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3 Computational Overview

i INTRODUCTION

What is computation? In virtue of what is something a computer? Why do we
say a slide rule is a computer but an egg beater is not? These are, in a way, the
philosophical questions of computer science, inasmuch as they query founda-
tional issues that are typically glossed over as researchers get on with their
projects.1 Like the philosophical questions of other disciplines (What is the
nature of life? [Biology] What is the nature of substance and change? [Physics
and Chemistry]), the answers become more convincing, meaningful, and inter-
connected as the empirical discipline matures and gives more ballast fo the
theory. In advance of understanding that there are atoms, how atoms link
together, and what their properties are, one simply cannot say a whole lot
about the nature of substance and change. It is not, however, that one must say
nothingin that event, one could not get the science started. The point rather
is that the theory outlining the elementary ideas of the discipline gradually
bootstraps itself up, using empirical discoveries as support, and kicking away
old misconceptions in the haul.

The definition of computation is no more given to us than were the defini-
tions of light, temperature, or force field. While some rough-hewn things can,
of course, be said, and usefully said, at this stage, precision and completeness
cannot be expected. And that is essentially because there is a lot we do not yet
know about computation. Notice in particular that once we understand more
about what sort of computers nervous systems are, and how they do whatever it
is they do, we shall have an enlarged and deeper understanding of what it is to
compute and represent. Notice also that we are not starting from ground zero.
Earlier work, especially by Turing (1937, 1950), von Neumann (1951, 1952),
Rosenblatt (1961), and McCulloch and Pitts (1943), made important advances
in the theory and science of computation. The technological development of
serial, digital computers and clever software to run on them was accompanied
by productive theoretical inquiry into what sort of business computation is.2

Agreeing that precise definitions are not forthcoming, can we nonetheless
give rough and ready answers to the opening questions? First, although we
may be guided by the example of a serial digital computer, the notion of
"computer" is broader than that. Identifying computers with serial digital com-
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puters is neither justified nor edifying, and a more insightful strategy will be to
see the conventional digital computer as only a special instance, not as the
defining archetype. Second, in the most general sense, we can consider a
physical system as a computational system when its physical states can be seen
as representing states of some other systems, where transitions between its
states can be explained as operations on the representations. The simplest way
to think of this is in terms of a mapping between the system's states and the
states of whatever is represented. That is, the physical system is a computa-
tional system just in case there is an appropriate (revealing) mapping between
the system's physical states and the elements of the function computed. This
"simple" proposal needs quite a lot of unpacking.

Functions: Computable or Noncomputable, Linear or Nonlinear

Since this hypothesis concerning what makes a physical system a computa-
tional system may not be self-evident, let us approach the issue more gradually
by first introducing several key but simple mathematical concepts, including
"function," and the distinction between computable and noncom putable func-
tions. To begin, what is a function? A function in the mathematical sense is
essentially just a mapping, either 1: 1 or many: 1, between the elements of one
set, called the "domain," and the elements of another, usually referred to as the
"range"3 (figure 3.1). Consequently, a function is a set of ordered pairs, where
the first member of the pair is drawn from the domain, and the second element
is drawn from the range. A computable function then is a mapping that can be
specified in terms of some rule or other, and is generally characterized in terms
of what you have to do to the first element to get the second. For example,
multiply the first by 2, {(i, 2), (2,4), (3, 6)}, expressible algebraically as y = 2x;
multiply the element from the domain by itself { (6.2,38.44), (9.6, 92.16) }, ex-
pressible algebraically as y = x2, and so on.

What then is a noncomputable function? It is an infinite set of ordered pairs
for which no rule can be provided, not only now, but in principle. Hence its
specification consists simply and exactly in the list of ordered pairs. For exam-
ple, if the elements are randomly associated, then no rule exists to specify the
mapping between elements of the domain and elements of the range. Outside
of mathematics, people quite reasonably tend to equate "function" with "com-
putable function," and hence to consider a nonrule mapping to be no function
at all. But this is not in fact how mathematicians use the terms, and for good
reason, since it is useful fo have the notion of a noncomputable function to
describe certain mappings. Moreover, it is useful for the issue at hand because
it is an empirical question whether brain activity can really be characterized by
a computable function or only to a first approximation, or perhaps whether
some of its activities cannot be characterized at all in terms of computable
functions (Penrose 1989).

What is a linear function? Intuitively, it is one where the plot of the elements
of the ordered pair yields a straight line. A nonlinear function is one where the
plot does not yield a straight line (figure 3.2). Thus when brain function is
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Physical System

Figure 3.1 Mapping between a domain and a range can be accomplished by a variety of
physical systems. There are three steps: (1) The input data is coded into a form appropriate for
the physical system (electrical signal in an electrical circuit, chemical concentration in neuron,
position of a slider in a slide rule). (2) The physical system shifts into a new state. (3) The output
state of the physical system is decoded to produce the result of the mapping. The example
shown here is the "average" map that takes four values and produces their average. Such a
mapping might be useful as part of a visual system. Mappings could also be made from the
domain of temporal sequences, and the range could be a sequence of output values.

F(x)

Output state

Figure 3.2 Examples of functions F(x), plotted along the vertical axis, of one variable, x, plotted
along the horizontal axis. Function A is a linear function. Function B is a nonlinear function.
Function C is a discontinuous function.
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described as "nonlinear," what this means is that (a) the activity is characterized
by a computable function, and (b) that function is nonlinear. Notice also that
the space in which functions are plotted may be a two-dimensional space (the x
and y axes), but it may, of course, have more than two dimensions (e.g., an x
axis, y axis, and also w, u, z, etc. axes).

Because the notion of a vector simplifies discussion enormously, we intro-
duce it here. A vector is just an ordered set of numbers. For example, the set of
incomes for 1990 of three vice-presidents in a corporation can be represented
by the vector <$30,$10,$10>; the eggs laid per week by five hens as
<4, 6, 1,0, 7>; the spiking frequency of four neurons/sec as <10,55,44,6>. By
contrast, a scalar is a single value rather than a many-valued set. The order in
the set matters when we want to operate on the values in the set according to
an order-sensitive rule. Systems, including the nervous system, execute func-
tions that perform vector-to-vector mapping. For example, from the stretch
receptors' values to the muscle contraction values, or from the head velocity
values to eye velocity values.

A geometric articulation of these concepts compounds their value. Any
coordinate system defines a state space, and the number of axes will be a
function of the number of dimensions included. A state space is the set of all
possible vectors. For example, a patient's body temperature and diastolic blood
pressure can be represented as a position in a 2-D state space. Or, if a network
has three units, each unit may be considered to define an axis in a 3-D space.
The activity of a unit at a time is a point along its axis, so that the global
activation of all the units in the net is specified by a point in that 3-D space
(figure 3.3). More generally, if a network has n units, then it defines an n-
dimensional activation space, and an activation vector can be represented as a
point in that state space. A sequence of vectors can be represented as a trajec-
tory in the state space.4 Thus the patient's body temperature and blood pres-
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Figure 3.3 Schematic diagram of the trajectory of a three-neuron system through state space.
The state of the system is a 3-D vector whose components are the firing rates of the three
neurons. As the firing rates change with time, the tip of the vector traces out a trajectory (thick
line). For more neurons the state space will have a higher dimension.



sure followed through time results in a trajectory in a 2-space. A function maps
a point in one state space to a point in another state spacefor example,
from a point in stretch-receptor activation space to a point in muscle spindle
activation space.

These notions "vector" and "state space"are part of linear algebra, and
they are really the core of the mathematics needed to understand model net-
works. They are mercifully simple conceptually, and they are rather intuitively
extendable from easily visualizable 2-D cases to very complex, n-D cases,
where n may be thousands or millions. Although volumes more can be written
on the topic of linear algebra, this is perhaps enough to ease the entry into the
discussion of model neural networks.5

Computers, Pseudocomputers, and Cryptocomputers

The mathematical interlude was intended to provide a common vocabulary so
that we might return to the question of characterizing, albeit roughly, what
about a physical system makes it a computer. To pick up the thread left
hanging during the mathematical interlude, let us hypothesize that a physical
system computes some function f when (I) there is a systematic mapping from
states of the system onto the arguments and values of f, and (2) the sequence of
intermediate states executes an algorithm for the function.6 Informally, an
algorithm is a finite, deterministic procedure, e.g., a recipe for making ginger-
bread or a rule for finding the square root.

We count something as a computer because, and only when, its inputs and
outputs can usefully and systematically be interpreted as representing the
ordered pairs of some function that interests us. Thus there are two compo-
nents to this criterion: (1) the objective matter of what function(s) describe the
behavior of the system, and (2) the subjective and practical matter of whether
we care what the function is. This means that delimiting the class of computers
is not a sheerly empirical matter, and hence that "computer" is not a natural
kind, in the way that, for example, "electron" or "protein" or "mammal" is a
natural kind. For categories that do delimit natural kinds, experiments are
relevant in deciding whether an item really belongs to the category. More-
over, there are generalizations and laws (natural laws) about the items in the
categories and there are theories interleaving the laws. Nonnatural kinds differ
in all these respects, and typically have an interest-relative dimension.

"Bee," for example, is a natural kind, but "gem" and "weed" are not. Objects
are considered gems depending on whether some social group puts special
value on them, typically as status symbols. Plants are considered weeds de-
pending on whether gardeners (serious gardeners?) in the region happen to like
having them in the garden. Some gardeners cultivate baby's breath as a desir-
able plant; other gardeners fight it as a weed. There is no experiment that will
determine whether baby's breath is really a weed or not, because there is no
fact of the matteronly social or idiosyncratic conventions.7 Similarly, we
suggest, there is no instrinsic property necessary and sufficient for all computers,
just the interest-relative property that someone sees value in interpreting

65 Computational Overview



66 Chapter 3

a system's states as representing states of some other system, and the proper-
ties of the system support such an interpretation. Desk-top von Neumann
machines exist precisely because we are keenly interested in the functions we
build and program them to execute, so the interest-relative component is dyed
in the wool. For this reason, and because these machines are so common, they
are the prototypical computers, just as dandelions are prototypical weeds.
These prototypes should not, however, be mistaken for the category itself.

It may be suggested as a criticism of this very general characterization of
computation that it is too general. For in this very wide sense, even a sieve or a
threshing machine could be considered a computer, since they sort their inputs
into types, and if one wanted to spend the time at it, one could discover a
function that describes the inputoutput behavior. While this observation is
correct, it is not so much a criticism as an apt appreciation of the breadth of the
notion. It is rather like a lawn-growing perfectionist incredulously pointing out
that on our understanding of "weed," even dandelions might be nonweeds
relative to some clime and some tribe of growers. And so, indeed, they might
be some farmer's cash crop. Nor is this idle fancy. Cultivated dandelion greens
now appear as a delicacy in the specialty section of the greengrocery.

Conceivably, sieves and threshing machines could be construed as comput-
ers if anyone has reason to care about the specific function reflected in their
inputoutput behavior, though it is hard to see what those reasons might be
(figure 3.4). Unlike desktop computers that are engineered precisely for their
computational prowess, sieves and threshing machines are constructed for
other reasons, namely their sheerly mechanical prowess in the sorting of ob-
jects according to size and shape. Not too much emphasis should be placed
on the link between purposeful design and use as a computer, however, for
a fortuitously shaped rock can be used as a sundial. This is a truly simple
computer-trouvé, but we do have reason to care about the temporal states that
its shadow-casting states can be interpreted as representing.

There is perhaps a correct intuition behind the criticism nonetheless. Finding
a device sufficiently interesting to warrant the description "computer" probably
also entails that its inputoutput function is rather complex and inobvious,
so that discovering the function reveals something important and perhaps
unexpected about the real nature of the device and how it works. Thus finding
out what is computed by a sieve is probably not very interesting and will not
teach us much we did not already know. How a sieve works is dead simple. In
contrast, finding out what is computed by the cerebellum will teach us a lot
about the nature of the tissue and how it works.

A computer is a physical device with physical states and causal interactions
resulting in transitions between those states. Basically, certain of its physical
states are arranged such that they represent something, and its state transitions
can be interpreted as computational operations on those representations. A
slide rule is taken to computefor example, (Mult 2, 7) to give 14 as the
outputby dint of the fact that its physical regularities are set up in such a
way as to honor the abstract regularities in the domain of numbers; the system
of Aubrey holes at Stonehenge computes eclipses of the sun by dint of the fact
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Figure 3.4 Garrett's improved threshing machine, 1851. The wheat was fed in from above, and
the grain was removed by the rubbing action 0f the beater bars on the drum as it rotated inside
the fixed concave. The grain fell onto a sieve below and the chaff was blown away by the fan
system on the right. (From The Illustrated Science and Invention Encyclopedia. Westport, CT: H. S.
Stuttman, 1983.)

that ifs physical organization and state transitions are set up so that the sun
stone, moon stone, and nodal stone land in the same hole exactly when an
eclipse of the sun occurs. Notice that this would be so even in the highly
unlikely event that Stonehenge was the fortuitous product of landslides and
flooding rather than human contrivance.

Nervous systems are also physical devices with causal interactions that con-
stitute state transitions. Through slow evolution, rather than miraculous
chance or intelligent design, they are configured so that their states represent

the external world, the body they inhabit, and in some instances, parts of
the nervous system itselfand their physical state transitions execute compu-
tations. A circuit in mammalian brain stem evolved to compute the next posi-
tion of the eyeball based on the angular velocity of the head. Briefly, the
neuronal activity originating in the semicircular canals represents head veloc-
ity, and the interneurons, motor neurons and eyeball muscles are physically
arranged such that for head velocity of a certain amount, the neurons causally
interact so that the muscles of eyeball change tension by exactly the amount
needed to compensate for the head movement. (For more on this circuit and its
computation, see chapter 6). Loosely speaking, this organization evolved "for"
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this task; a little more strictiy speaking, this circuit came to be the way it is by
random mutations and natural selection; in standard epigenetic circumstances
and relative to the ancestor's nervous system and to the system's other compo-
nents, this organization enhances somewhat the organism's chances of surviv-
ing and reproducing.

There is a major contrast between manufactured and biological computers.
Since we construct digital computers ourselves, we build the appropriate rela-
tionship into their design. Consequently, we tend to take this mapping for
granted in computers generally, both manufactured and evolved. But for struc-
tures in the nervous system, these relationships have to be discovered. In the
case of biological computers, discovery may turn out to be very difficult since
we typically do not know what is being computed by a structure, and intuitive
folk ideas may be misleading.

By contrast with systems we conventionally call computers, the modus
operandi of some devices are such that a purely causal explanation, without
reference to anything having been computed or represented, will suffice. A
mouse-trap or a sieve, for example, is a simple mechanical device. Purely causal
explanations will likely suffice for some aspects of brain activity too, such as
the ion pump in neuronal membranes by virtue of which sodium is pumped out
of the cell, or the manner in which binding of neurochemicals to receptors
changes the internal chemistry of the cell. Bear in mind, however, that even at
this level, an ion, such as Na, could represent a variable like velocity. At this
stage, no one is really convinced that this is in fact so, but the possibility is not
ruled out simply because ions are very low-level entities. Effects at higher
levels of organization appear to require explanations in terms of computations
and representations. Here a purely causal story, even if the line is still fairly
clean, would give only a very unsatisfying explanation. For example, a purely
causal or mechanical explanation of the integration of signals by dendrites is
unenlightening with respect to what information the cell is getting and what if
does with it. We need to know what this interaction means in terms of what
the patterns of activity represent and what the system is computing.

Consider, for example, the neurons in parietal cortex whose behavior can be
explained as computing head-centered coordinates, taking positions of the
stimulus on the retina and position of the eyeball in the head as input (Zipser
and Andersen 1988). Knowing that some neurons have a response profile that
causes other neurons to respond in a certain way may be useful, especially in
testing the computational hypothesis, but on its own it does not tell us any-
thing much about the role of those neurons in the animal's visual capacity. We
need additionally to know what the various states of neurons represent, and
how such representations can be transformed by neural interactions into other
representations. At the network level, there are examples where the details of
connectivity and physiology of the neurons in the network still leave many of
the whys and wherefores dangling, while a computational approach that incor-
porates the physiological details may make contact with the broader brain-
scape of tasks, solutions, environmental niche, and evolutionary history.8



There is a nonmathematical sense of "function," according to which the job
performed by something is said to be its function. In this sense, the heart is said
to function as a pump, rather, than say as a noisemaker to soothe babies on
their mother's breast. Though making a "ka-thump" sound is something the
heart does, and though babies appear to be soothed by it, this surely is not the
heart's function, meaning, roughly, its "primary job." Functional assignments
can reasonably be made in the context of evolutionary development, what the
animal needs to survive and reproduce, its environmental niche, and what
would make sense given the assignment of function to related structures. In
this "job" sense of function, the function of some part of the nervous system is
to compute some function (in the mathematical sense), such as position for the
eyeball given head velocity.

There is nothing mystical about characterizing a biological structure as hav-
ing a specific function, even though neither god nor man designed the struc-
ture with a purpose in mind.9 The teleological trappings are only that, and the
teleology is eliminable or reducible without remainder in an evolutionary
framework. To assign a computational role to a circuit is to specify a job of that
circuitdetecting head velocity, for example. Consequently, the consider-
ations that bear on determining the job of an organ such as the liver bear also
on the assignment of computational role to neuronal structures. That the ner-
vous system evolved, and that maladaptive structures tend to be weeded out
in the evolutionary contest, restricts many functional hypothesesin both
senses of "functional"that are logically possible but just not biologically
reasonable. The crux of the matter is that many biologically irrelevant compu-
tational hypotheses can be culled out by a general functional truth about
nervous systems, namely that inter alía they serve to help the animal move
adaptively in the

In this chapter we shall characterize a range of computational principles that
may be useful when addressing the question of computation in nervous sys-
tems. As we shall see, moreover, the computational perspective will allow us
to ask questions of biological systems that might not otherwise have been
asked. The computational principles introduced here will be applied first to a
number of examples chosen for their pedagogical value rather than for immedi-
ate biological salience. They allow us to introduce the basic ideas in a simple
fashion, and this is their single, overriding virtue. They are not meant to be
hypotheses concerning the mechanisms underlying the computational proper-
ties of real nervous systems. In chapters 4 to O neurobiological realism will be
of paramount concern, but an understanding of the basic concepts is the entry
ticket to these chapters.

2 LOOKING UP THE ANSWER

Conceptually, the simplest computational principle is "look up the answer." A
look-up table is simply some physical arrangement in which answers to specific
questions are stored. The engineering trick is to rig the table so that access to
answers is fast and efficient, for if it is slow and clumsy, calculating the answers
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de novo might be preferable. Inasmuch as look-up tables are really repositories
of precomputed answers rather than devices for working out the answer on the
spot, it may be suggested that they are not genuine computers at all. For the
purist, however, accepting this semantic refinement promotes confusion. A
look-up table does after all effect a mapping, it instantiates a rule, and its states
represent various things. That, given our groundfloor criteria, qualifies it as a
computer. Call it unglamorous, call it humdrum, but a look-up table embedded
in a mechanism for delivering answers can as properly be called a computer.

