections with parallcl 
fibres and then to scnd a proportionate inhibition to 
the Purkinje cell. 'l'he function computed by these 
cells is not modelled explicitly. I t  is assumed that to 
each Purkinje cell they furnish inhibition of magni- 
tude 

where P i s  the total excitatory input from the sampled 
parallel fibres (and so varies with diff'erent input 
pattcrns), Kns is a constant which is equal to the ratio 
of the number of parallcl fibres sampled by a basket or 
stellate cell to the number of parallel fibres sampled by 
a Purkinje cell, multiplied by the number of basket 
and stellate cells inhibiting a Purkinje ccll. f3 is a 
constant of value slightly less than 1.0, its value being 
obtained empirically, as explained below. In  this way, 
each Purkinje cell will rcceive an inhibition (summed 
over many basket and stellate cclls) which is just less 
than the total cxcitation in the parallel fibres. This 
will result in the Purkinjo cell only firing whcn the 
vast majority of excitcd parallel fibres have activatcd 
synapses. Adjusting the valuc off3 adjusts the acccpt- 
able difference from a lcarned pattern in ordcr to still 
rcspond to it. 

( c )  Rules for weight changes 
The  only synapses a t  which learning is assumed to 

occur arc those between the parallel fibrcs and the 
Purkinje cells (Marr 1969). These all have a weight of 
zero initially and then are increased to a weight of one 
when both the presynaptic (granule) and post synap- 
tic (Purkinje) cells are excited (Hebb 1949). 

5. SIMULATION RESULTS 

The  simulations that wcrc: carried out had three aims. 

1.  T o  establish the values of the paramcters that 
wcre not yet specified. Principally, these are the values 
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of fland f2, for determining the inhibition to be 
applied by the Golgi cells and that of f3,which is 
needed for setting the threshold on the Purkinje cells 
in discrimination mode. 

2. T o  see if the implementation of Marr's theory 
would work at all, and if so would work in the manner 
which we envisaged. In  particular, we wanted to test 
the extent to which recoding of the mossy fibre input 
into the granule cells, together with inhibition by the 
Golgi cells, would improve performance by increasing 
the capacity of the net while at the same time 
minimizing the recognition of subsets and similar 
patterns. 

3.  T o  determine, using simulations, the capacity of 
Marr's model (or at least the adaptation of it which 
was deemed necessary in the light of the anatomical 
constraints that he did not consider), with the perfor-
mance he calculated for the original 
model. 

( a ) Preliminaries 

In  all the tests described below, each mossy fibre 
pattern was presented to be learned more than once, 
to simulate the effect that differing amounts of 
external excitation can have on the inhibition sup- 
plied by the Golgi cells. Each mossy fibre pattern was 
presented to be learned nine times, with external 
excitations differing from the internal figures by 
-5.0%, -3.75%, -2.5%, - 1.250/,, 0.00/,, 
+ 1.250j,, 1-2.596, +3.75% and +5.0%. 

Marr suggested that between 0.3% and 30% of the 
mossy fibres may be active in any one event; we used a 
narrower range of between 2% and 20%. Therefore 
the term 'random mossy fibre pattern' below refers to 
a pattern in which the individual fibres are randomly 
turned on with a probability randomly chosen 
between 2 and 20%, which is kept constant for all the 
fibres of that pattern. 

The simulations were written in C and run on a 
Sun-4 workstation, rated at 12 MIPS and with 24 
Megabytes memory. Generation of the structure took 
50 h of cpu time. I t  took approximately 2 min of cpu 
time to perform the calculations for a single presen- 
tation of a mossy fibre pattern, in both storage and 
discrimination mode. The step that took the most 
computer time was the computation of the inhibition 
supplied by the Golgi cells. 

( b )  Mossy jibre to granule cell mapping 

The first tests look a t  the mapping from the mossy 
fibre pattern to the inhibited granule cell pattern to 
see how well the Golgi cells are able to regulate that 
mapping. 

(i) Golgi cell sampling of parallel jibre excitalion 
Figure 16 shows the accuracy of the Golgi cells in 

sampling the activity in the parallel fibres. The 
estimates are usually too high because the cells use the 
higher of the two estimates from their dendritic fields. 
Despite the effect of this error and also of the error 
from the sampling of external cells, it can be seen that 
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Figure 16, Golgi cell estimation of what the average activity 
.g of the granule cells would have been without inhibition by 
the Golgi cells, versus an  exact calculation of what it would 
have been. 

the Golgi cells still estimate the parallel fibre exci- 
tation to within 5%. 

