Object recognition and hierarchical computation

*  Challenges in object recognition.

*  Fukushima’s Neocognitron

*  View-based representations of objects

*  Poggio’s HMAX

*  Forward and Feedback in visual hierarchy
*  Hierarchical Bayes
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Selfridge’s Pandemonium Model (1959) for
object recognition
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Challenges in object recognition

What are the computational logic and concerns?

Invariance versus Specificity.




Fukushima’s Neocognitron (1980)

A hierarchical multi-layered neural network for visual pattern recognition.
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Generalizing simple-complex cells: alternating S and C layers: S -
feature detectors (e.g. simple cells) detect conjunction of features

(AND, specificity), C - invariance pooling (e.g. complex cells) (OR,
MAX, invariance).




Gradual specificity and invariance

Conjunction of the C2 feature detectors

Hierarchical Features

Local features gradually integrated into more global features.
With C stage performing “blurring’, the next S stage detects more
global features even if the components are deformed and shifted.
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Character recognition
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Revolt against 3D model

Psychophysical experiments (Buelthoff 1992;
Gauthier 1997) and neurophysiological
experiment (Logothetis 1995) provided strong
support for the view-based representation of
objects.

Tested novel object in a particular view, people
and monkeys tend to recognize the novel object
only within +/- 40 degrees in rotation.

Neurons also exhibit Gaussian tuning curves with
peaks 40-50 degrees apart.
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Basic facts

IT -- neurons coded for object, input to prefrontal cortex.

IT neurons are relatively scale and position invariance, but
view-point and lighting dependence.

View-point interpolation between different object views to
achieve view-point invariance object recognition.

Learning specific to an individual novel object is not required
to be scale and translation invariant.

Recognition can be very fast. 8/seconds, possibly mediated
by a feed-forward model of ventral stream processing.

Basic motivation for the HMAX model

Generalizing simple cell to complex cell relationship -- invariance
to changes in the position of an optimal stimulus (within a range) is
obtained in the model by means of a maximum operation (max)
performed on the simple cell inputs to the complex cells, where the
strongest input determines the cell's output. This preserves feature
specificity.

The model alternates layers of units combining simple

filters into more complex ones - to increase pattern

selectivity with layers based on the max operation - to

build invariance to position and scale while preserving

pattern selectivity.

The RBF (Radial Basis Function) -like learning network learns
a specific task based on a set of cells tuned to example views.




Hierarchical model of object recognition (HMAX)
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http://maxlab.neuro.georgetown.edu/hmax.html#c2
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Fig. 4. (a) Response of a view-selective neuron to rotations around the preferred view along four axes. The z dimension of the plot is the
spike rate, and the x and y dimensions show the degrees of rotation of the target object around either or both of the X or Y axes, respec-

uvelv The volume was. ger\eulf.d by testing the cell’s response for rotations out to = 60 © around the X and Y axes as well as along the
two d The of declined by ap; i ly the same extent for rotations away from 0° along all of the axes
tested. The activity of the neuron for the 60 distractors is shown in the inset box. Each distractor was a view of a different wire object.

(b) Response of a neuron selective for pseudo-mirror-symmetric views, 180° apart, of a wire-like object. The filled circles are the mean
spike rates for target views around one axis of rotation. The black line is the view-tuning curve obtained by “distancs ighted least
squares’ (DWLS) smoothing. The two inset images depict the =120 © and 60 ° views, around both of which the neuron showed view-
selective tuning. The activity of the neuron for the 60 different distractor objects used during testing is shown in the inset box.

Logothetis, Pauls and Poggio Current Biology 1995.

eporme

Fig. 4. Responses of a sample model neuron to different transformations of its preferred
stimulus. Panels show the same neuron’s response to (a) varying stimulus sizes (inset
shows response to 60 distractor objects, selected randomly from the paperclips used in
the physiology experiments?') (b) rotation in depth and (c) translation. Training stimulus
size was 64 x 64 pixels, corresponding to 2° of visual angle. (d) Another neuron’s response
to pseudo-mirror views (see text), with the dashed line indicating the neuron’s response to
the ‘best’ distractor.