The easiest way to think of a look-up table is simply as an array of boxes
each of which says, in effect, "if x is your problem, then y is your answer," for
specific z and y. In other words, it does a matching job. For example, the truth
table for exclusive "or" looks like this:

This mode of representing the truth conditions happens to be very convenient,
though many other, less convenient arrangements are easily imagined. And as
students are usually told, it requires no significant intelligence to use this
look-up table: just ask your question (e.g., what is the value when P is true and
Q is false?), go to that row, and scan the answer.

A second but more powerful look-up table is the slide rule. Actually it is a
multiplexed look-up table, since it stores answers not only for multiplication
tasks, but also for finding sines, cosines and logarithms. When the task is
multiplication, one enters the question (what is 3 X 7?) by sliding the center
piece and cursor, and scanning the answer at the cursor. Moreover, while the
truth table can handle only discrete functions, a slide rule can do continuous
functions. To accommodate the variety of arithmetic questions and answers on
two pieces of wood, the look-up table is metrically deformed (figure 3.5). As
before, there are other ways of physically structuring a look-up table to per-
form exactly these tasks, but the flat, pocketable slide rule is in fact a wonder-
fully convenient and efficient way to do so.

Extending the idea a bit further, consider the Tinkertoy look-up table con-
structed in 1975 by a group of MIT undergraduates to play the game of
tic-tac-toe11 (figure 3.6). Making the "table" part of this device consists in
storing a set of ordered pairs, where the first element is a possible game
position, and the second element is the correct move, given that game posi-
tion. In operating, the machine looks for a match between its current position
and one of the possible positions sitting in storage. Finding the match will
automatically divulge what to do next.

The first step in building the Tinkertoy look-up table was to decide on a
representation for the state of the board using just the resources of Tinkertoy
pieces. The second step was to use rotation and reflection symmetries to
reduce the total number of game positions in the table, since the more entries

P Q XOR
T T F

T F T
F T T
F F F



Figure 3.5 The object in the center is an oversized slide rule. The authors are on either side.
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Figure 3.6 The first three levels of the game tree for tic-tac-toc. The 3 X 3 board at starting
position is in the center, and the first move must be in one of three board positions (arrows)
irreducible by mirror and reflection symmetries. The next level gives several possible replies by
the opponent.



72 Chapter 3

the larger the storage and the longer the time to search for a match. Thus a
board with nothing but an X (or an O) in the upper right comer can be dealt
with in the same way as a board with nothing but an X (or an O) in any of the
other corners, and this consequently reduces the number of stored first posi-
tions by six, a substantial savings. These economies are important in reduc-
ing the number of entries in the look-up table to a manageable numberin
this case from 300,000 to 45. The next step was to design a mechanical system
that could match a position on the board with one of the 45 irreducible posi-
tions, and to retrieve the correct move (figure 3.7).

Although the tic-tac-toe example may at first seem frivolous, it cleanly
illustrates a number of points relevant to computational neuroscience. First,
look-up tables can be constructed from unorthodox materials but still come
up with the same answer as do conventional electronic circuits. Second, the
Tinkertoy computer is not a general-purpose computer; rather, it was built to
solve one specific problem. So far as nervous systems are concerned, the anal-
ogy is that the genes probably wire up some neural circuits on the look-up
table blueprint with the consequence that the animal is prepared at birth to do
such things as snuffle around for a warm spot and then suck at whatever soft,
mouth-sized thing sticks out. Circuits that yield sucking behavior in rats are
probably not general-purpose devices, but are dedicated more or less exclu-
sively to sucking.

The theoretical lesson is that if a problem is conceptually reducible to a
look-up table problem, then, cost and efficiency aside, it could in principle be
implemented by look-up table mechanisms. Cost is rarely irrelevant, however.
It is especially pertinent here, since precomputing the answers for each prob-
lem requires a substantial, and sometimes exorbitant, investment in the con-
struction of the machine. From an evolutionary point of view, it might be too
costly or too difficult to precompute certain tasks, such as semantics or place-
in-the-social-scheme or dinner-whereabouts, and hence many things must be
learned by the infant organism.

How practical really is the look-up table approach? The answer depends on
a number of factors, including the complexity of the problem to be solved, the
architectural pliancy of the available materials, and the size limits of the look-
up table. Chess, unlike tic-tac-toe, appears to be a poor candidate for the
look-up table solution. There are approximately iO4° game positionsfar
more than the capacity of any existing machine.12 The complexity factor can
be reduced considerably using the economy described above; namely, take
advantage of the underlying symmetries and position similarities in the prob-
lem to reduce the number 0f entries. Given this possibility, it remains to be
seen whether the look-up strategy is indeed utterly unrealistic for chess. For
many real-world problems, as in the problem of visually recognizing an object,
advantage can be taken of translation, rotation, and scaling invariances, as well
as smoothness and continuity constraints, to reduce the number of stored
categories. The possibility to consider is that look-up craftsmanship may
be seen at various stages in nervous system processing, even if it is not
ubiquitous.
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Figure 3.7 Tinkertoy computer for playing the game of tic-tac-toe. Each memory spindle en-
codes a possible game position, along with the optimal response. The read head, loaded with the
current game position in the core piece, moves down the memory spindles, one by one, until
there is a match. This activates the output duck, which drives the correct move. Compare this
speciahpurpose computer with the general mapping scheme in figure 3.1. (From Dewdney
119891 Computer recreations: a Tinkertoy computer that plays tic-bc-toe. Copyright © 1989
Scientific American.)
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If the number of stored questionanswer pairs is large, then the search-for-
a-match time may be prohibitively long. The Tinkertoy look-up machine, for
example, compares the current board position to each of the stored board
positions, one at a time, until the match is found. This is a rather ponderous
business, especially if the search procedure is sequential. Parallel search could
provide time economies, as we shall see later. Time is not the only consider-
ation; wiring too must be kept within bounds. Consider, for example, the size
of a look-up table needed to handle ordered pairs of the form <edible goodie at
coordinates x,y,z moving at velocity v/body position #>. Given the number
of independently movable body parts and the number of possible locations
and speeds, the look-up table would have fo be massive, at a minimum. The
wiring cost scotches the idea. For nervous systems, brief times and sparse
wiring are generally preferable, other things being equal, so the question is
whether there are any neural structures that can be usefully understood as
look-up tables.

Until rather recently, the superior colliculus in cats suggested itself as a
neural instantiation of a look-up table, at least to a first approximation. The
simple story runs like this. The colliculus has a number of layers, or laminae. On
its upper layer, the colliculus represents location of visual stimuli on a retino-
topic map, while on its bottom layer is a "motor map" representing position of
the eyeball muscles suitable for foveating the eye to various locations. Other
layers in the structure represent whisker-stimulus location. The maps are de-
formed with respect to each other so that they are in register. The effect is that
a line dropped from the visual map intersects the motor map in a location that
causes the eyeballs to move so as to foveate the location of the visual stimulus.
The anatomy itself facilitates the look-up of motor answers, just as the "anat-
omy" of a slide rule facilitates look-up of mathematical answers. The organiza-
tion enables the system to foveate a peripheral visual stimulus quickly and
accurately. It is a kind of two-dimensional slide rule, where the visual and
motor surfaces are appropriately aligned so that a position of a peripheral
stimulus is mapped onto a where-the-eyeballs-should-be position. According
to this conjecture, the anatomy executes a kind of "visual grasp" transforma-
tion (figure 3.8).

What is wrong with the colliculus look-up story? As so often in biology, as
more data come in, the whole situation begins to look much more complex
than the unencumbered, unqualified hypothesis asserts. To begin with, the rela-
tion between the visual input and the motor output is not as straightforward
as simple "visual grasp"; there are descending fibers from the cortex that
affect collicular output, and attentional processes play an important if poorly
understood role in collicular function. Although there do exist ostensible "drop
line" connections between mapped layers, it is not yet known exactly what
these connections do. In particular, the long time delay between the signal
entering the sensory layer and a signal reaching the lower motor layer under-
mines the hypothesis that these connections straightforwardly execute "visual
grasp." So withal, the colliculus cannot be taken as an unproblematic case of a
neural look-up table.
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Figure 3.8 Organization of the cat superior colliculus. (a) Cross section through the colliculus
showing cell bodies of neurons in each lamina (numbered). (b) Map of the eye movements
produced by stimulating the deep layers of the colliculus with an electrode. The coordinates
refer to the deviation of the eye from its center of gaze that is produced by electrical stimulation.
M, medial; L, lateral; A, anterior; P, posterior (Adapted from Schiller 1984.)

The example is instructive nonetheless, for the discrepancies between the
pure look-up configuration and the complicated anatomy and physiology of
the colliculus suggest that it well behooves evolution to fancy up a true-blue
look-up table into something that can do rather more complicated things.
Consider first that the colliculus needs also to take head position into account,
since the eyes move relative to the head, and hence relative to the ears and the
whiskers. In addition to its "in register" drop lines, the system may find it can
make good use of connections to other areas of the map, and to the whisker
and ear-position maps interleaved in the neural stack, noting that whiskers and
ears too can move relative to the head (in some mammals) but with their
proprietary degrees of freedom. But if the colliculus takes these other matters
into account, pure look-up conforming to the slide-rule style is not what is
going on. Were the eyes stuck fast in the head, and were "foveation" to
whisker and auditory stimuli absent, the colliculus might approximate more
closely a look-up table. As it is, the complexities of the colliculus suggest that
even if evolution had fashioned a pure look-up table, it would soon evolve to
master these complex and interrelated operations. That is, neurons would have
to perform additional computational steps between input and output.

To return to the matter of computer design, one means for reducing storage
space consists in allowing the structures doing the transformations to adjust
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themselves to existing conditions. Thrift bids the system to store only vectors
(game positions) it actually uses rather than all possible vectors, and this re-
quires that the system learn which vectors these are. What is the cost of this
flexibility? If the system is to adapt, the adaptation should be in the correct
direction. Alas, we cannot very well have a look-up table for the question "is
my modification in the right direction?" without going hog-wild over the
space limitations. So adaptation pulls the system even further away from the
slide-rule paradigm.

But if nervous systems are not using pure look-up tables, what are they
doing? The fast answer, to which the rest of the book is an extended elabora-
tion, is this: they are computing with nets. As we shall see later in this chapter,
neural nets may have certain properties akin to look-up tables. Consequently,
this look-up table prologue is not merely a "first-we-crawl" exercise, but a
foundation that will help us understand what actual neural nets are doing.
Before moving to a discussion of how nets compute, one further preliminary
point must be laid on the board.

Might a close but imperfect match sometimes suffice? For many tasks, espe-
cially recognition and categorization tasks, the answer is "yes, close is close
enough." Accordingly, an additional modification to the true-blue look-up
table consists in storing not every possible entry, but rather storing prototypes
or exemplars of the categories. With this stratagem, we trade off a degree of
precision for a saving of space, but the system must now take some computa-
tional steps to determine similarity to stored vectors. Eventually we shall want
a net that avails itself of both economies: it stores prototypes, and it has the
plasticity to learn prototypes.

To embody prototypes in a computer, related items are clustered near or
less near to an exemplar, according to their degree of similarity. Items stored in
this manner define a similarity space in the machine, and distance from the
prototype defines a similarity metric. This is known as a nearest-neighbor con-
figuration, and there are many possible architectures for realizing it and many
possible ways to style nearest-neighbor algorithms to exploit the organization
for computational purposes. If a conventional digital machine is chosen for the
implementation, then the machine will have to be spatially prodigal to accom-
plish complex tasks, for it has to store all the entries, make the distance mea-
sures, find the match, and deliver the answer. Clever ways to store data in
hierarchical trees have been devised, but even these bog down when the going
gets realistic. This gloomy prospectus may be sufficiently discouraging to de-
grade the look-up idea to nothing more than a charming curiosity, rather like
an ornithopter1 3conceivable perhaps, but practical, probably not. On the
other hand, though a digital machine may be impractical in this sphere, there is
an architecturally very simple organization that will do the job, and do it
cheaply, efficiently, and in satisfyingly few steps. That is a net. In the next
several sections, we shall look at a number of types of networks, starting with
very simple examples and moving on to networks of greater power and
sophistication.
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Figure 3.9 Three types of networks. (A) Feedforward network with one layer of weights con-
necting the input units to the output units. (B) Feedforward network with two layers of weights
and one layer of hidden units between the input and the output units. (C) Recurrent network
with reciprocal connections between units. (Adapted from Hertz et al. 1991.)

3 LINEAR ASSOCIATORS

What is a net? The architecture of the canonical net consists of units, loosely
based on neurons, connections (generously speaking, axons) between the
units, and weights (generously speaking, synapses) on the connections (figure
3.9). Some units receive external input, some deliver the output, and some may
do neither. Because there is more than one input unit and more than one
output unit, the ingoing and outcoming representations are vectors, meaning
ordered sets of values (e.g., <3.2, 668.9, 0>) rather than single values (scalars,
e.g., 668.9). Signals with various magnitudes are passed between units. That is
the nub of a net. How can a net compute anything? The abstract explanation is
reassuringly simple: the weights on the units are set in such a way that when
the input units are given certain values, the output units are activated appropri-
ately. This means that a mapping is achieved and hence that a function is
executed. Now Fo follow the recipe for making a net in a concrete case, we
have Fo decide how to set the weights, whether they are modifiable and if so
how, what range of activity values a unit may take and how they are deter-
mined, how to represent the input vectors, and the nature of the connectivity
between units (network topology). Obviously this means that the canonical
description carves out a vast area of computational space, within which specific
nets occupy small regions. The canonical description thus stands to a running
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X

Figure 3.10 Computing the inner product between two vectors is a fundamental operation in a
feedforward associative network. The example given here is for two-dimensional vectors, but
the same relationships apply to vectors with more components. The inner product is defined as
AB = + A,B = x 3 + 3 X I = 9, where A is thex component and A is the y
component of vector A. The angle O between the vectors can be computed from the relationship
cosO = (AB)/(IIAII ' IIBII), where A) = + A is the magnitude of A. In the network
shown in figure 3.9a, vector A might represent the activity levels of the input units and vector B
could be the weights from the input units to an output unit. The inner product can then be
interpreted as the sum of the weighted inputs to the output unit.

neural network model like a dictionary definition of an airplane stands to a
veritable machine itself.

In the 1970s, more or less independently, a number of people were develop-
ing associative nets, including Leon Cooper, James Anderson, Teuvo Kohonen,
Gunther Palm, Christopher Longuet-Higgins, and David Willshaw.14 How
do associative nets work? In a nutshell, they associate an input vector with
an output vector, essentially following the "parallel architecture/similarity-
measure/look-up table" format outlined above. The key mathematical task that
networks can perform is computing inner products; that is, taking two vectors
and multiplying them component by component and then adding up the prod-
ucts. So if one vector represents the input from a set of units and the other
vector is a stored prototype, then the inner product yields a measure of the
overlap between them, and hence of their similarity. Geometrically, the inner
product is proportional to the cosine of the angle between the vectors, so
when there is perfect congruence of the vectors, the angle would be zero
(figure 3.10). This is a readily manipulable measure of vector similarity. How
are the vectors (prototypes) stored? They are stored in the weights connecting
the input units to an in individual output unit. This means that each component
in the prototype vector is assigned to one weight, and these weights are
attached to a summing unit, which adds up all the products of these two
vectors (weight vector and input vector). This summing unit is the output unit.

In the garden variety network, the output of the summing unit is propor-
tional to the sum of the products. The output therefore is a linear transforma-
tion of the input, and the network is called a linear associa tor. For example, for a
small network with three input lines and three output units, there are nine
possible weights, which can be written as an array of numbers. One such 3 X 3
weight matrix is:
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Output (ines

Figure 3.11 A Willshaw net showing the input lines (horizontal), the output lines (vertical), and
the connections between them. The weights on the connections are binary and can be zero
(open circles) or one (closed circles). Thus, the picture is a graphical representation of the weight
matrix. (From Willshaw, 1989.)

0 1 2
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2 i O
The components of the output vector of the network are given by:

yi = wiixi (1)

For the input vector x = (1, 1, 1), the output vector is given by y = (1, 2, 1).
For the input vector x = (1,2,3), the output vector is given by y = (4, 4,0).
(Multiply the first component of the vector by the first item in the top row
11 x 0], the second component by the second item in the top row [2 X - i],
the third by the third [3 X 2]. Add the products [= 4]. Repeat for each row.)

As you would expect, there are many variations on the simple linear as-
sociator theme, and changes are rung on whether the input and output units
take on continuous or binary values, and whether the weights are continuous
or binary (figure 3.11). Notice that many inner products can be computed in
parallel, one for each summing unit, and the more the summing units, the
bigger the net. Additionally, each of the products (weights X inputs) can be
computed in parallel. The result is that only one step is required to produce an
output vector that is associated with the input vector. What is described here is
the paradigmatic net for matching a sample to a stored prototype. This is
evidently a classification task: for each category a representative example must
be provided, and this is encoded as a vector. As a rule, the less overlap be-
tween the prototype vectors the better, since it is preferable that an input
unambiguously match a prototype.
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The explanation so far shows how to get a mapping from input to output,
but it has not addressed how to set the values of the weights in order to get the
correct mapping from input to outputto get the net to give the correct
answer when it is asked a question. This is obviously of the essence if the net is
to be of any use. The method by which the prototype vector is encoded
matters enormously to the success and efficiency of the net, and different
coding strategies will variously ease or gum up the operations. It is not in
general known how to go about organizing the preprocessing for nervous
system tasks such as vision and speech recognition, but some information is
available for simpler processes such as visual tracking during head movement
(chapter 6). As we discuss later, if one wants to get some insight into the
characteristics of the preprocessing for good matching of input to stored vec-
tors, then the brain will be a valuable source of ideas. The general point about
preprocessing is this: at the level of sensory input, the vectors cari look very
different because there are many possible patterns of, say, a dog. The prepro-
cessing has fo be done in a such a way that if the many different patterns all
trigger the output vector "dog," they must be mapped onto the weights so this
happens. In other words, the system needs a many: 1 mapping. Exactly how to
set this up varies from case to case, and more discussion of this topic follows.

A slight modification of the paradigm net yields a network that performs
autoassociative content-addressable memory. This means that the net can produce
an output that is as close as possible to a prestored vector given only part of
the vector as input. This is a vector completion task, in other words. To do this,
you need as many output units as input units, so that the weight matrix is
square. The weights w from unit j to unit i are constructed from an outer
product of the stored vectors

(2)

where x7 is the ith component of the x-th stored vector. For example, if one of
the stored vectors is (1, 5, 2), then its contribution to the square weight matrix
is

[i 5 2

wjj=15 25 10

[2 10 4

These input vectors could be presented to the network one at a time, and
the weights could be computed incrementally by adding each contribution to
produce the sum. This is perhaps the simplest and best known of all learning
rules, the Hebb rule, so-called because it reflects Hebb's hunch that connection
weights between two units should strengthen as a function of the correlated
activity of the connected units. Note that the weight is built up from the
product of input activities and desired output activities.