(ii) Mossy jibre to granule cell mafling 
The values of the constants fiandf; in equation 5 ,  

which determine the amount of Golgi cell inhibition 
as a function of the estimated level of granule cell 
activity before inhibition, were determined empiri-
cally to be 2.25 and 0.60. Figure 17 shows the result of 
the Golgi inhibition. As can be seen, the average 
granule cell activity after inhibition is z 1.0% and 
there is a roughly monotonic relationship between 
granule cell activity a, and mossy fibre activity a,n. 
The slight 'saw-tooth' efTect is due to the fact that 
Marr assumes integer values in the granule cells, 
whereas the Golgi cell inhibition is necessarily ana-
logue. 

Note that for 13 000 mossy fibres and 200 000 paral-
lel fibres, the conditions in 5 3d give rise to the two 

am 

Figurc 17. Golgi ccll regulation of the granulc cell activity 
lcvcl (a,<).The  lowcr dotted line (circles) corrcsponds to the 
first condition of 3 3d, the upper dotted line (triangles) is the 
second condition of '$ 3d. 
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0 (GC difference1 GC activity) 

Figure 18. Variation in granule cell patterns from the same 
mossy fibre pattern (due to different Golgi cell inhibition). 
'l'he frequency measures how often two granule cell (cc) 
patterns with the relevant difference measure are generated 
from the same mossy fibre pattern. The difference measure is 
the number of granule cells at which activity differs divided 
by the mean number of active granule cells in the two 
patterns (see 5 3d). 

dotted lines in figure 17.  As can be seen, the 
relationship between us and a, is properly balanced 
between the two criteria. 

The variation in the granule cell patterns due to a 
varying external Golgi cell input (for the same mossy 
fibre pattern) is shown in figure 18. I t  is seen that 
about 50% of the granule cell patterns are less than 
3% different from each other, whereas about are 
less than 8% different. There was a variation of up to 
+ 5% in the external mossy fibre and granule cell 
excitations. 

In  5 3c  it was hypothesised that another property of 
the mossy fibre to granule cell complex connections 
would be that two similar mossy fibre patterns would 
produce two granule cell patterns which are less 
similar. Figure 19 shows that this does indeed happen. 

( c )  Basket and stellate sampling of the parallel 
jibre excitation 

These cells were only modelled implicitly and their 
behaviour is highly dependent on the assumed differ- 
ence between internal and external excitations (figure 
20). 

( d )  Discrimination mode 

Calculating the capacity of' the net involves two 
steps: (i) calculating the value of f3 (by fixing the 
acceptable error rate for recognition of learned con-
texts); and (ii) calculating the capacity of the net (by 
fixing the acceptable error rate for recognition of 
unlearned contexts). 

Both error rates are set to be 1% in accordance with 
the figure adopted by Marr. Thus lo/, of learned 
contexts are not responded to, and 1% of unlearned 
contexts are responded to. 

I n  the first step, the value of f3is found empirically 
by storing in the net 540 patterns (sets of the nine 
variants of 60 basic patterns) and then finding the 
highest value of f3for a 1% error rate. This yielded a 
value of f3=0.935. 

(i) Capacity 
Once the value of f3was set, the capacity of the net 

is then determined in the second step by finding how 
many contexts can be stored before the acceptable 
error rate of 1 % is exceeded for unlearned patterns. 
As figure 21 shows, the full net was found to have a 
capacity of between 60 and 70 contexts. After having 
learned 60 associations, 22.8% of the parallel fibre to 
Purkinje cell synapses had been modified. The  pur- 
pose in stating the capacity we found is not so much to 
give a realistic estimate of the capacity of the cerebel- 
lum as to show that each Purkinje cell can plausibly 
be expected to store many associations (i.e. that it is 
feasible that the Purkinje cell is the equivalent of an  
output line in an  associative net). 

Om (MF difference / MF activity) 

a (with inhibition) 
Figure 19. Expanding the difference between pairs of input g 

patterns as they pass from the mossy fibres (ME)  to the Figure 20. Basket and stellate cell estimation of the average 
granule cells (cc). 0, is seen to bc always greater than H,,. excitation of the granule cells (a,) versus the true value of a,. 
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number of contexts learnt 

Figure 2 1.  ( a )  Capacity of a net without granule cells and 
Golgi cells; ( b )  capacity of the whole net. Both capacities are 
determined by fixing the error rates due to both incorrect 
recognition of unlearned contexts, and incorrect rejection of 
learned contexts, at  lo/,. I t  can be seen that the whole net 
can learn many more associations then the simplified net. 