Why does it work at all?

S2 computes conjunction of oriented features within a
neighborhood to create 256 types of higher order
features for each scale band and at every position.

C2 pools over all positions and scale bands, thus is a bag
of features.

This bag of feature approach, also popular in computer
vision at the time, apparently is sufficient for
discriminating many objects. WHY?

Because there are a lot of features, some of the features
are rather unique and discriminative. It is unlikely two
objects tested will share the same set of conjunctive
features.

Highly nonlinear integration of component parts
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Nonlinear MAX operation approximates physiology better
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But what does feedback do?

Attention -- feature and spatial attentional selection.

Interactive activation -McClelland and Rumelhart, Adaptive
resonance - Grossberg, bringing in global structures and context to
influence the interpretation of low-level interpretation and pattern
completion.

A modern view: generative model and hierarchical Bayes.
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A modern view:

generative model and hierarchical Bayesian inference.
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Multi-scale analysis across visual areas.

rComparison of
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Increase in RF size and complexity of encoded features along the visual hierarchy.

Lee and Mumford’s conjecture
High-resolution buffer hypothesis of V1

V1 is not simply a filter-bank for extracting features,
but is a unique high-resolution buffer that is used by

higher visual cortex for performing any visual

inference that requires spatial precision and high-

resolution feature details.

Lee, Mumford, Romero and Lamme (1998), Lee and Mumford (2003)
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The interplay of priors, context and memory in visual inference.

The need to see depth and segregate surfaces is so strong that we can hallucinate
surface and contours at locations where there is no visual evidence for them.
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Spatial response to the illusory contour is found at precisely the
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expected location at V1

Spatial Response (100-150 msec window)
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Lee and Nguyen 2001 PNAS.

Temporal Response to the Illusory Contours at 100 msec, 40 msec later than V2

Neural Response to Different Types of Contours
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Shape from shading with simple priors with
factor graph and BBP and higher order priors

a) Original Input b) Lincar Constraint Nodes  ¢) Lee & Kuo [9] d) Zheng & Chellappa [21]
108 Mean Squared Error = 3390 Mean Squared Error = 4240

A

Potetz CVPR (2007).

Texton/token primal sketch

(a) dictionary Ap (b) input image (e) reconstructed K = 300

Zhu and Mumford (2997)
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Dictionary of visual primitives
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Figure 3: Samples from the visual primitive dictionary, consisting of eight types: blobs, end points,

(l|

edges, ridges, multi-ridges, corners, junctions and crosses of different degrees. (a) The landmarks on the

patches for topological and ic attri (b) The ph ic ion of the patches.

One implementation of Primal Sketch

(d) remaining texture pixels (¢) texture pixels clustered (f) reconstructed image
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Segmentation as simplifying parsing

Input Segmentation Synthesis from model
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Hidden variables describe segments and their texture,
allowing both slow and abrupt intensity and texture changes.

Hierarchical Generative models
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FIGURE 27. An And-Or graph example for the object category - clock. It has two
parsing graphs shown in Figure 25, one of which is illustrated in dark arrows. Some
leaf nodes are omitted from the graph for clarity. From [73].
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Zhu and Mumford (2007) Quest for a stochastic grammar for vision
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Parsing graph in response to object in an image
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FIGURE 25. Two parsing graph examples for clocks which are generated from the
And-Or-graph in Fig. 27. From [73].

Generation of clock images by hallucination
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Summary

* Invariance and specificity in object recognition.
*  Fukushima’s Neocognitron

*  View-based representations of objects

*  Poggio’s HMAX

*  Forward and Feedback in visual hierarchy

»  Feedback for generating explanation for images
*  Hierarchical Bayes and generative models

*  High-resolution buffer hypothesis of V1

Readings

Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of
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