The I-Jebb rule is loosely speaking a "get-similar" rule. It says, "Make the
output vector the same as the one you saw before which it most closely
resembles." Consider what will happen, then, when an incomplete or noisy
version of an input vector i is presented to the network with a weight matrix



configured according to eq. (2). If we substitute the weights in eq. (2) into
eq. (1), then the output can be rewritten as:

=: ; (Xx)] (3)

Roughly speaking, this means the output vector is composed from a linear
combination of the stored vectors, 4, where each vector is weighted by the
term in the square brackets, representing the inner product, or overlap, be-
tween the input vector and the stored vector. In the auto associative network
the desired output vector is the closest stored input vector; at best, the output
vector will be identical to the stored input vector. Such a network can perform
vector completion or vector correction, but it cannot associate two different
vectors. The basic autoassociative net can be modified quite simply to handle
hetero associations. Whereas the autoassociative net stored the outer product of
(x, 4). the heteroassociative net needs to store the outer product of two
nonidentical vectors, (zr, x). Once trained, the heteroassociative network will
produce an output proportional to z, when 4 is present in the input vector.

What happens if the noisy vector matches more than one stored vector?
Then the output will be a weighted sum of the stored vectors (i.e., ambiguous
inputs will produce hybrids of the nearest matching vectors). As more and
more vectors are stored according to the Hebb rule, there will be more and
more ambiguities and the performance of the network will correspondingly
degrade. Indeed, an important fact about all such matrix associators is that they
work very well so long as only a small number of patterns are stored, but their
capacity is limited and they do get filled up surprisingly quickly. To meet this
storage room problem, modifications of the Hebb rule have been proposed
that increase a little the capacity of the network.

The first strategy is to use only a small subset of units to represent any
given item. This is also known as making the vectors sparse (Willshaw 1981). If
there are n units, Wilishaw found that optimal storage occurred when log n
units are used to represent each item. The advantage of making the vectors
sparse is that there is less overlap between representations, and hence a given
network can store a greater number of representations.'5

A second way to economize on space is to normalize the incoming activa-
tion by inhibitory connections, assuming that all the input connections are
excitatory. In a Hebb network, the number of synapses that are most highly
enhanced by an input vector is proportional to the square of the number of
units that the input activates. It follows that by going to a sparse representa-
tion, the number of units activated by any given pattern is reduced. Feedfor-
ward inhibition achieves this by normalizing the total activity so that all input
patterns produce, on average, equal excitation. This achieves an economy
because it prevents a single, highly active input vector from hogging the
synapses.

A third way to increase the capacity of the network is fo introduce a non-
linear threshold for the output units. This means that should the summed
inputs fail to reach a prescribed value, then there is no output. Thus only the
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most strongly activated units produce an output. A sort of cleaning out of
marginal activity is thereby achieved, making room for business that counts.
While housecleaning is not to be scoffed at, what turns out to be really pro-
gressive about adding nonlinearity is that it makes the net far more powerful,
permitting it to perform computations much more complex than anything
a linear net can handle. In other words, a whole panoply of computable func-
tions hitherto impossible for the net becomes within its range. Nonlinearity in
the response functions of the units is the next development in the evolution of
invented nets.

4 CONSTRAINT SATISFACTION: HOPFIELD NETWORKS AND
BOLTZMANN MACHINES

What sorts of problems demand a net with nonlinear properties? Consider the
problem of recognizing an object in a visual image. The object may be in an
unusual perspective, it may be partially occluded in a cluttered scene, lighting
conditions may be poor, or the object may be an individual that has never been
seen before. One of the first steps in visual processing separates the object
from the surrounding clutter. This segregation of figure from ground has
important consequences for the interpretation of an object in an image, as
illustrated in figure 3.12 showing the classical vase/face reversal. Depending
on which part of the image is considered the figure and which the ground, the
silhouette can be interpreted as either as a vase or as two faces in profile. This
also illustrates an important feature of how the visual system deals with ambi-
guity, namely that only one of the interpretations can be perceived at any
given time. Furthermore, one can flip between the two interpretations by
shifting attention. Note that this shift need not be an overt shift in gaze, but
rather an internal attentional shift that at least sometimes is under conscious
control. Could figureground segmentation be performed by a look-up table?

A B C

Figure 3.12 Figure-ground reversal. There are two perceptual interpretations of these images: a
pair of black faces, or a white vase. The perceptual interpretation can be influenced by conscious
attention and biased by features in the image. Thus, the faces interpretation is usually favored in
A and the vase interpretation is favored in C. One interpretation appears to exclude the other
(try to imagine a face "kissing" a vase). (With permission from Coren and Ward [19891. Sensation
and Perception, 3rd ed. Copyright © 1989 Harcourt Brace Jovanovich, Inc.)



The main reason to think it could not is that the solution requires the system
to have a global perspective even though it does not have a "global unit." For
example, the transitions between the face and the vase interpretations seem to
occur coherently over the entire image. This evidently betokens a global com-
putation, but the difficulty is that in the early stages of processing, single
neurons respond only to local regions of the image. That is, early processing is
local processing. The puzzle, therefore, is this: how are these local measure-
ments integrated into a globally consistent interpretation? This type of compu-
tational problem involves the mutual satisfaction of many partial constraints,
and they must be satisfied not serially, for that would lead to impossible
"solutions," but simultaneously, so that a globally coherent solution is found.
Consider, for example, a comer of the object. Local analysis may indicate
two contiguous regions but the relationship between these two regions and
regions in another comer of the object depend on constraints that link over-
lapping patches between these regions. Constraints such as continuity of ob-
jects and three-dimensional geometry of objects often must be incorporated
into the computation to arrive at a consistent global interpretation (Ballard
et al. 1983).

The Gestalt psychologists identified a number of the principles and con-
straints governing the interpretive process. "Gestalts" were taken to be global
organizations that emerged from multiple interactions between features in an
image. For example, in figure 3.13 lines that converge are seen as receding in
depth. Despite identifying some of the constraints governing global interpre-
tation, Gestalt psychologists were unable to produce a convincing mechanism
for applying the constraints and resolving conflicts between constraints in
achieving a consistent interpretation of the image. One of the factors that
makes this a difficult problem is that the number of possible interpretations
explodes combinatorially. Accordingly, a one-shot look-up table would have
to have an impossibly large number of entries to accommodate all possible
shapes. So for this kind of task, at least, the true-blue look-up strategy is
inadequate.

In this section we shall describe a new type of computational principle
that can accomplish the constraint satisfaction by a process of "relaxation."
Rather than looking up a precomputed answer, a parallel system of processing

.............s.........
s..................................

Figure 3.13 This two-dimensional array of dots evokes a strong sense of depth. Information
about depth is provided by perspective (converging lines of dots) and texture (change in dot
size). (From Gregory [1970]. The Intelligent Eye. New York: McGraw-Hill.)
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units converges through local interactions to the correct global interpretation.
As suggested earlier in discussion of the superior colliculus, however, this does
not mean that a look-up configuration would exclude constraint satisfaction
processesthere may be ways of merging the two. In addition, there is a
natural way to incorporate top-down constraints from stored knowledge into
the bottom-up flow of sensory data (see Chapter 5).

The linear associators described in section 3 have a feedforward topology;
i.e., the information flows from input units through to output units. To do
constraint satisfaction in a network, however, the topology has to be changed.
In particular, it has to be changed to allow information to circulate among the
output units so that the units can arrive at a mutually consistent answer. This
means feedback. Feedforward nets are like a hierarchical assembly line: the
basic components are made and passed on, the stage 2 components are assem-
bled, then the stage 3 assembly is done, and the widgets pop out the delivery
chute. In a feedback arrangement where there is communication between
agents, there can be cross talk and plan revision, intermediate decisions can be
tendered, and a mutually agreeable solution can be found. The nets featured
in this section will have two new properties: feedback and nonlinearity (figure
3.14).

w1

Inputs w2

Inputs

Weights

Summing NonlinearityJunction

Output

Figure 3.14 Nonlinear feedback network. (a) Each processing unit performs a nonlinear opera-
tion on the linearly weighted sum of its inputs. (b) Diagram of recurrent network Each unit
receives inputs from outside the network and feedback connections from other units in the
network. Each intersection of a horizontal line with a vertical line (large filled dot) represents a
weight.



Networks with feedback connections can have a wide range of dynamics,
including oscillating solutions and chaotic behavior. Two difficult questions
must be confronted in building nets to solve constraint satisfaction problems:
(1) how can the weights be adjusted bit by bit to embody the task constraints?
And (2), if the net is left to run, will it find a stable configuration that represents
the desired solution? Both questions grow alarmingly complex in the case of
nonlinear nets with feedback.

Nets, in contrast to digital computers running programs, are set running
without any specification of intermediate steps. Rather, one relies on the dy-
namics of the net to take it to a stable state. Consequently, whether the net is a
successful net depends on whether the dynamics of the units' interactions
allow it to converge on the solution. But, and here is the kicker, how can one
know whether it is a successful netmaybe its failure to converge so far just
means it has a long and drawn-out "settling" schedule. The trouble is that the
nature of the interactions between representations in nets displays no obvious
orderliness, and in the early days of nets, a theory to explain and predict their
behavior was essentially nonexistent. In 1982, John Hopfield showed, for a
particular class of feedback networks, that their dynamics is such that conver-
gence to a solution could be proved.16 Additionally, his insights opened a line
of research that eventually led to powerful solutions to the problem of how to
adjust weights in a feedback net.

Hopfield's results were actually very surprising because he applied the tools
and techniques of theoretical physics to the ostensibly different business of
computation by nets. Hopfield's question was this: might the interactions be-
tween representations in nets that end up delivering an answer to a question be
described by the same laws that describe the behavior of certain systems in
physics? "Not likely" seems the first-blush answer, since there is no intuitively
obvious reason to suspect that the regularities of computational interaction and
regularities of physical interaction should be even formally similar. Hopfield's
hunch, however, was reverse. If he was right, then network models, or al least
one class of them, would be gifted with a whole parcel of powerful theory for
free. Some order in the confusion might then be forthcoming.

Most physical systems do not recommend themselves as displaying behav-
ioral regularities suitable to the computational context. To have properties
analogous to computational states of a net, a system needs a richness of states
comparable to that of a net. The prototypical model of a magnetic substance is
a well-behaved lattice in which particles interact rather straightforwardly with
their neighbors so that at a low temperature all the particles are spinning up or
all are spinning down. In other words, local interactions between particles lead
easily to a single global "solution." A consequence is that a given lattice can
only store one bit of information, and indeed this is the principle exploited by
core memories in early digital computers. The simple lattices are, however, a
poor analogy for how a network might store information, precisely because
they lack a rich range of stable states.

It turns out that spin glasses are an unusual kind of substance that do have a
suggestive richness, and it was from spin glasses that Hopfield drew his regu-

85 Computahonal Overview



86 Chapter 3

Annealing

11 >

High Temp Low Temp

Mean Field Approximation

m
Figure 3.15 Annealing (top) and mean field approximation (bottom) in the 2-D Ising model
representing states for each lattice site in a ferromagnet. The Ising model consists of a lattice of
spins, each of which can be either up or down. Each spin can interact with its nearest neighbors
such that the state with the lowest energy has all the spins lined up in the same direction. (Top)
At a high temperature 'the directions of the spins are random because the thermal energy causing
the fluctuations is much larger than the interaction energies, but as the temperature is reduced,
the spins become aligned to the same direction. In this ground state the collection of spins
behaves like a magnet. In a spin glass model the interactions can be negative as well as positive
so that the ground state does not have all the spins pointing in the same direction. At intermedi-
ate temperatures the behavior of the system can be complex because of the many combinations
of interactions that can occur. (Bottom) The mean field approximation replaces the sum of the
local interactions with a single, average field. This approximation ignores corrections that arise
from the fluctuations of the local field from its average. In a Hopfield network with binary units
(only values of O and 1), the mean field approximation replaces the binary unit with a unit that
has continuous values between O and i. (Adapted from Hertz, Krogh, and Palmer [1991[. Inkro-
duction to the Theory of Neural Computation. Copyright © 1991 Addison-Wesley, Redwood City,
CA.)

larities and equations. A spin glass is characterized by particles with spin, either
up or down, in mixtures of attractive and repulsive interactions (figure 3.15).
Suppose the spin glass starts at an excited stateat a high temperature. If the
spin glass is rapidly cooled, the physics of the system are such that if "seeks"
the nearest local energy minimum. Unlike a spin system in which all interac-
tions are attractive, yielding a single energy minimum (all spins pointing in the
same direction), spin glasses have many local energy minima owing to the
mixture of interactions, attractive and repulsive. This property of spin glasses
is called "frustration," to reflect the inability of the system to come to a unani-
mous decision but rather to end up in pockets of conflicting decisions. As we
outline below, inherent in the dynamics of the physical system of interacting



spins are the properties that enable it to represent and compute. The next step
is to design nets that mimic spin glasses in the relevant dynamical respects,
with their computing and representing properties more firmly in hand. As we
show below, Hopfield's solution to the decision problem is to lay the grid of
equations describing the cooling of spin glasses on the settling of networks
into a stable configuration.

The units in the Hopfield net have two states, on (1) and off (0), just as the
electrons can spin up or down (Amit 1989). Let s be the state of unit i. The
connections between units are symmetrical, such that if unit j is connected to
unit i with strength w, then there is a reciprocal connection of equal strength
connecting i to j. Thus:

lo = tLj (4)

The energy of the system, defined by analogy with that of spin glasses, is:

E = - wss (5)

Roughly, the energy E is simply the sum of all of the weights connecting units
which happen to be on, scaled, and inverted in sign, so that the network has
the same formal properties as those of a physical system.'7

What does relaxation involve? The basic way to think of it is as an algorithm.
"Pick any unit at random, flip it; i.e., change its O or I value. If the overall effect
is to lower the energy level of the net, accept the change; otherwise refuse it.
Do this again and again to arbitrarily chosen units until no single flip of a given
unit will reduce the energy level of the entire net." A little more formally,
suppose that the net is in some given state {s}, where each of the units is
assigned a value of O or 1, and the corresponding energy of the net is given by
E in eq. (5). If one of these units, s, has a current value 0, then it makes no
contribution to the total energy level. If its value is now changed from O to 1,
then E changes by which is given by the following equation:

AE = - WSj (6)

If the change to the single unit should decrease energy so that AE < 0, i.e.,

if ws >0 (7)

then this change will be accepted and the system has a new global state with
an overall lower energy (figure 3.16). This is precisely the update rule for binary
threshold units in a net. It reflects the traditional view that neurons do not spike
unless their total input at a given moment exceeds some threshold. The units in
a Hopfield net are updated asynchronously, one at a time. This is a determin-
istic update rule, but choice of the next unit to update is stochastic. If an extra
term is added to the energy equation to represent the threshold O. for each
neuron, then:

E= (8)

The term on the right adds a tilted plane to the energy landscape; that is, the
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Figure 3.16 The dynamics of a Hopfield network in state space is visualized. All possible states
of the network are represented by points in an xy plane, and the height of the surface is the
energy of the corresponding state of the network. At each time step the state of the network
moves downhill in the energy landscape. (From Hertz et al. 1991.)

energy is incremented by the values of the thresholds of all the units that are
currently active. This is analogous to adding an external magnetic field to the
spin glass.'8

With repetition of the update procedure, picking one unit after another and
changing its value from O or 1, the global energy state of the system continues
to decrease. This cannot proceed forever, of course, because the energy has a
lower bound. It therefore follows that in a finite number of steps, which typi-
cally is a handful of interactions through all the units, the network converges
to a stable state. The energy of the stable state is a local energy minimum,
because what "energy minimum" means is that flipping any single unit would
increase the energy of the system. The minima are called "attractors" because
there is a basin of states around each minimum all of which will converge to
the same minimum, as shown in figure 3.17.

Hopfield saw that the local energy minima in spin glasses could be a physi-
cal embodiment of prototypes in associative memory. Thus if we make a net
with the formal properties of a spin glass, and we designate attractors to be the
prototype vectors, then when the network is given a vector-completion job,
we know from its spin glass template that the net has the dynamics to com-
plete the input pattern. This is a bit like saying that since we know the dynam-
ical properties of a granite ball rolling down a hill, then a rubber ball
rolling down a wooden inclined plane will have relevantly similar dynamical
properties.

This formal analogy between the thermodynamics of spin glasses and the
dynamics of Hopfield nets has a number of important consequences. First, we
get for free the powerful theoretical framework developed by physicists for
analyzing such systems. Issues concerning the capacity of the network to store
prototypes and the probability of correctly retrieving the desired prototype
are consequently more manageable. Second, the framework invites visualiza-



Figure 3.17 Convergence of a network to stable local minima from different starting points.
Each point in the plane is a state of the network. The energy landscape has "basins" that will
'attract" the state of the network, as illustrated by the trajectories. The process of reaching the
stable states at the bottoms of the basins is a form of relaxation, or pattern completion through
relaxation. (Adapted from Hertz et al. 1991.)

tion of the dynamics of networks as trajectories in high-dimensional land-
scapes, In other words, the geometric representation of the state transitions
gives the visual imagination something to feed off, and invites an exploration
of extensions of the basic idea. Using the dynamical framework, we can begin
to bring nonlinear networks to heel; that is, fo understand their capabilities,
and most important, to give us insight into how best to design networks to
solve particular computational problems (figure 3.18).

In the original Hopfield nets, only transitions to states of lower energy are
admissible, which guarantees convergence only to a local minimum. How can a
net be designed to find the global minimum? The trick, it turns out, is to permit
an increase in the energy, but only in a restricted way. The best strategy for
achieving this was provided by Kirkpatrick et al. (1983), who invented the
technique of simulated annealing for global optimization. Crudely speaking,
annealing is the process of heating a material such as a metal or glass to a high
temperature, then gradually lowering the temperature. The result is that the
substance forms crystals. If the annealing process is gradual enough, the mate-
rial will end up at its global energy minimum. For metals, slow annealing
leaves the metal ductile. In contrast, quenching the material by sudden cooling
leaves the material in a local energy minimum, perhaps far from the global
minimum. Typically, fast annealing produces a brittle state (e.g., steel) that may
have other properties such as taking an edge.

To design a network to find the global minimum, we want the networks to
copy the dynamics of annealing. So we first do the formal analog of heating it
up, and then letting if slowly cool. In the informational context the analog of
annealing requires a new update rule (rule for specifying what a unit's next
state is, given its current state and its input) which will prevent the network
from getting stuck in a local minimum. Such a rule is:

If AE is the energy gap as expressed in eq. (6) for state s of a unit i, then set
s to I with the probability p given by
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Figure 3.18 Three examples of pattern completion by a Hopfield network. Seven different
images were sorted in a single network, where each unit represents a pixel in a 130 X 180 array.
Input patterns are the images shown in the left column, intermediate states in the middle column,
and final states in the right column. In the top sequence, a spider emerges from a noisy image. In
the middle sequence, a bottle in one half of the image is used to retrieve a paired bottle. In the
bottom sequence, the complete image of a dog is retrieved from a small patch of its ear.
(Adapted from Hertz et aI. 1991.)

(9)

where T is the effective temperature of the system (figure 3.19). At very high
temperatures, this probability approaches 1/2, and all states in the system are
equally likely. As the temperature approaches O, the sigmoid curve for the
probability gets steeper and steeper and approaches a step function which is
the binary threshold rule used in the original Hopfield network. Notice, there-
fore, that the Hopfield network corresponds to a system that is quenched to
zero temperature.