% of original neurons still active in subset 

Figure 22. Recognition of subsets of learned patterns. 
Percentage of subsets erroneously recognized versus the 
percentage of the original learned pattern remaining in the 
subset. 

(ii) Responding to subsets and discriminating between similar 
patterns 

In 5 3c it was hypothesized that one property of the 
mossy fibre to granule cell complex transformation 
would be to 'scramble' input patterns so that subsets 
of learned mossy fibre patterns were not automatically 
responded to. Figure 22 shows that subsets of learned 
patterns in which fewer than 70°., of the neurons 
originally active were still active hardly ever elicited a 
response. 

Figure 23 shows how many false positives (incorrect 
responses to unlearned patterns) occur when the input 
patterns are similar to already learned ones. The 
figure shown is the result of presentation of 1000 
patterns. 

In both tests, the results depend on how many 
synapses have been modified (how many associations 
have been learned) and also on the value of f3in 5 4b, 
which specifies the tolerance for patterns that are 
similar to learned ones. In  both cases, 60 associations 
had been learned and a value of 0.935 was used for f3. 

8 ,  for 

random patterns 

Bm (MF difference / MF activity) 

Figure 23. Recognition of patterns similar to ones already 
learned. Percentage of similar patterns erroneously recog- 
nized versus a measure of their difference from the learned 
pattern. The measure of difference (8,) is the number of 
mossy fibres a t  which activity differs divided by the mean 
number of active mossy fibres in the two patterns. The  bar 
shows the expected range of values of 8, for pairs of 
randomly chosen patterns with activity ranging from 0.02 

(iii) Comparisons with a simpler structure 
The most important advantage postulated for the 

mossy fibre to granule cell set of synaptic connections, 
together with the Golgi cell inhibition, is that of 
increasing the capacity of the net. T o  test this we 
compared the capacity of the full net of figure 4 with 
that of a comparable net but without granule and 
Golgi cells, so that mossy fibres synapse directly onto 
the Purkinje cells and the basket and stellate cells 
sample the mossy fibres. The second net is the 
biological equivalent of the standard associative net of 
figure 8. 

iis already described, the highest value of f3for the 
full net, that obtained a 17, error of omission, was 
0.935, resulting in a capacity of 60-70 contexts. 

For the simplified system, a lob  error rate for 
response to learned input patterns led to a value for f3 
of 0.92, and an identical error rate for response to 
unlearned input patterns led to a capacity of z 15 
contexts (see figure 2 1) .  

This demonstrates that the complex expansion from 
mossy fibres to granule cells, together with the 
subsequent inhibition by the Golgi cells, does increase 
the number of associations that can be stored and 
retrieved reliably by the network. This is mainly 
because the expansion to a larger set of granule cells 
allows more sparsely coded patterns. 

6.  DISCUSSION 

In the introduction we stated that this work consisted 
of three main parts: a concise but clear explanation of 
l'farr's theory of the cerebellum, a description of how 
to simulate the neural structure of the cerebellum, and 
some insights into Marr's theory gained by forcing it 
to be implemented in our simulation. In this discus- 
sion we summarize these three parts and then proceed 
to make a claim about the importance of Marr's ideas. 
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( a )  Explanation of Marr's theory 

(i) Functions o f  the different cells 
In  $ 3 we explained Marr's 'theory of cerebellar 

cortex' by means of a n  extended analogy with the 
associative net. The different cells in the cerebellum 
were compared with the following parts of the 
extended associative net: (i) mossy fibres: first layer 
input lines; (ii) granule cells: second layer input lines; 
(iii) Purkinje cells: output lines; (iv) climbing fibres: 
'teacher' lines;(v) basket and stellate cells: threshold 
setters; and (vi) Golgi cells: regulators of second layer 
input activity. 

It was also hypothesized in $ 3, and shown as 
reasonable in 4 5, that the existence of the Golgi and 
granule cells and the complex mossy fibre to granule 
cell connections can be explained by the need to 
improve the performance of the basic associative net 
in three ways: capacity, rejection of subsets, and 
rejection of similar patterns. 