Relaxation of the net amounts Fo imposing a dynamics where states of
the units change according to the update rule. Thus, the lower the energy
of a state, the the more probable it is that the fluctuating system will be in
that state. This follows as a theorem from statistical mechanics, based on the
Boltzmann distribution, hence the name of the net of this configuration, the
Boltzmann machine. If enough updates are performed at temperature T Fo
reach an equilibrium (the system is fluctuating around its average energy), then
the probability of a global state with energy E. is given by:
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Figure 3.19 The output of a binary unit depends on its inputs and on the output rule (middle).
For a unit in a Hopfield network, the output is I if the sum of the weights from input units that
are active, LE, is greater than O, and O otherwise (top). This is called the binary threshold rule.
For a unit in the Boltzmann machine, the output value is I with a probability given by a sigmoid
function of tE (bottom). The input is scaled by the temperature T. (From Kienker et al. [1986].
Separating figure from ground with a parallel network. Perception 15: 197-216.)

cx: (lo)

It follows that the lowest energy state is the most probable, and that this state
becomes increasingly probable as the temperature is lowered. Thus, at the end
of the slow annealing process, with very high probability (approaching I) the
system will be at the global energy minimum.

This architecture was used by Hinton and Sejnowski (1983, Ackley et al.
1985, Kienker et al. 1986) to study problems in perception that require a global
minimum. They called this the Boltzmann machine, reflecting formal equiva-
lence between Ludwig Boltzmann's contribution to statistical mechanics and
the network's dynamical properties. Independently, Hopfield and Tank (1985)
developed a similar approach to optimization using continuous valued units
rather than the binary units deployed in the Boltzmann machine. What is the
relation between these two networks, given the choice between binary and
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continuous values? At equilibrium, the units of a Bolfzmann machine fluctuate
on and off with a probability that depends on the average of the fluctuating
input values. The mean of these fluctuations during a certain time interval
represents the probability that the unit will have the value 1, and this probabil-
ity is a continuous valued number between O and 1. Hopfield and Tank used
these continuous probability values as the activation values of the units. This is
the heart of the connection between the two nets. Eqs. (S)(10) can, therefore,
be solved for continuous valued units, in which case the result is called "the
mean field approximation" (figure 3.15). Hopfield and Tank showed that the
mean field approximation could be applied successfully to a large variety of
classical optimization problems, including very difficult ones such as the travel-
ing salesman problem and finding the minimum wire lengths for creating inte-
grated circuits and even nervous systems.19

Now, it has been shown mathematically that finding the best solution to
such problems is difficult in the extreme, so the pressing question is whether
nets do indeed find the best: solution. The answer is generally "no" for the
Hopfield and Tank network. This is not as disappointing as one might surmise,
however, since these networks often find good solutions very rapidly, even if
they typically do not find the uniquely best solution. A Boltzmann machine, in
contrast to the Hopfield and Tank network, is guaranteed to find the global
minimum, so long as it is cooled slowly enough (Geman and Geman 1984).20
Nevertheless, depending on the situation, it may be more efficient to cool the
network at a moderate rate and go with a "just-fine" solution than to wait
around for the Boltzmann machine to settle into the best. The optimal rate of
cooling will be different for each network.

Using statistical mechanics to analyze a network and prove that if can find
solutions to global optimization problems is a beautiful mathematical result.
What good is it computationally? Given that the dynamics of a Boltzmann
machine conform to the dynamics of annealing, of this much we cari be certain:
it will search the energy landscape and find the global energy minimum. If the
network is representing an instance of an optimization problem (e.g., what: is
the shortest line connecting all the dots with no redundancy?) and the output
values are representing the solution, then the dynamics guarantee that the answer
is forthcoming. Since optimization problems are difficult to solve, and the more
variables the more horrendous they become, this is a very useful result. As we
shall see below, it is the key to developing rules for automatized weight-
setting in a net and it is also the key to using model nets as a tool for analyzing
real neural nefs. As we shall also see, there is an additional practical matter of
how long the process takes.

A brief aside: notice that in the Boltzmann machine, matters of computation,
of algorithm, and of implementation are not really separable. It is the very
physical configuration of the input that directly encodes the computational
problem, and the algorithm is nothing other than the very process whereby
the physical system settles into the solution. This contrasts rather vividly with
the standard separation of hardware and algorithm in digital computers.21



How does this framework help with the weight-adjusting question raised
earlier? This needs a bit of stalking, so we shall advance by going back to the
problem of separating figure from ground in a visual image. Recall that the
problem is to identify which parts of an image belong to the figure and which
to the background. A watered-down version of this problem, suitable for the
context at hand, is this: suppose the stimulus consists only of boundary lines of
an object, perhaps with gaps and noise; suppose also that there is an initial bias
that latches on to either the general location of the inside of the figure or the
general location of the nonfigure. This version of the problem assumes that the
difficult task of deciding what in the stimulus constitutes a boundary has al-
ready been solved and the remaining problem is to decide, for any given patch,
whether it is figure-inside or figure-outside (ground). This residual taskthe
segregation taskis by no means trivial, since a decision that a local patch is
figure-inside depends on the status of patches elsewhere, even patches at con-
siderable remove. This means that a globally consistent solution is required of
the net. To display its results, the net "colors in" the pixels inside the figure,
leaving the area outside the figure uncolored. How can the machine figure out
what pixels to color?

This is the kind of global problem that relaxation nets should be able to
solve through local interactions between neighboring units. Just such a net-
work was constructed fitting the Boltzmann machine design. Given the simpli-
fications to the problem, there are just two variables to represent: (a) locations
of boundaries, and (b) i belongs to figure (and its negation, "i does not belong
to the figure," which is equivalent to "i belongs to the ground"). The states of
the machine can be displayed as a stack of two-dimensional, in-register grids,
one composed of "edge" units and the other of "belongs-to-figure" units (fig-
ure 3.20). "Edge" units have a pointer to specify which direction is "in," and
they have orientation, either horizontal or vertical. "Belongs-to-figure" units
fill in their space. The output is essentially a topographic map of the image, in
which every pixel is either filled in or not, and for each pair of pixels, either
there is a boundary or not.

The weights in the network are then chosen to reflect the relationships
between the "hypotheses" specifying "edge here" or "belongs to figure." Thus
units representing two nearby patches of an image are connected with recipro-
cal excitatory connections, say of strength + 10, thereby instantiating the
property of objects to be continuous across the image. Edge units have excita-
tory connections with the unit it points toward (+ 12), with two flanking units
(+ 10), and reciprocal inhibitory connections with the unit it points away from
( 12). In addition to connections between units, there are connections from
sensory inputs that bias the edge units along the boundary of the figure. There
is also an attentional bias, which activates figure units near the center of the
figure. This tells the net on which side of the boundary to color-fill. To switch
figureground, the bias shifts so that the net fills the counterpart set of pixels.

The weights embody the constraints of the problem, in this case, object
continuity across space, and object discontinuity at boundaries. Interactions
between units are such that the final decision about whether a patch belongs to
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Figure 3.20 Schematic diagram of a figureground network using layers of binary units. Each
layer is an array of units that are interconnected within and between layers. The edge units
receive "bottom-up" activation at the locations of contrast boundaries in the image (shown
below), and the figure units receive "top-down" activation from a Gaussian "spotlight" of
attention (shown above). During the relaxation process these two inputs are maintained at
constant values. (From Kienker et al. 1986.)
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Figure 3.21 Summary of the connections and weights for the figureground network. (a) Each
figure unit (square) is reciprocally connected to each of its eight nearest neighbors by an excita-
tory weight (+ 10). (b) Each edge unit (arrowhead) points in the direction of the figure and has
excitatory connections with the figure unit it points toward (+ 12) and two flanking units
(+ 10), as well as having inhibitory connections with the figure unit it points away from ( 12)
and the two flanking figure units (-10). (c) Two edge units that represent figures on opposite
sides of the contour mutually inhibit each other (-15) to implement the constraint that the
figure can be on only one side of the boundary, not both. In addition, there is excitation between
adjacent edge units with the same orientation. This pattern of connectivity is repeated through-
out the array. (From Kienker et aI. 1986.)
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Figure 3.22 States of the figureground network at successive stages during simulated an-
nealing: high temperature in (a), medium temperature in (b), and low temperatures in (c) and (d).
The attention is centered on the waist of the C in (a)(c) and is located outside the C in (d). In the
final state, the figure units are uniformly filled up to the boundary, and the edge units at the
boundaries are all pointing toward the figure. (From Kienker et al. 1986.)

the figure is made only after balancing all of the evidence from other units
connected to it by positive and negative weights. Figure 3.21 illustrates more
exactly how such a network can be constructed and the weights set.

The visual input to the network specifies the boundary of an object much as
oriented cells in the cortex would be activated by luminance boundaries. The
goal of the network is to decide which regions in the image should belong Fo
the figure and which to the ground. The network starts at a high temperature,
where all the figure units have a roughly equal probability of being activated.
As the temperature is lowered, the figure units have a tendency to cluster
together because of the excitatory weights connecting them. These clusters
will dissipate unless they are stabilized by a bounding contour (figure 3.22).
Whether the inside or the outside of the boundary is filled in depends on where
the "spotlight of attention" biases the figure units, as shown in figure 3.22(c)
and (d). This annealing procedure is successful in segmenting these simple
images because the correct global configuration of figure and edge units is in
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¿(1
Figure 3.23 Image of a figure with an incomplete outline that may sil1 be perceived as a familiar
object. (With permission from Coren and Ward [1989]. Sensation and Perception, 3rd ed. Copy-
right © 1989 Harcourt Brace Jovanovich, Inc.)

fact the state of the network with the lowest energy. The procedure is also
forgiving, in the sense that the network will fill in properly even should the
input be somewhat degraded, that is, should there be a few gaps in the bound-
ary. In this respect, it resembles human perception (figure 3.23) (Mumford et al.
1987).

This network is an instance of a more general computational approach
known as "relaxation labeling" that has been applied to a variety of problems
in computer vision (Waltz 1975, Hummel and Zucker 1983). In the figure-
ground example of constraint satisfaction performed by a Boltzmann machine,
the weights on the units were set by hand, meaning that the modeler had
to figure out by rather long and laborious trial-and-error procedures what
weights were needed to ensure that the global energy minimum really is the
solution for any figureground problem. Ideally, what one would like is an
automated procedure for setting weights, perhaps triggered by showing the
network examples of questionanswer pairs, and then letting it "figure out"
what weights would do the job. How could a network do that? How could a
network automatically adjust its weights appropriately?

5 LEARNING IN NEURAL NETS

Learning22 algorithms for automated weight-setting in networks come in two
basic molds: supervised and unsupervised. The basic difference concerns



whether the net infers a weight modification from a report on its behavioral
performance. Supervised learning relies on three things: input, the net's inter-
nal dynamics, and an evaluation of its weight-setting job. Unsupervised learn-
ing uses only two: input, and the dynamics of the net; no external report on its
behavior vis-a-vis its weight-setting progress is provided. In either case, the
point of the learning algorithm is to produce a weight configuration that can
be said to represent something in the world, in the sense that when activated
by an input vector, the correct answer is produced. Nets using unsupervised
learning can be configured such that the weights embody regularities in the
stimulus domain. For example, if weights are adjusted according to a Hebb
rule, then gradually, without external feedback and with only input data, the
net structures itself to represent whatever systematicity it can find in the input,
such as continuity in boundaries. This means that unsupervised nefs are useful
in creating feature detectors, and consequently unsupervised nefs can be the
front end of a machine whose sensory input must be encoded in some perspic-
uous fashion before it is sent on for use in such tasks as pattern recognition and
motor control.

We emphasized that unsupervised learning has no access to external feed-
back, and we now take up the possibility that it nevertheless allows for infernal
error feedback. Because there is a confusion in the literature concerning error
feedback and the convention for applying the label "supervised," we propose
explicit labels for the distinction between external and internal feedback. When
the feedback is external to the organism, the learning is called "supervised";
when there is an infernal measure of error, we call the learning "monitored"
(figure 3.24). Consider, for example, a net required to learn to predict the next
input. Assume it gets no external feedback, but it does use its previous inputs
fo make ifs predictions. When the next input enfers, the net may be able to use
the discrepancy between the predicted input and the actual input to get a
measure of error, which it can then use to improve its next prediction. This is
an instance of a net whose learning is unsupervised, but monitored.23 More
generally, there may be internal measures of consistency or coherence that can
also be internally monitored and used in improving the internal representation.
The confusion in the literature is owed in part to the fact that the very same
algorithms used for supervised learning can be suitably internalized for moni-
toring. Clarity of the semantics is especially important in discussing feedback
modes in nervous systems, where certain kinds of supervised learning may be
unbiological, but error detected by a monitor in one part of the nervous system
is a plausible teaching signal for another part of the nervous system.

Is there a type of system that acquires organization even though it is neither
supervised nor monitored? In real nervous systems, some aspects of develop-
ment, such as establishing connections between nerve cells, might be consid-
ered candidates for self-organization of this kind. In models with unsupervised
learning, such as competitive learning, it initially appeared that no infernal
objective function served as a monitor. Subsequent analysis has shown, how-
ever, that objective functions can be found for each of these models. Optimiza-
tion of these implicit functions is responsible for the ability of the network fo
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FEEDBACK MODES

SUPERVISED UNSUPERVISED
(EXTERNAL) (NO EXTERNAL)

UNMONITORED MONITORED MONITORED UNMONITORED
(NO INTERNAL) (INTERNAL) (INTERNAL) (NO INTERNAL)

Figure 3.24 Taxonomy of learning procedures. Supervised learning occurs when there is feed-
back on the performance of the system from the external environment. If the feedback is a scalar
reward, it is called reinforcement learning. The learning is called monitored if the system has an
internal measure of error. These distinctions refer to the system and not the algorithms used;
thus backpropagation of error, which is normally used in supervised, unmonitored (S& M)

systems, couid also be used in an unsupervised, monitored (-' S&M) system. For example, a
feedforward net with fewer hidden units than input units can be trained to reproduce input
patternsa form of image compression (Cottrell et al. 1987). A more sophisticated example of
an -' S&M net uses information-theoretic measures internal to the net to train the hidden units
to predict the values of neighboring hidden units (Becker and Hinton 1989). An example of a
supervised, monitored (S&M) system is the associative search network with internal predictors
(Barto et al. 1981). In this system, the internal predictor learns to anticipate the reward; the
difference between the predicted reward and the actual reward is used to adjust weights to
hidden units. The internal monitor can be quite a sophisticated high-dimensional error signaL as
in motor learning when a distal measure of performance (missing the basket) is used for adjusting
a complex motor program (jump shot) (Jordan and Rumelhart 1990).

organize itself into a computationally successful state (Durbin and Wilishaw
1987, Linsker 1990b). The conjecture, therefore, is that all successful self-
organizing systems, including biological ones, have an implicit objective func-
tion that is optimized during the learning process (Sejnowski 1987). For an
example, see section 5.9 on the development of ocular dominance columns.

Supervised learning comes in various grades as a function 0f the report card
format. The report-card may (1) merely say "Good answer" or "Bad answer"
(Sutton and Barto 1981, 1990), (2) specify a measure of the size of the error
with some degrees of precision, or (3) give rich detail, saying, in effect, "You
said the answer was abcd; the answer should be ahcp." Given the range avail-
able in (2), this allows a continuum of report-card formats. Regardless of the
format of the report card, the point of feedback is to give the net opportunity
to reduce the error in its output.

In the original Hopfield nets, the learning rule was an update rule in the
Hebbian mold. The problems given the net were, however, carefully chosen to
be solvable by it. The class of problems solvable by these nets using the Hebb
rule is rather narrow, embracing only first-order statistical problems. That is,
problems where the question is "do feature A and feature B correlate?," which
in machine terms means "are the A-unit and the B-unit on together and off
together?" Problems beyond its scope are higher-order statistical problems,
e.g., "what is the correlation story for {A, B, C, D}, or for {EF, EH, GH}?" Go-
ing beyond these narrow limitations is desirable, since many problems cannot
be solved using only lower-order statistics. To target high-order problems, the



basic architecture of the machine must be expanded to include units that inter-
vene between external input and behavioral output. Called "hidden units,"
they typically connect to the input units, to each other, and to output units
when there are any. Adding one or more layers of hidden units allows the
net to handle high-order statistics, for, crudely speaking, the extra set of con-
nections and extra dimension of interactions is what permits the net a global
perspective despite its local connectivity.

The ability of hidden layers to extract higher-order information is especially
valuable when the number of input units is large, as it is, for example, in
sensory systems. Suppose an input layer has n units in a two-dimensional
array, as does the retina, or a one-dimensional array, as does the cochlea. If the
units are binary, then the total number of possible input patterns is 2's. In fact,
neurons are many valued, so the problem is really somewhat worse. Suppose
all patterns (state combinations) were equally likely to occur, and suppose one
hidden unit represents exactly one input pattern. This would make it possible
to represent any function in the output layer by suitable connections from
hidden units. The trouble arises when n is very large, e.g., a million, in which
case the number of possible states is so large that no physical system could
contain all the hidden units. Since not all possible input patterns are equally
likely, only a very small subset of all possible input patterns need be repre-
sented by the hidden units.

Accordingly, the problem for the hidden units is to discover what combina-
tions of features are ignorable, which features systematically occur together or
are otherwise "cohorted," and among those, which are the combinations to
"care" about and represent. The information for this last task cannot be gar-
nered from inside the net itself, but must be provided from the outside. The
division of labor in a net with hidden units looks like this: unsupervised learn-
ing is very good at finding combinations but cannot know which subset to
"care" about; supervised learning can be given criteria to segregate a "useful"
subset of patterns, but it is less efficient in searching out the basic combina-
tions. So by means of unsupervised learning, a basic sorting is accomplished;
by means of supervised learning, a subset of basic combinations can be ex-
tracted as the "useful" ones.

As the net runs, hidden units may be assigned states according to either a
linear or a nonlinear function. If thç hidden units are linear, there is an optimal
solution called the principal components24 (figure 3.25). This procedure can be
used to find the subset of vectors that is the best linear approximation to the
set of input vectors. (As we shall see in chapter 5, in a model devised by Miller
and Stryker (1990) for development of ocular dominance columns in visual
cortex, Hebbian learning finds principal components.) Principal component
analysis and its extensions are useful for lower-order statistics, but many of the
interesting structures in the worldthe structures brains "care" aboutare
characterized by high-order properties. If luminance is taken as the 0th order
property, then boundaries will be an example of a first-order property, and
characteristics of boundaries such as occlusion and three-dimensional shape
will be higher-order properties. Nonlinear hidden units are needed to represent
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Figure 3.25 A feedforward, unsupervised network that performs principal component analysis.
The input vectors, represented by dols in the plane, form two elongated clusters. The first
principal component direction, along the line A, is the projection that maximizes the variance of
the inputs. Discriminating along this direction is likely to be helpful in separating inputs into two
or more classes. The direction of the second principal component, B, is the axis with maximum
variance in the subspace orthogonal to A. These directions can be easily extracted from the
inputs by the network below, which uses a modified form of the Hebbian learning rule on the
feedward weights (Oja 1982) and an anti-Hebbian learning rule on the lateral connection be-
tween the output units (Rubner and Tavan 1989, Leen 1991). Following learning, the weights to
each output unit correspond to the direction of a single principal component. Moreover, multi-
layered networks with localized receptive fields can successively extract more complex features
from the input space (Linsker 1986, Kammen and Yuille 1988). (From Hertz et al. 1991.)

these higher-order properties. If hidden units are to self-organize so that they
can represent these properties, procedures more poweful than principal com-
ponent analysis must be found.

How then should weights of hidden units be adjusted so that the net can
do higher-order problems? Finding a suitable weight-change rule looks really
tough, because not only are the units hidden, but they may be nonlinear, so trial
and error is hopeless, and no decision procedure, apart from exhaustive search,
exists for solving this problem in general. Moreover, any solution to the
weight-adjustment problem depends critically on the architecture and dynam-
ics of a given net. For most architectures and dynamics, the solution is simply
not known.

In the specific case of the Boltzmann machine, however, a procedure where-
by its nonlinear hidden units can learn to extract higher-order properties is
known. The crux of the procedure depends on Boltzmann machines having an
interesting property at equilibrium, namely their states have a Boltzmann dis-
tribution, eq. (10), which gives, for any global state of the system, the probabil-
ity of that state occurring at equilibrium. This means that at equilibrium we
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Figure 3.26 Schematic diagram of a Boltzmann machine. The units in the network have binary
values and the connections between them are reciprocal. The weights on the connections can be
trained by presenting patterns to the input units in the presence and the absence of output
patterns and applying the Boltzmann learning rule. During the learning process, all of the
weights in the network are modified, including those among the hidden units, which do not
receive direct information from outside the network. The hidden units develop features that
allow the network to perform complex associations between input patterns and output patterns.
Hidden units give Boltzmann machines powerful internal representations not available to net-
works containing only visible units.

know the global consequences of any local weight change (which will change
the energy). Now take the converse of this rule, and we have, for any desired
global state, a simple procedure for increasing the probability of that state
occurring by changing a weight locally.

It is important to emphasize that all the globally relevant information
needed to update the weight is available locally. This may seem contradictory,
given that units may be connected only with their immediate neighbors. It is,
however, a simple consequence of the net's connectivity: a unit's neighbors are
connected to its neighbors, who are in turn connected to all their neighbors,
and so forth. Given the connectivity and the Boltzmann distribution at equilib-
rium, it is guaranteed that information from synaptically distant units is propa-
gated throughout the net. The weight modification rule, therefore, is:

= C[<SjSJ>clamped - <5i5j>ree] (11)

where e is the rate of learning, s is the binary value of the ith unit, and K...>
indicates that the quantity... should be averaged over time after the network
has reached equilibrium.25 In the clamped condition, both the input and output
units are fixed to their correct values, and in the free condition, only the inputs
are so fixed (figure 3.26). This is in the supervised mode; in unsupervised mode,
none of the units is fixed in the free condition.

Each application of the learning rule is a cycle with three steps: (1) clamp
value of inputs, let machine come to equilibrium in the clamped condition, then
compute co-occurrences of pairs of units; (2) compute co-occurrences of states
in the absence of the inputs (unclamped condition and let the machine find
equilibrium again); (3) subtract the two, and adjust the weight proportionally
to the difference (the compare condition). Although the net is certain to learn
correctly, the drawback is that it requires many, many three-step cycles to
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learn one input pattern, and it must repeat this for every input pattern it is to
learn.

We have seen how a Boltzmann machine could do pattern completion, in
that once trained-up, if the net were given an incomplete pattern as input, it
would go into a state representing the complete pattern. Can we get it to do an
inputoutput mapping? Yes, and here is how to move from an unsupervised
Boltzmann machine to a supervised Boltzmann machine without changing
architecture or algorithm but only by "externalizing" the feedback. First, arbi-
trarily split the array of input units into two groups, A and B. The only
procedural modification consists in feeding group A the same input pattern #
during both the clamped phase and the compare phase. The second group, B, of
input units is more conventional; it is fed its pattern only during the clamped
phase. In effect, then, the hidden units are coming to associate pattern # with
pattern '. This can look like pattern completion on the part of the hidden units,
but because the hidden units also have reciprocal connections to the inputs, it
can look like the hidden units give output for input #. That is, think of the
hidden-to-group-B input connection as a kind of output. Then we have the
arrangement whereby in the trained-up net we can feed the net #, and via the
hidden reciprocal connection pattern appears in group B. This means that
group B is, for all intents and purposes, an external teacher, telling the net
(during group B's clamped phase) what new thing to associate with #.

It takes only one counter-example to sunder an impossibility claim. Boltz-
mann learning in a net with hidden unitsand even with nonlinear hidden
unitswas a counter-example to the received wisdom according to which
the learning problem for multilayered networks was intractable (Minsky and
Papert 1969). With the door open, weight-adjusting rules other than that used
in the Boltzmann machine were sought. It is now clear that there are many
possible solutions to the weight-adjusting problem in a net with hidden (and
possibly nonlinear) units, and other solutions may draw on nets with a differ-
ent architecture and with different dynamics. Thus nets may have continuous
valued units, the output function for a unit may have complex nonlinearities,
connections between units need not be symmetric, and the network may have
more interesting dynamics, such as limit cycles and constrained trajectories.
Weight-adjusting problems are really solved by an ordered triple: <architec-
ture, dynamics, parameter-adjusting procedure>. In the final section of this
chapter we shall outline a very general approach to handle all of these cases.

6 COMPETITIVE LEARNING

Because including a "teacher" as an adjunct to a network is informationally
expensive, not to mention biologically unrealistic, it is important to explore
the domain of unsupervised learning procedures. As a first pass, a rule of
thumb for identifying those features in the sensory input stream that are likely
to be useful in categorizing is this: the more frequently a feature occurs in
various input vectors, the more likely it is to be salient in categorizing an input
as belonging to a certain class. For example, if for a certain bottom creature the



presence of predators typically co-occurs with a looming darkness, then if
would make sense for units in the network fo extract changes in intensity at all
possible locations in the visual field and represent them in its output. Extract-
ing what is criterial rather than performing all-feature coverage also has an
obvious advantage for image compression where the goal is fo represent an
image with the fewest bits of information. Thus, if boundaries of objects are
marked by discontinuifies in luminance, then a network might most efficiently
represent objects by allowing a single unit to represent a long length of lumi-
nance border. In short, if is cheaper fo represent a stretch of border with a
single unit rather than have many units representing small segments of a
straight border. In this sense we get information compression.

In addition to the Bolt zmann style of unsupervised learning, other kinds of
interactions can self-organize so that the network embodies compressed repre-
sentations.26 Consider a simple two-layer network with a set of input units,
and one layer of weights connecting them fo a set of output units, laterally
connected by mutual inhibition. This arrangement is competitive in the sense
that the mutual inhibition will create a winner-take-all profile at the output
level: if an input pattern happens to excite unit 1 fo a greater degree than any
of the other output units, then unit l's consequent activity will tend to sup-
press the others to a greater degree than they are suppressing unit 1. This is an
example of relaxation of a network into a stable pattern. As with the earlier
examples of relaxation, this network is guaranteed to converge to a final state
in which unit i is strongly active when input pattern A is presented, while its
cohort output units are suppressed. It is assumed that the activity level of the
output unit is I in case if is a winner, and O otherwise. This is what permits
characterization of the output unit's representation as winner-take-all.

The description so far has been confined to the net's activities given an input.
The next matter concerns using this base to set the weights so that when
pattern A is next presented, the network will go straightaway to the correct
representation. Learning in this net can be accomplished by changing the
weights to the winner unit i according to this rule:

Lw = (12)

where x is the jfh component of the input vector, and the ith output unit is the
winner. The rule is essentially Hebbian inasmuch as weights increase when
pre- and postsynaptic units are concurrently active. As the label implies, in
winner-take-all mode, only the winning output unit is active. Although this
rule for weight adjustment should work in principle, in practice it is inadequate
because the weights can grow without bound and eventually one unit will
dominate the rest, and will be activated for any input pattern, thus losing the
capacity fo discriminate between patterns. How can we rig it so that the unit is
excited when and only when particular input vectors are presented? Recall fhaf
the activity of an output unit is the inner product of the input vector and the
weight vector. The strategy is to adjust the weights so that the weight vector
for each unit becomes congruent with the input vector if specializes in. This
can be accomplished without hand-setting by modifying eq. (12) as follows:
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Figure 3.27 Competitive learning. The dots represent input vectors normalized to unit length,
so they lie on a sphere. The weights are similarly normalized, and the input weights for the
output units are indicated by crosses. (a) Organization of the network before learning. (b) After
learning, each output unit has migrated to a cluster of input vectors. (From Hertz et al. 1991)

= e(x - w) (13)

The main effect of this algorithm is to move the weight vector directly toward
the input vector. Accordingly, if the weight vector and input vector are al-
ready congruent, no change will be made and the weight vector will top out.

So far we have considered the behavior of the network when it has but one
pattern to represent. Suppose now that it is given many different input vectors,
and hence that there are many different patterns to be represented. How will
the net manage? When there are fewer output units than input vectors, each
output unit will become specialized for clusters of overlapping input vectors,
as illustrated in figure 3.27. In this way, the network will tend to develop
output units that are sensitive to features common to its preferred input vec-
tors, with each output specializing for a different particular feature. Conse-
quently, what any given unit can be said to represent is a prototype of the range
of nonidentical but overlapping vectors that turn it on.

There are three general weaknesses with networks of this type so far as
adequate representation of patterns is concerned. First, sometimes critical in-
formation in a pattern may not correspond to the most frequently occurring
feature, and so may fail to be represented by the net. A bottom creature who
represents predators as looming shadows may thus be fooled by a predator
with a thin dangling stinger, and this could be trouble if the predator is espe-
cially deadly, however rare. The second weakness is that this procedure picks
out the lowest-order features, but it may be the higher-order features such as
those that characterize the differences between faces that are critical for classifi-
cation. Finally, relational invariances such as rotation, dilation, and translation
need to be extracted before the patterns can be compared. Strategies for over-
coming these drawbacks will be considered in chapter 4.

The third difficulty concerns stability of the weight configurations. The
weights may shift even when the input is relatively familiar but the order of
input vectors varies, and the instability problem is yet more acute should the
network be given novel input vectors. In the real world, some forgetting may
be advantageous, but on the other hand, it is often essential that previous
learning not be wiped out by new encounters. Some provision needs to be
made to retain relevant and important aspects of what has already been learned



Figure 3.28 Curve fitting and overfitfing. The data points are given (X) and the goal is fo pass a
curve through them. It is known that the data contain noise. A smooth curve (left) does a better
job of predicting a new data point (0) than does a kinky curve (right). The degree of smoothing
and the choice of interpolating function depend on the data and are central issues in approxima-
hon theory.

while learning new things. How nervous systems manage to do this is not
understood, but one solution for artificial networks, explored by Carpenter and
Grossberg (1987), is to add new units when novel inputs are encountered.
There are many variations of the competitive network theme, including gener-
alizing the basic architecture to multilayered networks (Fukushima 1975).

7 CURVE FITTING

The classic example of fitting parameters to a model is curve fit fing, that is,
fitting a host of noisy data points with a smooth function, using the least
squares method (figure 3.28) (i.e., minimize squared error for the whole set). For
a fit with a straight-line function, the squared error E is given by this equation:

E(m, b) = [mx1 + b - y]2 (14)

where m is the slope, b is the intercept with the y-axis, and there are N data
points, (xe, ye). When the error is at the minimum, the gradient of E with respect
to the parameters (m and b) = O. That is,

8E N

for m:
8m =

(mxi + b - y)x1 = O

(15)
8E N

forb: 8b(mhj+b_Yj)0
These are two simultaneous equations with two unknowns. This is a relatively
easy problem. Nevertheless, as the number of dimensions of the state space
increases, and the number of parameters needed to fit the data increases, then
the problem becomes much more difficult. Thus we may be looking for a curve,
not in a 2-D space, but in a 10-D or 100-D or 10,000-D space. The traditional
solution consists in solving the equations algebraically, which is quite manage-
able so long as the number of parameters and the number of data points are
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Figure 3.29 Error surface and gradient descent. The goal is to find the set of weights that gives
the minimum error. For a given set of parameters (shown here for two weights plotted in the
x-y plane) the gradient of the error surface is computed to find the direction of steepest descent.
The weights are incrementally changed by AW along this direction, and the procedure is
repeated until the weights reach which gives minimum error. For a nonlinear network the
error surface may have many local minima.

small. As soon as either is large, then the algebraic method is nasty and un-
manageable. Fortunately, there is a way, other than the traditional algebraic
technique, to find the solution. This involves using knowledge of the gradients
to iteratively update the estimates for the parameters.27 This is essentially like
iteratively updating weights in a net, and can be given geometric representa-
tion (figure 3.29). In iterative curve fitting we update according to this rule:

Am = -

Ab= _E:
where Am is the change in m, Ab is the change in b, and c is the learning rate.

Instead of computing the exact gradient, the parameters can be adjusted
after every sample, or after averaging a few samples. This speeds up conver-
gence, which can be guaranteed if the learning rate, E, approaches zero suffi-
ciently slowly. This procedure is called gradient descent because at every step
the parameters are changed to follow the gradient downhill, much as a skier
might follow the fall line. We encountered gradient descent earlier in the
context of Boltzmann learning procedures, where iterative application of the
weight update rule gradually led us to better performance.28



To apply gradient descent, one must have a mathematically well-defined
measure, such as mean squared error, to optimize, as well as an efficient way to
calculate the gradients. Models that are dynamical and have many parameters
have to be represented in a many-dimensional state space. Accordingly, the
amount of computer time to perform the calculations may be astronomical, so
if is essential to find efficient ways of computing. Exploring such procedures
for some classes of models, such as feedforward nets and recurrent nets with
linearly summing weights and nonlinear inputoutput functions led to impor-
tant breakthroughs in the 1980s. (See section 8.)

When the curve-fitting task is fitting a straight line, gradient descent guaran-
tees convergence fo the global minimum of the error function. By contrast,
there is no such guarantee for the general nonlinear problem, where the error
surface may have many local minima, though if one is lucky, they will be close
enough to the global minimum that it will not matter much if the net stops
in one. For most of the problems presented in the later chapters, finding the
true global minimum is unnecessary, and there are many equally good local
minima. Thus if a net is started running with its initial weights randomly set fo
small values, it is likely to end up with one of these good solutions.

8 FEEDFORWARD NETS: TWO EXAMPLES

In feedforward networks the input leads directly fo an output without feed-
back. Because feedforward nets have significant advantages in speed and sim-
plicity, it is worthwhile exploring what computations a feedforward network
can handle. In this section, we show that a feedforward network with one layer
of weights cannot compute an extraordinarily simple function. Understanding
the whys and wherefores of the limitations is instructive, and yields insights
into the geometrical nature of feedforward networks. This is important, be-
cause it is the geometry of a network that determines what can be represented
and how things can be represented; in appreciating that, we can see how to
overcome these limitations:

Exclusive "or"

The look-up table for a function called the exclusive "or" (XOR) was intro-
duced earlier. The question now is whether this very function can be executed
by a net; more specifically, the question concerns what sort of network archi-
tecture is necessary to execute this function. Finding a suitable architecture
turns out to be instructive because of the failures and what they imply for a
whole range of functions. To milk the lesson from the failures, we consider first
the archetypal simple net. If consists of one output unit, taking value O or I
(representing "false" and "true"), and two input units that carry the values of
the component propositions.29 This simple net has three free parameters: the
two weights from the input units to the output units, and a single threshold or
bias on the output unit. The architecture of this net determines the function for
the output:
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INPUT SPACE

Figure 3.30 XOR is not a separable function. The truth table for XOR is shown on the upper left
and is plotted on the upper right. No line in the plane can separate all of the closed dots (true, or
1) from all of the open dots (false, or 0). In contrast, the OR function, shown below, can be
separated by the line shown in the bottom right. A network with one layer of weights can be
found to represent a function if it is separable, but no such network can be found if the function is

nonseparable, like XOR.

o = H(wP + WQQ + b) (17)

where o is the output, H(input) is a binary threshold function (figure 3.19), w,
and WQ are the weights for the binary inputs P and Q respectively, and b is the
bias.

Does there exist any configuration of weights and the bias such that the
output unit correctly assigns values to the compound? For this simple nef, the
answer is "no," and figure 3.30 (top) illustrates why. The input space has an
axis for each of the two units, and points representing the four possible input
vectors. If the output unit can solve the problem, if must be able to group
together the inputs that give 1, and in another group, the inputs that give 0.

Geometrically speaking, the function restricts the border between these two
regions of the input space to a straight line. On one side of the decision border,
all inputs drive the output over threshold, giving 1; on the other side, the
inputs are below threshold, giving 0. No such straight line exists.

For contrast, the output unit of the simple net can execute the inclusive "or"
(OR), and the input space for the same network architecture clearly does admit

P Q PORO
11 1

l0 1

01 1

00 0

Key 0= 0(False)
= 1 (True)



of a straight line appropriately dividing the inputs (figure 3.30, bottom). Why
does the decision border have to be straight? Because the architecture of the
net is consistent only with a linear function, and hence limits how the inputs
can be segregated for training to give the correct output. In other words, the
exclusive "or" is not a linearly separable function, and hence no learning algo-
rithm can find a solution to the weight configuration problem in the simple net
because none exists. Intuitively, this can be seen by reflecting on the logic of
the XOR. Analyzed in English, it comes out thus: (P XOR Q) is true if and only
if either P is true or Q is true, but not bot!, P and Q are true. It is this extra twist
on the back end of the basic OR function that needs to be accommodated. The
point is that we need take the output of the more basic OR function, and
operate on if again fo get a higher-order property. Can the simple net be
embellished to handle what is in effect a function on the output of a function?
Yes, and the modification is both blindingly obvious in retrospect and was
frustratingly opaque in prospect.

The crucial modification consists in adding an intervening unita hidden
unitthat is interposed between the inputs and the outputs. This supplements
the weights by three, and adds another bias unit. With a new total of seven
parameters, the new question is this: are there weight-settings such that the net
will solve the problem? This time the answer is "yes," for the role of the hidden
unit is to handle the second-order operation; that is, it gets its input from P and
Q, and recognizes when not both P and Q are true. In fact, more than one
weight configuration will suffice to do the job. The next question, of course,
concerns automated training: is there a gradient-descent procedure for adjust-
ing the weights? Insofar as the units are binary, gradient descent cannot be
used to adjust the weights between the input units and the hidden unit. The
trouble is that small changes to these weights will have no effect on the output,
save in the case where it is close fo the threshold of the hidden unit.

In the 1960s, model net research had developed to the point where the need
for hidden units to handle nonlinearly separable functions was understood, but
how to automate weight-setting, especially for the hidden units, was not
(Rosenblatt 1961, Minsky and Papert 1969). As we saw earlier, automated
adjustment of hidden unit weights was achieved in the Boltzmann machine in
the early 1980s. How to do this for a feedforward network remained baffling.
In 1986, Rumelhart, Hint on, and Williams, discovered30 that the trick is to
push the output of each hidden unit through a squashing function, that is, a
smoothly varying function that maps the hidden units' input onto output
(figure 3.31). Hitherto, the output from the hidden units was a step function of
the input. The smoothly varying function, however, means that small changes
on the weights of the hidden unit's inputs allow the hidden unit to abstract the
higher-order property in small error-correcting steps, and hence to learn to
recognize when both P and Q are 1. The net effect of adding hidden units and
putting their output through a squashing function is that the input space can
now be divided by a curvy decision border.