(ii) General problems with Marr'r theory 

U p  to this point the only drawbacks to Marr's 
theory that we have discussed have arisen out of the 
problems we encountered in trying to map Marr's 
fairly mathematical model onto our simulated neuro- 
biology. I t  is worth mentioning here that there are 
other, more general, problems with his theory. 

1 .  Associations cannot be unlearned. Because the 
synapses in the model can only be turned on, associ- 
ations between input and output can never be over- 
riden. A situation-action link, once formed, must then 
remain in place for ever. 

2.  Binary synapses do not allow for a very refined 
sort of learning. Marr's theory presupposes that the 
type oflearning that we want from the cerebellum is a 
sort of 'photographic recognition', whereby an input 
pattern is only recognized if nearly all its constituent 
elements (analogous to 'pixels') are exactly the same 
as in the learned 'photo'. There is no possibility ofany 
learning in which certain portions of the input can be 
effectively ignored as not relevant, whereas others can 
be given greater importance if they are more signifi- 
cant in deciding whether the context should be 
recognized. 

T o  illustrate this concept, consider a Purkinje cell 
which is responsible for the control of a muscle that 
causes the arm to flex at  the elbow, and for which two 
parts of the input consist respectively of infhrmation 
about the degree of rotation of the elbow and 
information about the degree of flexion of the ankle (if 
two such inputs would indeed converge on the same 
Purkinje cell). In  this case, the latter part of the  mossy 
fibre context would not be very relevant to any 
decisions about whether the Purkinje cell should fire, 
whereas the former part of the mossy fibre context 
would be of considerable importance. Marr's learning 
rules, involving only binary weights on the parallel 
fibre to Purkinje cell synapses, are not able to produce 
varying emphasis on the different parts of the input. 

3. In general, Marr's use of binary synapses and 
integer excitations is biologically dubious. Albus 
(1981) comments: 
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Neurons are not binary devices, and the brain is not a 
digital computer. 'l'he all or nothing character of the 
action potential does not mean that the neural signal is 
a Boolean variable. The action potential is simply an 
cncoding mechanism that thc brain uses for transmit- 
ting analog variables over long distances. 

4. Experimental evidence seems to suggest that 
synaptic values start off' high in the cerebellum and 
are then decreased with the conjunction of parallel 
fibre and Purkin.je cell activity (Gilbert & Thach 
1977), rather than being increased from low to high, 
as assumed by Marr. The Purkinje cell may learn 
when to pause its inhibition (to 'disinhibit') rather 
than when to fire. 

Although the problems just outlined should make us 
feel sceptical about some of the details of Marr's 
theory, they should not make us feel too dubious 
about the more fundamental aspects of Marr's theory 
(that the cerebellar cortex associates patterns in its 
input with patterns in its output, and that the 
component cells function as outlined in 5 6a(i)) .  The 
basic associative net can be modified to work with 
analogue excitations and synapses, and different 
synaptic rules which involve depression as well as 
potentiation of synapses can be used (Albus 197 1). 

( b )  Simulating the cerebellum 

We have demonstrated a simulated full-size model 
of what is generally thought of as the building block of 
cerebellar circuitry: the cells and synaptic connections 
associated with a single Purkinje cell. In  our model 
most of the cells and processes could be represented 
explicitly and in a form that captures their spatial 
arrangement. I n  particular, the model reproduces the 
probabilistic aspects of cerebellar structure. Cells are 
positioned stochastically and have varying numbers of 
dendritic and axonal connections which are positioned 
randomly around the cell body. 

The simulation consisted of a population of 13 000 
mossy fibres that innervate 200000 parallel fibres 
under the regulation of 100 or so Golgi cells. The  
parallel fibres then synapse with a single Purkin.je cell. 
The parallel fibres also pass c:xcitation to the Purkin.je 
cell by way of 40 basket and stellate cells. The 
Purkin.je cell also receives input fk-om one climbing 
fibre. 

We have used this simulated structure to show how 
it can embody the Marr  theory of the cerebellum as 
an  associative learning device. More generally, this 
model can be regarded as a simple building block for 
associative memory. 13ut when it is applied to other 
structures the way it will work in detail will depend 
heavily on the specific numerical relationships of the 
structure under consideration. 

I t  will be possible to use this structure to test out the 
performance of other proposed models of the cerebel- 
lum. A case in point is that based on the theory due to 
Albus (1971), whereby Purkin.je cells are to be taught 
by error correction. I n  this theory, synapses are 
analogue rather than digital, and the proposed learn- 
ing mechanism involves depression of parallel fibre 
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