The backpropagation algorithm starts with small, randomly chosen weights
and proceeds incrementally, just as in the earlier curve-fitting example. The
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Figure 3.31 Nonlinear squashing function for a processing unit. The inputs are weighted and
summed, and a bias is added (or threshold subtracted) before passing the total input through the
sigmoid, shown on the right. The output of the unit is close to zero for large negative inputs, has
a roughly linear region around zero input, and saturates for large positive inputs. This type of
nonlinearity characterizes the firing rate of some neurons, such as motor neurons, as a function of
the injected current from synaptic inputs on its dendrites, as shown on the left. Neurons also
have complex temporal properties that are not captured by this static form of nonlinearity.

main difference is that the error surface for least-square curve fitting has a
single minimum (figure 3.29), whereas the error surface for a network with
hidden units may have many local minima. Consider a feedforward network
such as the one in figure 3.32 with units having a nonlinear squashing function
o(x) as in figure 3.31:

i
a(x) =

For an input pattern that produces an output value o, the error is defined as

5(output) = (o - o)a1(output) (19)

where is the desired value of the output unit provided by a "teacher," and
a'(output) is the derivative of the squashing function. This error can be used to
modify the weights from the hidden layer to the output layer by applying the
delta rule31:

Aw = e3(output)h (20)

where h is the output from the jth hidden unit. The next problem is to update
the weights between the input units and the hidden units. The first step is to
compute how much each hidden unit has contributed to the output error.32
This can be done by using the chain rule. The result is:

(hidden) = ci] (hidden) w(output) (21)



Figure 3.32 XOR network. The weights are shown on the connections (lines), and the thres-
holds are shown inside the units (circles). Thus, an input of <0, 1> produces a pattern of <1,0>
on the hidden units, which in turn activate the output unit. An input of <1, 1> produces <1, 1>
on the hidden units, and the output unit will be turned off. In effect, the right hidden unit
becomes a feature detector for the <1, 1> pattern and overrides the influence of the left hidden
unit. Other solutions are possible.

Once we know the error for each hidden unit, the same delta rule used for the
output units (eq. 20) can be applied to the weights from the input layer to the
hidden layer. This procedure (backpropagation of error and suitable weight
modification) can be applied recursively through arbitrarily many layers of
hidden units. As a practical point, the gradients for the weights can be accumu-
lated for several patterns and the weights updated according to the average
gradient.33

Let us now shift gears and think about this in terms of an error surface.
Think of the error surface as a state space where the vertical axis represents
percentage of error, and each of the remaining axes represents a weight in the
system (figure 3.29). As the weights change, the position in error space will
change. The error surface for fitting straight lines to data by minimizing the
squared error is a concave basin with a single minimum. In contrast, the error
surface of the XOR network with hidden units has a more complex error
surface, one whose topography has ravines and assorted potholes known as
local minima. If, however, the net starts out with small, randomly chosen
values for the seven parameters, adjusting each weight to minimize the error
over the set of four inputoutput conditions, then the system eventually ends
up at a set of parameters that truly solves the problem (figure 3.32). In fact,
there are many combinations of parameters that will do equally well, and
depending on the random starting place, the system will find one or the other.
If the initial weight-settings are too large, then the net may land in a local
minimum that is not a solution to the problem, so the lore is io start the
weights low. Although the backpropagation of error can be used to create
networks that can solve the XOR problem, that problem is sufficiently simple
that many other techniques can also be used to solve the problem.

Many problems resemble XOR in the respect that they are not linearly
separable; indeed, one might say that most interesting compuFational problems
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have that property. The discovery concerning the role of hidden units in
extracting higher-order features and the versatility obtained by squashing
functions on their outputs have therefore opened the door to network solu-
tions to many complicated problems.34 Even when a researcher does not have
a clue what function maps input onto output, he may construct a network that
does solve the inputoutput problem, whereupon he may then work backward
to track down the function the network has learned to compute, though this
may not always be a simple matter. In the next section, we illustrate an in-
stance where a network was successfully trained even though the input-
output function executed by the trained-up net was quite unknown to the
modelers.

Finally, the XOR problem may seem pedagogically germane but biologi-
cally superfluous. Despite appearances, this turns out to be a hasty judgment,
for XOR nets can be iterated into systems that have unexpectedly useful
properties from a biological point of view. As we shall see in chapter 4, the
basic XOR net is the electronic equivalent of a "gear" in the sense that it admits
of many variations, and many XOR nets can be assembled into one large net
that can solve very complex problems. Notice too that the negation of (P XOR
Q) means the same as (P if and only if Q), and thus training an interconnected
array of negated XOR (NXOR) units is a way of finding necessary and
sufficient conditions on certain higher-order representations.

Having shown that XOR can be represented and learned in a feedforward
network, we now consider what other functions a feedforward net might
compute. The surprising answer is that a feedforward net with a sufficiently
large number of hidden units can be trained to approximate with an arbitrarily
small error any mathematically well-behaved function (White 1989). To be
sure, this is a reassuring theoretical result, but what does it really mean in
practical terms? Networks with hundreds of hidden units and hundreds of
thousands of weights have been trained successfully on a wide range of prob-
lems. In the next section, we present one example to illustrate the general
approach. One important practical consideration, however, concerns how
much computer time and how many examples a net needs to learn a function as
the number of hidden units becomes very large. This is the scaling problem, and
we shall return to this difficulty later in the chapter.

Discriminating Sonar Echoes

Consider a feedforward net trained up by the backpropagation of error method
to distinguish between sonar echoes of rocks and sonar echoes of mines
(Gorman and Sejnowski 1988a, b) (figure 3.33). This is, in fact, a rather difficult
problem because to the untrained ear, at least, no difference is discernible. The
net has an input layer with 60 units, a hidden layer with 1-24 units, and two
output units. To prepare the sonar echoes for input to the net, a given sonar
echo is run through a frequency analyzer and is sampled for its relative energy
level in 60 different frequency bands. These 60 values, normalized so that 1 is
maximum, are then entered as activation levels in the respective input units



ROCK

Figure 3.33 The minerock problem. Sonar echoes are returned from an object on the seabed. Is
this a mine or a rock? There are subtle differences in the echoes that can be used to perform a
pattern discrimination, but the differences between echoes from different sides of the same
object are as great as the differences between echoes from different objects. Human sonar
operators can be taught to make the discrimination after many training sessions. (From P. M.
Churchbnd [1988] Matter and Consciousness, 2nd ed. Cambridge, MA: MIT Press.)

(figure 3.34). The activation is fed forward to the level of hidden units, there to
be transformed as a function of the weights in the hidden units. The hidden
units then pass activity to the two output units which may have any value
between O and 1. Once the net is trained up, the output units signal <1,0>
when a mine echo is entered as input, and <0, 1> when a rock echo is entered
as input. Initially, however, the weights are randomly set, and we cannot
expect the net to give systematically correct outputs.

Training of the net correctly fo categorize proceeds in the following way.
We give the net examples of mine echoes and rock echoes, one by one. For
each case, the actual values of the output units is measured against what the
values ought to have been, given the input. This difference is a measure of
error, which can then be used to compute small changes in the weights of
the units in the system. This is a gradient-descent procedure, and slowly the
weights of the network are adjusted so that when fed a mine echo, either a
familiar old example or a brand new case, it gives a value of <1,0>, or close to
that, and when fed a rock echo, it responds with something close to <0, 1>.
(For a more detailed but still basic account, see P. M. Churchland 1989.)

Following training, the accuracy of the classification of new echoes was
very goodas good or better than trained humans and other classification
methods. In a network with three hidden units, it was possible to analyze the
features discovered by the training procedure (figure 3.35). The most impor-
tant features of the input signals were the frequency bandwidth, the onset time,
and the rate of decay of the signal. These general features, which could have
been discovered by data analysis techniques, accounted for about 50% of the
successfully classified echoes. The remainder of the echoes were more difficult
to classify because they did not follow the general trend. To classify these
exceptional cases, the hidden units developed weights that recognized clusters
of echoes that shared the same spectral features. The more closely the input
resembles the prototype, the more near will be the activation vector to the
prototypical activation vector. The two-pronged strategy adopted by the hid-
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Figure 3.34 Preprocessing for sonar target recognition network. (Center) Time course of a
typical sonar echo. (Top) Spectrogram of sonar echo power as a function of frequency and time
showing that the frequency of the band containing the most power (black regions) increases
with time. The integrated power as a function of frequency, graphed on the right, is used as the
input to the network. (Bottom) Network architecture with 60 input units, I-24 hidden units, and
2 output units. The output units are continuous-valued, and when the net is trained, the output
for a metal object will be close to (1, 0) and for a rock, will be close to (0, 1). (From Gorman and
Sejnowski, 1990.)
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den units exploited large-scale regularities and finer scale distinctions in differ-
ent ways.

NETtalk

Another example where analysis of the hidden units revealed that different
strategies were discovered for different types of inputs is NETt alk, a network
that was trained to pronounce English words (Sejnowski and Rosenberg 1987).
The input to NETtalk was letters of the English alphabet arranged in a window
of seven letters. The output layer could represent 54 different phonemes, and
each output is in effect the answer to the question of how to pronounce the
central letter in the input window. The words marched through the window,
one letter at a time, and the output of the network provided a string of
phonemes that were played through a speech synthesizer (figure 3.36). The
activity patterns on the hidden units were analyzed with a clustering technique
to discover how the different letter-to-sound correspondences were coded.
Interestingly, the vowels were segregated from the consonants and followed a
different coding scheme. For vowels, the most important partitioning factor
was the letter, but for consonants, the partitioning depended more on similar-
ity in the sounds than on letters. What may account for this difference is that
any given vowel letter may have a relatively large range of phonemic possi-
bilities, but consonants are much more limited. Contrast, for example, the
range of different sounds that may be associated with the letter "e" and those
with the letter "f."

Essentially the same clustering emerged in all networks trained with the
same words, even though they differed in the way that the hidden units shared
the patterns. As in the minerock network, NETtalk found general patterns
that would suffice for the preponderance of cases, dealing with the remaining
exceptional cases by finding some way to cluster them, and coding that clus-
tering into the weights. The way to view this two-step strategy is that the
network finds a kind of default activation pattern for the standard cases, but
when if detects a special feature indicative of an exceptional case, the default
response is overridden. Only about 15% of the hidden units become signifi-
cantly activated by a particular input, so the coding scheme was neither local
nor completely distributed.

9 RECURRENT NETS

The minerock network, trained by a parameter-adjusting procedure, is feed-
forward, in the sense that the direction of information flow is strictly from
input to the first layer, passing forward through intervening layers, fo the
output layer. True, the error signal is passed backward to adjust the weights,
but this is better thought of as external tinkering with the weights than as
information downflowas part of the weight modification rather than unit act i-
vahan. More precisely, there was no flow of information as input from higher-
level fo lower-level units. Notice that a purely feedforward system is a purely
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reactive system; that is, one which responds with an output only to the input,
where its response is a function of the external input signals together with the
existing configuration of weights. What does feedback, conceived as internal
input, do for a network (figure 3.3 7)?

The general answer is that feedback endows a network with several impor-
tant capacities: (a) to incorporate multiple time scales into the processing units,
(b) to process temporally extended sequences of inputs, (c) to generate oscilla-
tions and modifiable rhythms of varying durations, and (d) to resolve ambigu-
ities such as figureground ambiguities and segmentation ambiguities. Nets
with feedback are also called recurrent nets.35 In a recurrent net, the effect of an
external input is not isolated from what went on in the net before, since
internal inputs (feedback) also contribute to the activation of the hidden units.
In recurrent nets the significance of external input varies across three general
types of case: (I) the net may have output only when there is both external and
internal input; (2) the net may have output even when there is no external
input, but the continuous activity must be initially triggered by external input;
or (3) internal input alone will suffice to activate an output, though the net's
output can be modified by the addition of external input.

A theme that will be sounded and resounded throughout this book concerns
time and the necessity for network models to reflect the fundamental and
essential temporal nature of actual nervous systems. External processes and
events are extended in time and for a nervous system successfully to recognize
and respond may require temporally extended representation; movements re-
quired for behavior involve sets of bodily motions sequenced in time; short-
term memory is a trick for allowing present access to the recent past, and
longer-term memory to the more remote past; learning is adapting to the
present on the evolutionary-tried assumption that the future resembles the
past. Birds and humans recognize patterns of temporally extended song; rec-
ognizing that someone is waving or becoming angry is not recognizing mere-
ly a single input vector, it is recognizing an ordered sequence of vectors. We
shall see in later chapters how network models of visual functions, behavior,
and sensorymotor integration deal with the matter of temporal realism. The

Figure 3.35 Typical spectral envelopes of sonar signals used as inputs to a network and their
categorization by a trained network. (A) Input pattern is amplitude as a function of frequency
(below), which corresponds to activity levels of input units (above). The area of each white
rectangle is proportional to the amplitude of the signal in each frequency band. These input
values are multiplied by the weights to a hidden unit to produce a weight-state vector (top).
Inhibitory weights are shown as black rectangles. The input to a hidden unit is the sum of the
components in the weight-state vector. (B) Prototypical input patterns ranked according Io the
activity level evoked in a single hidden unit. Each input pattern, shown on the right, is the
average for a cluster of similar weight-state vectors. Each average pattern activated the hidden
unit according to the level shown on the left. The features that characterized the rock for these
prototypes were frequency bandwidth, onset time, and decay rate. Each of three hidden units in
the network preferred a different onset time but had the same preference for bandwidth and
decay rate. Exceptional input patterns did not fall into any of these clusters and were discrimi-
nated with a different type of coding. (From Gorman and Sejnowski, 1988a)
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Figure 3.36 (A) Schematic of NETtalk architecture showing only some units and connectivity.
Each group of 29 input units represents a letter. The 7 groups of input units were transformed by
80 hidden units. These hidden units then projected to 26 output units, which represented 54
phonemes. There were a total of 18,629 weights in the network. (B) Activity patterns on the 80
hidden units for the words shown on the left. The highlighted letters in the center of the window
are all pronounced with the same sound. The area of each white square is proportional to the
activity level of a single hidden unit. (C) Hierarchical cluster analysis of the average activity
levels on the hidden units for each letter-to-sound correspondence (l-p for letter "1" and pho-
neme "p"). The closest branches correspond to the most nearly similar activation vectors of
the hidden units. (From Sejnowski and Rosenberg 1987. Parallel networks that learn to pro-
nounce English text. Complex Systems 1: 145-168.)

goal here will be only to understand the general features of recurrent nets that
render them temporally responsive.

A crude but instructive first step in handling temporal structure with nets is
to map a temporal sequence onto a spatial sequence, and then rely on the
proven capacity of networks to do spatial recognition tasks. Vice versa, a
spatially extended sequence such as the written word can be moved past a
time "window." (See, for example, Sejnowski and Rosenberg's NETtalk, figure
3.36.) In this approach, a vanilla feedforward net will suffice, where temporal
sequences with "before" and "after" relations are transformed into spatial
sequences with "to the left of" and "to the right of" relations. In a speech
recognition problem, for example, this is accomplished by pushing the train of
input events through the input units from one side to the other. Each time-
batch of sound hops from unit to unit until it has been through the entire set of
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Figure 3.37 General recurrent network model. The units in the network form connections with
each other, and their responses can outlast incoming inputs. (From Anderson et al. 1981.)
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Figure 3.38 A time-delay neural network. The input x(t) enters the network on the left and each
input is successively delayed by t. Thus, the input to the feedforward network at time t is x(t),
x(t - t), x(t - 2t).....x(t - 4t). This type of architecture has been popular for speech recogni-
tion (Tank and Hopfield 1987, Elman and Zipser 1988, Waibel et al. 1989, Lippmann 1989).

(From Hertz et al. 1991.)

inputs, the first one in being the first one out. Simplifying somewhat, a subset
of hidden units thus see the phonemes in order, e.g., first "c," then "a," then "t,"
and its flanking hidden units respond to the peripheral phonemes as context. In
engineering this arrangement for pushing through the input is known as a
tapped delay line (figure 3.38). Such a net can still be purely feedforward, but it
is rather limited in the temporal complexity it can accommodate. Feedback
loops turn out to be a remarkably fruitful architectural modification for trans-
forming a sheerly static, reactive net into a temporally replete, internally gen-
erative system. How can feedback connections allow for this?

The fundamental point here is disarmingly simple: for short time scales, on
the order of milliseconds, let the temporal properties of representation derive
from the properties of the physical interactions in the network itself. As Carver
Mead (1987) is fond of putting it, "Let time be its own representation." The
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Figure 3.39 Recurrent Jordan network. In addition to the feedforward inputs, an additional set
of inputs receives copies of the output units. These input units, through self connections,
preserve a decaying copy of the last several outputs. Different sequences of outputs can be
generated. (From Jordan 1989.)

point is, the network has instrinsic temporal structure: activation arrives at the
hidden units before it arrives at the output units, signal summing and passing
takes time, and so forth. Thus Mead's intent is that we exploit the existing
temporal properties of activity in the network to do such things as represent
temporal patterns of sensory stimuli. For a network to be sensitive to what
happened in the immediate past, if must have a memory of what happened;
this can be a spatial memory in which "to the left of" means "before," or it can
be a dynamical memory in which, for example, recurrent loops keep a signal
"alive" or transient changes in synapses keep the memory alive. Longer time
intervalsfor example, remembering that one learned to drive before Ken-
nedy was assassinatedrequire a very different style of representation.

There are many ways of putting feedback into a network, including lateral
interactions between units within a layer, feedback from a higher layer to
lower layers, or, in the most general case, any unit may have reciprocal connec-
tions. In this event, any unit then can be an input unit, or an output unit,
or both. To illustrate how feedback connections can greatly enhance the power
of a feedforward net, we have chosen a recurrent net endowed with restricted
feedback connections (Jordan 1989; figure 3.39). The goal of the network is to
produce a sequence of actions al, a2, a3 ... when given a single input, charac-
terized as a command, such as "pick up an apple" or "say the word 'popsicle,"
or, for the Jordan net, "draw a rectangle." For nervous systems to execute
commands such as these, a large number of muscles must each receive, over an
extended time period, its appropriate sequence of activation. Additionally,
since the various muscles must be coordinated for the right things to happen,
the various sequences of activation must themselves be coordinated. The
Jordan net tackles the basic issue of how a net might produce the appropri-
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Figure 3.40 Output of a recurrent network trained to trace a rectangle. The values of two
output units are plotted on the i and y axes, and successive points in time are joined by a
straight line. (Top) Trajectory of a network that was started from a point inside the rectangle.
(Bottom) Trajectory taken when the network was started outside the rectangle. The rectangle is
called a stable limit cycle of the network because the closed repetitive trajectory can recover
from small perturbations. (Based on Jordan 1989.)

ate temporally extended sequence of outputs given a command, and his archi-
tectural modification to the vanilla feedforward net consists of two types of
feedback connections.

The task for the Jordan net is to draw a rectangle, as shown in figure 3.40.
The Jordan net copies the values of the output units into the input layer;
specifically, they are copied onto a selected set of units that serve to provide
internal input. In the Jordan net, these special input units also have positive
feedback connections onto themselves. The long recurrent connections pro-
vide the hidden units with information about the recent history of the output
layer via the special input units. On a given pass, the hidden units will get both
brand-new external information from the regular input units together with
recent history information from the special input units. Notice also that the
output of the network can continue to deliver and even to change its delivered
messages despite freezing the external inputs. The reason is simply that the
internal inputs continue to activate the hidden units, and indeed this is what
endows the network with the capacity to generate temporal sequences.

What is achieved by the short recurrent connectionsthe self-exciting
connections? Their effect is to create a short-term memory, inasmuch as a
signal that produces a level of activity in the unit will decay slowly rather than
cease abruptly, for the self-excitation maintains the activity. (This is equivalent
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to making the unit a leaky capacitor, which is analogous to the membrane time
constant of a neuron.) At a given moment, therefore, a special input unit
represents a weighted average of previous values of the output. Thus not only
does the network have available to it information about the current output, but
it has a history, albeit a temporally decaying history, of previous outputs as
well. Accordingly, contraction of muscle C can be influenced by what muscle B
was doing 20 msec before, and by what muscle A was doing 20 msec before
that. In this way, a smooth sequence of behavior can be orchestrated.

Note that unless the Jordan net is halted externally, its output is an infinite
temporal sequence (see figure 3.40). That is because it will endlessly retrace its
path once it finishes the last side of the rectangle and returns to the rectangle's
first side. This is an achievement denied to Hopfield nets and Boltzmann
machines despite their recurrent connections. These latter networks have only
stable attractors (they converge to a point, not a trajectory), owing to the
symmetry of the feedback connections. In such a network, information cannot
circulate repetitively.

It should be emphasized that Jordan trained his recurrent network using the
same backpropagation algorithm developed for plain feedforward networks.
The weights of the feedback connections in this instance were fixed, though in a
more general reccurrent network, it may be necessary to train even these
weights as well as the feedforward weights. Generalizations of the backpropa-
gation technique have been developed for the wider range of cases, and
examples will be given in chapters 4 and 5.

Not only did Jordan's network train up nicely to execute the desired trajec-
tory, but so trained, it has a robust representation of its goal. That is, when the
net starts out from some arbitrary initial state, or if it is perturbed off the
trajectory, it will head to the correct output pattern. In the mathematical the-
ory of dynamical systems, this behavior is called a stable limit cycle. The reason
this is interesting is that the output pattern might well not have been stable, in
which case any small deviation due to noise or an imperfection in the input
would send the net careening off into useless behavior. This is important
because for real neural nets, noise and imperfection are the order of the day.
Imagine training networks, such as motor networks in the brain, to guide a
hand to produce a complicated trajectory such as a signature. The signature
will not be identical each time, owing to differences in the writing surface, the
writing instrument, the musculature, the starting position, and so forth. A
network that has the property of being stable when perturbed will compensate
for those deviations, and nervous systems appear to be like that.

Although the Jordan net trains up well on the "draw-a-rectangle" task, more
difficult problems demand not just a mapping of one input Fo an output se-
quence, but a variety of different inputs to their appropriate output sequences,
and more difficult yet again, a range of sequences of inputs to suitable sequences
of outputs. Here we bump up against the limitations of the Jordan net. It
cannot be trained up on these more difficult tasks because the temporal mem-
ory provided by the recurrent connections decays in time. This constant decay
rate means that ari older input may not be able to exert a significant effect at a
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more distant time, even though at that time it is the needed piece of informa-
tion. Such problems occur routinely in language, both spoken and written,
where there may be long-range interactions between words, as when a pro-
noun refers back to a proper name or a verb must agree with its earlier-
mentioned subject. 1f the sentence is long, containing many embedded clauses,
as much as a minute may pass before the verb or pronoun that must agree with
the subject makes its appearance. Humans typically have little problem none-
theless, in either production or comprehension. Somewhere in the system,
therefore, a representation of the word is on hold for a duration longer and
with an impact greater than that allowed by the brief recirculating types of
memory exhibited by the Jordan network. Yet the on-hold duration is also
shorter than the weight modification corresponding to long-term memory.

What can be done to accommodate this time requirement? Basically, there
are three general options: (1) change the network's time constantsfor exam-
ple, by increasing the temporal duration of an input's influence; (2) change the
architecturefor example, by trying different configurations of feedback, of
hidden layers, and so forth36; (3) change the activation function. For brevity,
we consider only the third option, and that only succinctly. Recall that the
original activation function described earlier specified the output of a unit as
the weighted sum of the inputs, operated on by a squashing function to get
nonlinearity. One modification defines the output as the weighted product of
the inputs:

= [ wi] (22)
jk

where t7(x) is the squashing function shown in figure 3.31, and Wifk is a weight
that represents the influence of the jth and kth input units together on the ith
output unit.

This results in what are called "higher-order nets," in contrast to the first-
order nets that use the traditional activation function (Giles et al. 1990). It is
possible with these second-order recurrent networks to model what are called
"finite state automata." These are defined as devices that take sequences of
input vectors and produce sequences of output vectors, and whose state transi-
tions may depend on an internal but finite memory. Although networks of
second-order units can model finite state automata, the drawback of continuing
to higher and higher orders is that the number of weights in the network
increases with the power of the order of the network. This quickly constitutes a
practical obstacle.

Each of these revisions Fo the basic net has its strengths and its limitations.
What works best will depend on the problem the net is asked to solve. The
point of emphasis then is that there are oodles of ways to tailor a net, and the
choices are governed by the fit between problem and solution. It may not be
too rash to suggest that evolution tries various wrinkles in network design and
seizes upon those that solve the problems. The nervous system may not,
therefore, conform throughout to a single network blueprint, but may exhibit a
variety of principles in a variety of places, depending on the task and how



things shook out in the evolutionary hurly-burly. The matter of problem-
solution fit has become a fertile area for research by mathematicians who have
been able to analyze the capacities of various network designs, and by engi-
neers who have found networks to be an effective medium for matching prob-
lems and solutions.

lo FROM TOY WORLD TO REAL WORLD

The technical journals contain many examples of model nets that can solve
dazzlingly difficult problems, but the cautious and sceptical will wonder
whether the successes are marched info the limelight while the black sheep are
herded backstage. In particular, it will be asked whether the model nets can
solve only problems cleanly isolated from their messiness au naturel; whether
they solve problems in the midst of their real-world welter and with their
real-world complexity. Whether a solution adequate to a pasteurized fragment
of a complex problem is also adequate to the problem entire and on the hoof is
by no means obvious.

Real-worldliness has two principal aspects. (I) Real-world inputs generally
have many more dimensions than toy-world inputs. The scaling problem con-
cerns whether a net scaled-up to incorporate all the relevant dimensions can
still perform the task in real time. If the scaling is exponential, then the net fails;
if the scaling is polynomial, the net scores better but still poorly; if the scaling
is linear, then the net may be acceptable. Best of all, it should have constant
scaling. (2) Real-world inputs do not come to nervous systems informationally
packaged into separate batches earmarked for separate problems. For example,
visual information concerning motion, stereo, shape, etc. has to be separated
by the nervous system, and objects do not arrive at the retina bagged and
labeled. This is another instance of the segmentation problem (section 4). (See
Abu-Mostafa 1989b.)

Assuming evolution availed itself of a "more is better" ploy in upgrading its
neural nets, then perhaps we can follow that pioy and just make the standard
design larger and larger. In fact, however, model nets of 1980s vintage do not
scale very well, and the scaling gimmicks evolution lucked on to have not been
fully figured out by neuromodelers. For example, a network that successfully
recognizes phonemes presented in isolation typically flounders when it has to
deal with phonemes ensconced in their natural habitatcontinuous speech
from a variety of speakers. A speech recognition system may succeed in identi-
fying the vowels of one person's voice, or single words in isolation, but fares
poorly when confronted with the natural flow of speech from a commonplace
range of voicesmale, female, children, whispers, gruff, squeaky, bell-like,
accented, etc. Why this happens can be seen quite clearly in figure 3.41, where
the sound patterns from a female speaker saying soft "a" may overlap with
those of a child saying soft "e."

How might the standard model nets be modified to improve their scalabil-
ity? In line with the "more is better" adage, the simplest approach is just to
enlarge the network. The justification goes like this: if a net with ten input units
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Figure 3.41 Vowel recognition. To see what is involved, the first step is to analyze the fre-
quencies in utterances containing the vowel, for example, 'bab," "dad," and "gag," as shown.
The spectrogram for an utterance of each word is shown in the top panel. The areas with the
highest power density are darkest, and the segment relevant to the vowel occurs about halfway
through each spectrogram. The next step is to locate the formants. In the middle panel, power is
plotted as a function of frequency for two vowels. The leftmost peak in a line corresponds to the
bottommost dense area (around 500 Hz) of one spectrogram for the vowel segment (e.g., for "a"
in "bab"), and is called the first formant; the next peak (second formant) corresponds to the
second dense area (around 1500 Hz). Note the different location of the first formant for the two
vowels. (From G. Fant 1973.) The third step is to assess similarity in how different speakers utter
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can do speech recognition for one speaker, perhaps a network with loo units
can cope with any normal speaker. The "fatten-if-up" approach generally
works up to a point, but invariably fattening-up brings its own serious difficul-
ties. First, as the number of connections in the network increases, the amount
of data required to train a network becomes very large and the amount of
training time goes up enormously. The reason is that each weight in the
network is a degree of freedom that needs to be constrained by data. There-
fore, the more settable weights, the more data needed to constrain them, and
hence the larger the training set required to do the job. A second and more
serious problem concerns how information is distributed in the network.

Consider what happens when a new voice is tested on the speech recogni-
tion network. Either the network recognizes the voice's patterns or it does not.
If the network succeeds, then all is well. But if the network errs on the new
voice, then this failure is remedied by traìning the network on that voice, with
concomitant adjustments to the weights. The trouble is that though these
weight modifications are needed to accommodate the new voice, they mày
well degrade the weight configurations for the old voices. To avoid losing the
previous recognition capacities, therefore, the net must be trained anew on the
entire old training set plus the new pattern. Obviously this procedure gets
increasingly cumbersome proportionally to the size of the training set. One
reason the standard net scales poorly is that changing one weight in the
network repartitions the hidden unit activation space, and that means it
changes the hidden unit activation vector for any input, old and familiar
though it may be.

The aforementioned trouble reflects the fact that in a net there is an interac-
tion between the data and the weights, in the sense that training on new data
has an impact on all the weights, not just a preselected subset of the weights. A
further and deeper trouble derives from the interaction between the weights.
Error information is used to compute the gradients for the weights. Error,
however, is a function of all the data and all the weights. When the net is
trained up on a new example, there is not only an interaction between data
and weights, but also an interaction between the weights. For if one weight
changes in response to error, so do other weights. In other words, the gradi-
ents must be recalculated when a weight changes.

What can be done to avoid retraining holus-bolus and thus to avoid the
time cost of scaling-up? One answer is to allow hidden units to be sensitive
only to a limited range of input patterns.38 This can be accomplished by using
radial basis functions as the activation functions of the hidden units. Formally,
what this means is that given an input vector x, then the output of a hidden
unit that receives this input is given by:

the same vowel. The analysis proceeds by taking each speaker's utterance of a particular vowel
sound (coded by a number; I stands fore as in "heed") and plotting the first formant (horizontal)
against the second formant (vertical). The analysis of ten vowel sounds uttered by 30 speakers
shows that there is considerable overlap in the regions occupied by different vowel sounds
depending on which speaker utters the sound. (From Nowlan 1990.)
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F(x) = e ((x1 - (23)

where k. is at the center of the radial basis function, and a is the width of the
Gaussian distribution specified by the function. Informally, this means that
there is an activation function according to which a hidden unit's largest
response occurs when the input vector matches k1, and the response falls
off rapidly corresponding to the degree of mismatch. Considered three-
dimensionally, the radial basis function carves out a sphere in the input space.
Considered two-dimensionally, the radial basis function is rather like the tuning
curve of a sensory cell, where the cell's best input is the one to which it
maximally responds. Analogously, a hidden unit maximally responds when the
input vector matches the center of its "tuning curve."

The main advantage of the radial basis function is that during the process of
training, a given input affects only a few of the hidden units at a time, so part of
the network can be modified without affecting how the rest of the network
responds to other inputs. It will be evident, however, that in addition to
weighting the radial basis functions for the various patterns the net is to
recognize, one must also specify the centers k. for the functions and their
widths, a. If the input space is low dimensional, one trick is uniformly to cover
the space with spheres of a given size, in effect hand-wiring the tuning curves
of the hidden units. In a high-dimensional space, however, the number of
spheres required uniformly to cover the space may be very large, for the
number of spheres goes up with the power of the dimension, nN, where n is the
number of spheres for covering each dimension, and N is the number of dimen-
sions. Fewer spheres may be required if only some portions of the input space
are of interest. So although one aspectthe interaction between weightsof
the scaling problem is addressed by this strategy, other problems arise.

A related answer also pursues the decoupling strategy, but this time by
decoupling the network so that subnets work on independent elements of the
problem and training modifies only the relevant subnet. The answer implies
that one can use a solution to the segmentation problem to help solve the
scaling problem. Subdividing the network might be done by hand, in effect
designing individual networks for individual elements of the problem. This is a
rather ad hoc remedy. Worse, it presupposes that one already knows how to
sort out the elemental problems and knows to which subnet information is
relevant. We stand to be cruelly disappointed if we bank on this presupposi-
tion. Additionally, the holus-bolus problem may merely have been exchanged
for the new and vexing problem of how to integrate these individual nets.

A more sophisticated proposal is that the network should learn how to
cluster related information in subnetworks, each of which disposes of the infor-
mation proper to it, but interacts minimally with other subnets. On this pro-
posal, the network finds its own problem-elements and segregates the input
accordingly. As we have seen, competitive, unsupervised learning algorithms
have been designed to segregate input by staging a competition between units
for input patterns. The way this works is that the unit most highly activated by
a particular pattern wins, in the sense that it alone has its weight modified to



(a) (b)

Figure 3.42 Vector quantization by competitive learning. Each input pattern is a point in the
plane. Inputs that maximally stimulate an output unit are shown as black squares. During the
competition for inputs, the output units station themselves strategically to cover the inputs. The
output units are thus prototypes and each input is assigned to the nearest one. In (a) the inputs
are from a pair of Gaussian probability distributions and in (b) the inputs are uniformly distrib-
uted over an L-shaped region. (From Hertz et al. 1991.)

become even more sensitive to that pattern, thus earning the right to represent
that vector. ipso facto, it will be less sensitive to very different input patterns,
allowing some other unit to muscle in and win the right to represent the
different pattern. This is called "vector quantization," reflecting the strategy of
quantizing a group of related vectors into a single vector. By following this
weight-modification principle, the net eventually fits itself out with units that
are prototypes, inasmuch as each unit gathers to itself the range of input
patterns that is more similar to its prototype vector than to the prototype
vector of any other unit (figure 3.42). The network accordingly partitions the
input space into groups of similar vectors, thus performing a preprocessing
task.

Although unsupervised clustering successfully segregates the incoming in-
formation, it does not solve the problem of creating subnetworks. The idea of
competition between the units can, however, be applied to whole networks
with the result that independent subnets are created (Nowlan 1990, Jacobs et
al. 1991). The strategy is this: appoint "mini-nets" instead of single units to
compete for representation rights, where the mini-nets have their private array
of hidden units, modifiable weights, and cornections (figure 3.43). Mini-nets
not only compete for the right to represent an input pattern, they are also
trained by backprcipagation of error to represent their patterns more and more
correctly. Thus early in the training phase, mini-net C may give an output
closer to the desired output than any of its competitors, A and B. The "teacher"
then picks it out, and using the error measure, adjusts C's weights in the
correct direction using backpropagation of error. The other mini-nefs are on
recess for that input pattern. Each mini-nef is activated by the input vector, but
a winner-take-all strategy decides which mini-net is trained.

How is it decided which mini-net output is the answer to the input question?
On the side, so to speak, there is another net that is trained up at the same time.
This can be thought of as a "referee net," trained to select winning mini-nets
for any given input pattern. The referee net takes the same inputs as the other
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Figure 3.43 A system of mini-nets (experts) with gating network (referee). Each expert is a
feedforward network, and all experts receive the same input and have the same number of
outputs. The gating network is also feedforward, with normalized outputs (P), and an input
which is the same as the input received by the expert networks. The referee acts like a multiple-
input, single-output, stochastic switch. The probability that the switch will select the output
from expert jis Prob P3, which is the j 1h output of the gating network. The expected value of
the output of the system is: po3, where o is the output of the mininet i.

mini-nets, and its output is its probabilistic prediction of which mini-net has the
right answer. The teacher computes the error measure here as well, and sends
modification signals back to the referee net. The upshot is that once the whole
slew is trained up, the teacher can retire, and the trained-up referee will
correctly select which mini-net answer is the answer for any given pattern-
recognition question. (This is highly simplified, but see Nowlan 1990 and
Jacobs et al. 1991.) No referee was required in the simple clustering configura-
tion because the winner is simply the most active unit. In the Jacobs et al.
approach, the winner is determined by which mini-net is the expert for the
particular input vector.

The Jacobs et al. configuration scores very well on the multiple-speaker
vowel recognition problem, and it can efficiently process 74 different voices,
correctly identifying vowels of these voices. This gets us a bit closer to real-
world speech recognition. An analysis of the mini-nets reveals that they tend
roughly to divide labor so that some end up an expert on children's voices,
others on women's voices, and yet others on men's voices. The lesson of
consequence, however, is that some measure of success in coping with the
scaling problem can be achieved by configuring nets so that with experience
they specialize. Specialization by substructures is a principle that fits well with
neurobiology and with findings from human subjects. For example, in direct
cortical stimulation of bilingual subjects, George Ojemann has observed inter-
ference with Greek only and not English, or English only and not Greek, where
the intervening distance may be as small as 10 mm (Ojemann 1988, 1990).

11 WHAT GOOD ARE OPTIMIZATION PROCEDURES TO
NEUROSCIENCE?

A common misconception is that an artificial net is a waste of time if the
parameter-adjusting procedure component of the triple <architecture, dynam-

Gating
Network



ics, procedure> is not maximally biological; that essentially nothing can be
inferred about the actual net simulated by the model net; and that the expecta-
tion that it will be useful is just wishful thinking in the worst of the tradition of
black-boxology. According to this view, until we know how nervous systems
parameter-adjustand there may be many procedures that govern parameter-
adjusting in nervous systemsmodel nets are charming demonstrations that
an inputoutput function can be executed, and that weight-adjusting will lead
a net to the correct inputoutput function, but nothing can be revealed about
how real neural nets execute that function unless the parameter-adjusting pro-
cedures are the same, or at least similar. Why is this a misconception?

The fast answer, to be duly expanded below, is this: assuming the architec-
ture is relevantly similar to the anatomy, and assuming the dynamics are
relevantly similar to the physiology, then so long as both the actual net and
the model net use some parameter-adjusting procedure to minimize error, then
they will each end up at locations on the error surface that are rather close.
How close the final positions are depends on how similar the architecture and
dynamics are, but the critical point is that error minimization is an optimization
procedure, so it is reasonable to expect that however a given net finds its error
minimum, it will be as close to the error minimum found by another net as long
as the architecture and dynamics of the two nets are closely similar.

How a physical system comes to be configured such that it computes some
function may beindeed is virtually certain to bedifferent from how the
theorist goes about finding out what function the system is computing. As
we shall see anon, modelers sometimes use optimization procedures such as
backprop as a way of shaping a network model into an inputoutput configu-
ration that resembles the inputoutput configuration of an actual neural
system. One aim may be to have an accessible "preparation" to analyze in
order to find out what function the neural system is computing. Mother aim,
as even most sceptics emphasize, is to generate ideas from the organization
and behavior of the net. Although backprop is enormously helpful in smithing
up a model with capacities analogous to the actual neural network, it is not
assumed that the neural system came to be organized as it is by backprop.
Obviously, one might say. Nevertheless, this bears noting inasmuch as criti-
cism of computational models is often directed toward optimization tech-
niques for getting a model into suitable neural configuration, on grounds that
the technique is not very biological. Whatever other criticisms might be apt,
this one is surely misdirected. Think of backprop not as aiming to mimic
neurogenesis or real synaptic modification, but rather as a tool to aid discovery
of what function a grown-up network is in fact computing and how in fact it
manages to compute that function. These discoveries are what enables us to
use the net as a source of ideas.

As a means of clarifying the argument, let us work up to the test case by first
considering several easier cases. Suppose two model nets are constructed, with
identical architecture and identical dynamics, but rather different procedures
for parameter adjusting to find the error minimum, and suppose, to make it
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more relevant, that one was supervised and the other was monitored. They
then learn, by the parameter-adjusting procedure, the same inputoutput func-
tion. What would you predict about the properties of the nets once each has
found its error minimum? Well, you would expect that the free parameters at
training end have the same values, or close to. One net may take a circuitous
route down the error surface, the other may be more direct, but they are bound
to end up in the same, or closely adjacent, places. In this game we assumed the
identity of architecture and dynamics in order to make the point that each
model could use a distinct route to wend down to its error minimum.

Imagine now a slightly different game where the identity of architecture is
not given at the outset, but the net's function is given. Suppose that the
Zygons deliver us an up-and-running model network with its inputoutput
function pinned to its shirt, but whose architecture and dynamics we are to
discover by experimental techniques that can give us mostly only local infor-
mation. The game is to figure out how Zygon-net works. To this end, we
construct a model net, call it Home-net, constraining its architecture and
dynamics by using whatever local information we can get about Zygon-net.
We then train Home-net to execute the same inputoutput function that we
know Zygon-net executes, where Home-net uses an off-the-shelf parameter-
adjusting procedure for minimizing error. The Zygons being good engineers,
we reasonably expect they trained up their net using some parameter-adjusting
procedure or other, though its specifics we are never told. The crucial question
is this: can one infer anything about Zygon-net's global properties from the
global properties of Home-net? Would it be useful to make predictions about
undiscovered local properties of Zygon-net on the basis of what Home-net's
properties imply about those local properties? The answers appear to be
positive in both cases. To be sure, the inferences about Zygon-net's global
propertiesand hitherto unknown local propertiesare only probabilistic.
Consequently, the degree of probability the hypotheses enjoy will be a func-
tion of the similarity between the architecture and dynamics of Zygon-net and
Home-net, notwithstanding whatever differences may exist in the parameter-
adjusting procedures. The important point is that the learning procedures are
error-minimizing procedures, so the Zygon-net and Home-net are similar in
the respects that matter. This "just-so" story brings us one step closer to the
neurobiological case.37

Now we cannot make this next step unless we have reason to think the
brain is in the error-minimization business. Is it? Four basic considerations are
relevant to answering this question: (1) In nervous systems generally, and most
obviously in mammals, there are too many parameters (e.g., 1015 synapses in
human brains) for them all to be set genetically, so at least some must be set by
some other procedures. (2) During development there is massive synaptogene-
sis and also massive cell death, some of which appears to be governed by
competitive principles (Rakic 1986, Constatine-Paton and Ferrari-Eastman
1987), that have the character of an optimizing process. Crudely speaking, the
connections which are most robust and useful as the substrate for some func-



tions tend to survive. (3) In both the developing and the adult animal, some of
these parameters are set as the nervous system uses feedback to adapt behavior
to circumstances. There are many examples of homeostatic error-correcting
mechanisms, such as changing the gain of the vestibulo-ocular reflex in re-
sponse to magnifying goggles (see chapter 6), calibrating motor performance
in learning how to play tennis, and fine-tuning the matching of images from
the two eyes. (4) Natural selection culls nervous systems that are outperformed
by those of predators, prey, or conspecifics in the reproduction game. To this
extent, and relativized to in-place structures, the selection pressure on nervous
structures can be characterized as error-minimizing. This is just to state the
familiar thesis of natural selection in a neurobiological context: the modifica-
tions to nervous systems that are preserved are by and large those modifica-
tions that contribute fo (at least do not undermine) the organism's survival in
its niche.

A possible misunderstanding should be forestalled here. In describing the
evolutionary modification of nervous structures as error minimization (and
hence as optimization), we do not assume anything Panglossian about evolu-
tion. Consequently we are not letting ourselves in for a scolding from Gould
and Lewonfin39 for the sin of supposing that if natural selection slides down an
error gradient, characterized relative to available structure and environmental
niche, the nervous system is therefore the best of all possible systems. First, the
parameter-adjusting procedures at the evolutionary level may find only a local
minimum, not necessarily the global minimum. In other words, evolution may
find not the best possible solution, but only a satisfactory solution. "Satisficing"
is good enough for survival and reproduction, and apart from natural selection
there is really nothing to push evolution to do better, nor, of course, is there a
particular path for it to follow.

Returning now to the relevance of model nets fo real neural nets, imagine
that Critter-net is an up-and-running neural circuit in some living nervous
system. Suppose, for example, that it is the neural circuit for visual tracking of
moving objects when the head is moving. By experimentation in anatomy,
physiology, and pharmacology, the values of many of the parameters in the
system are known. Thus we may know the number of cell types, we may have
rough estimates of the numbers of each type, what cells project to where, the
receptive field properties of cells, whether certain synapses are excitatory or
inhibitory, and so on. The specific weights, however, are unknown. Suppose
Computer-net is constructed by fixing the known parameters. Those parame-
ters whose values are unknown, such as the weights, will be fixed as Computer-
net is trained up on the inputoutput function using an error-minimization
procedure for adjusting the parameters. Can we infer anything about Critter-
net's global properties from the global properties of Computer-net? Would it
be useful to make predictions about undiscovered local and global properties
of Critter-net on the basis of the local and global properties of Computer-net?
Given that nervous systems are probably computing error minimization, or at
least cost functions of some kind, then the answers appear fo be positive. As
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before, however, the probability of the inference depends on the degree of similarity
between the architecture and dynamics of Critter-net and Computer-net.

A different but related point concerns the significance of parameter asym-
metries between nets with identical architecture and dynamics. Learning algo-
rithms can be thought of as efficient devices for searching the parameter space
for combinations of values that optimize some inputoutput function. When
there are many thousands of parameters, the probability that the global mini-
mum of the real neural net and that of the model net are precisely the same,
weight for weight, is actually rather low. This may prompt the inference that
the model net is next to useless in understanding the real neural net. In fact, the
situation is nothing like so gloomy. To begin with, experience with parameter-
adjusting procedures applied to many problems shows that networks can per-
form equivalently even though the specific values of the weights may be quite
different.

In the simplest case, a net and its mirror image are equivalent. In a rather
backhanded way, the fact that optimization procedures cannot be counted on
to find the global minimum, but only local minima, helps upgrade the probabil-
ity of a model net's being useful. Regardless of the starting point in parameter
space, if the net keeps going downhill and improving its performance, it is
likely to find a good solution at the bottom, though it may not be the very
best. This means that a net trained up on many different occasions from ran-
domly set starting weights carves out a region of parameter space of different
but equivalent solutionsof different but equivalent weight-assignments. And
the same is likely to be true of nervous systems. That is, even homozygotic
twins' brains may be very different in their weight-by-weight (parameter-by-
parameter) configuration, even if their circuits and their capacities be function-
ally equivalent. The idea is then that two regions of parameter space are, on
sheerly mathematical grounds, more likely to overlap than two points in param-
eter space. So if an optimizing procedure circumscribes regions rather than
localizing points, this is all to the good. Thus when a model net is highly
constrained by neurobiological data, the probability is nontrivial that the re-
gion of parameter space defined by the model net and the real neural net
will overlap. In either case, one can use additional neurobiological data to
error-correct one's way closer to the parameter-space region of the real neural
net. IFor the statistical analysis of learning in artificial neural nets, see White

(1989).]
The main point, therefore, is that model nets may be a valuable source of

ideas relevant to real neural nets. By analyzing the features of the trained-up
net, one can make predictions concerning the actual nervous system, which can
then be tested neurobiologically. This is especially useful when the model's
results illuminate global properties, for these are surpassingly difficult to find
by neurobiological techniques but are easy to reveal in artificial nets. The
useful results are by no means restricted to global properties, for model nets
may also reveal important but unanticipated local properties. Consequently,
surprising results can be gleaned from a model net that would not be discov-



ered by looking only at a real neural net. Newfound neurobiological parame-
ters can then be ploughed back into the model as added constraints. The newly
parametrized model will generate new hypotheses and predictions, and the
co-evolutionary gambit can be repeated. Notice that co-evolution of model net
and neural knowledge is really an error-correcting process, where the goal is
minimizing error in the model net by comparison with the real neural net

The basic argument regarding the value of model nets to neuroscience has a
number of important pieces, and it can be summed up as follows: (1) IF is
reasonable to assume that the evolution of nervous systems can be described
by a cost function; development and learning in nervous systems are probably
also describable by a cost function. In other words, by dint of parameter-
adjusting procedures, nervous systems, ontogenetically and phylogenetically,
appear to be finding local minima in their error surfaces. (2) Model nets that
are highly constrained by neurobiological data concerning architecture and
dynamics of the neural circuit being simulated may use backprop as a search
procedure to find local minima. (3) Identical nets using the same cost function
and sliding into error minima will nonetheless vary considerably in the specific
values assigned to their parameters. This is because the triple <architecture,
dynamics, error-minimization procedure> carves out a region of weight space,
and many different weight configurations can be found in that region. (4)
There is no guarantee that the local minima found by the model net will
overlap the local minima found by the real neural network, but it is reasonable
to assume so given points (1) and (3). That is, it is not unlikely that the region
of weight space carved out by the equivalent model nets and the neural nets
will at least overlap. (5) That assumption can be tested against the nervous
system itself, and additional constraints derived from neurobiological data
can be added to the model net to move it closer to the real neural net's region
of parameter space. This is itself an error-minimization procedure at the
theory-generating level. (6) Thus the model nets can be viewed as hypothesis
generators.4°

Until rather recently, setting the parameters in neurobiological models was
done largely by hand. (See, for example, Hodgkin and Huxley 1952, which is
discussed further in chapter 6.) But in large nets with many parameters and
nonlinear hidden units, hand-setting parameters is impractical to say the least.
As we have argued, model nets, in the context of the error-correcting co-
evolution with neurobiology, can lead to interesting results, and in general to
better results than obtained via guess-and-by-golly or hunch-driven parameter
setting. The point is important, but it should not be oversold. To repeat an
earlier caution, computer models of nets are a toolbut only one tool among
others; they are not a replacement for the basic neurobiological techniques that
have sustained neuroscience so far. The proof of the proverbial pudding is of
course in the eating, and thus it is by examples of useful models that the case
for network modeling as a valuable tool is most convincingly made. The
remaining chapters of the book are, therefore, largely devoted to presenting
examples we have found useful or at least suggestive.
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12 MODELS: REALISTIC AND ABSTRACT

In the previous section we leaned rather heavily on the desirability of con-
straining a model net with neurobiological data to increase the probability that
the model can tell us something about the real neural net. There is an important
dimension in which that must be qualified and explained. In neuroscience, as
anywhere else in science, no model is 100% realistic. A good and useful model
of the solar system, for example, will not necessarily have actual gas clouds
drifting around Jupiter; a good and useful model of magnetism will not neces-
sarily provide for the rusting of iron. The central point is this: what goes into
the model depends on what one is trying to explain, and in the nervous
system, that is intimately related to the level of organization one is targeting.
(Recall levels of organization in chapter 2, and figure 2.1.) A little more exactly,
if one is modeling a function or task of a given level of brain organization, the
model should be sensitive to structural constraints from the level below and to
inputoutput properties described for the level above.

Not uncommonly, a model will be criticized as unrealistic for failing to
include very low-level properties. A model of a neural circuit such as the
vestibulo-ocular reflex (VOR) (see chapter 6) may include only the pathways
required by the model to perform equivalently to the real net, it may average
over dendritic integration, and it may ignore altogether the details of mem-
brane channel properties. Does this mean the model is too unrealistic to be
useful? We shall show more directly and specifically in chapter 6 why the
model can be useful nonetheless, but for the moment, suffice it to say that
lower-level properties such as channel properties are not necessary to simulate
a neuron's contribution to that aspect of the VOR up for explanation, namely
image stabilization. The model certainly needs to incorporate constraints re-
garding latencies and feedback loops (level above) and constraints regarding
the net effect at synapses and the firing rate of neurons in the circuits (level
below), but it does not need to be sensitive to the precise mechanisms by
which a neuronal membrane operates to yield these firing rafes (two levels
below). There may be other aspects of the VOR circuit where these properties
will be required for the explanation soughtfor example, exactly how syn-
aptic plasticity is managed. When synaptic plasticity is what is being modeled,
however, then these properties should be included. More generally, if one
were modeling how a neuron integrates signals, then membrane properties are
relevant and must be included. In that event, however, higher-level properties,
such as receptive field and feedback connections (two levels up), are probably
not relevant.

Some modeling discussions seem to presuppose a kind of "realism pecking
order." For example, it may be argued that until the whole neuron is thor-
oughly and completely modeled, modeling even a small circuit such as the
VOR is premature. According to this argument, a circuit model will have to
idealize the neuron, leaving out such details as the membrane channel types
and their physiology. This, it will be complained, makes the model "unrealis-
tic," and hence dismissable. An even more pure realist can dismiss the whole



neuron-modeling project on grounds that there is no point in modeling the
neuron until one has completely modeled the dynamics of transmitter release,
including such constraints as numbers of vesicles that fuse, spatial layout of
receptors, and production and packaging of neurotransmitters. Undoubtedly
the biophysicist can top that; he wants first a model of protein folding. But this
is surely silly. Do we really need a model of protein folding in order to get a
grip on the essentials of how the VOR achieves stabilization of a visual image
during head movement? Part of what perpetuates the realist pecking order is
this: any given modeler tends to think his favored modeling level is the impor-
tant level, that lower levels are properly ignorable, and modeling levels higher
than his favored level is premature and unrewarding.

Realist one-upmanship needs to be put in perspective. First, models that are
excessively rich may mask the very principles the models were built to reveal.
In the most extreme case, if a model is exactly as realistic as the human brain,
then the construction and the analysis may be expensive in computational and
human time and hence impractical. As noted in chapter 1; modeling may be a
stultifying undertaking if one slavishly adheres to the bald rule that the more
constraints put in a model, the better it is. Every level needs models that are
simplified with respect to levels below it, but modeling can proceed very well
in parallel, at many levels of organization at the same time, where sensible and
reasonable decisions are made about what detail to include and what to ignore.
There is no decision procedure for deciding what to include, though extensive
knowledge of the nervous system together with patience and imagination are
advantageous. The best directive we could come up with is the woefully vague
rule of thumb: make the model simple enough to reveal what is important, but
rich enough to include whatever is relevant to the measurements needed.

13 CONCLUDING REMARKS

The look-up table was introduced as our first and simplest parade case of
computation. Because look-up tables appeared to be rather limited in their
capacity to solve difficult computational problems, other computational princi-
ples were sought. It is surprising then to realize that a trained-up network
model can be understood as a kind of look-up table. Once the parameters are
set, the network will give the output suitable to the input, and the answer to
any given question is stored in the configuration of weights. Not, to be sure,
the way answers are stored on a slide rule, but in the sense that an input vector
pushed through the matrix of weights (and squashing function) is transformed
so that the output vector represents the answer. Not, notice, by way of many
intervening computational steps, but merely by vector-matrix transformation.

By analogy with the <board position/next position> pairs prestored in the
Tinkertoy computer, the net's weight configuration, characterized as a matrix
through which the input vector is pushed, can be thought of as "storing"
prototypes as <input vector/hidden unit activation> pairs, "storing" being in
scare quote to reflect the extension of its customary sense. As we saw above,
when the net has learned to distinguish rock echoes from mine echoes so no
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further weight-adjusting is required to deliver correct answers, the weights
partition the activation space of the hidden units in such a way that activation
values of the hidden units fall on one side or the other of the partition (see next
chapter, figure 4.17). The key difference between the run-of-the-mill look-up
table and the trained-up network is that the network can correctly classify
novel signals and thus has the capacity to generalize from training cases to
new cases. In this respect, trained-up networks have a flexibility denied to
run-of-the-mill look-up tables. This flexibility of a net is not mysterious. It
derives from the net's assorted design features; for example, the output values
of its hidden units may be continuous, and working as groups the units can
interpolate smoothly between samples.

These networks might be considered examples of "smart look-up tables."
They operate in very high-dimensional spaces, since weight space will have as
many dimensions as there are weights, and activation space for the hidden
units will have as many dimensions as there are hidden units. The consequence
of these design features is that though the training set is finite, the network will
give good answers to inputs it has never seen before. The inputs will, however,
have some resemblance to previously seen inputs, and that will be enough to
ensure correct categorization. It must be emphasized that the learning process
is not itself a look-up table operationrather, parameter-adjusting is a relaxa-
tion process. Similarly, fitting the Tinkertoy pieces together is not itself a
look-up table operation. In the network, it is only the result of parameter-
adjusting procedures that produces something construable as having a look-up
table configuration. Moreover, a single (smart) look-up table can be traded in
for a hierarchy of (smart) mini-look-up tables, so that an approximate answer
can be cranked out at one stage, then shunted to a further stage for finer
tuning. In this event, speed is traded for spatial miniaturization. Some of the
speed can, however, be bargained back by adopting parallel search.

The insight that trained-up nets are look-upish raises the question of wheth-
er this might be useful in understanding circuits in nervous systems. Is it
possible that some parts of the brain are taking advantage of the look-up table
principle in some highly evolved version of that genre? Time considerations
suggest they might well be. The time delays for conduction of a signal down
an axon and across a synaptic cleft, together with the time delays for signal
integration in the dendrites and cell body, add up to about 5 or 10 msec per
neuronal step. If a nervous system is to give a motor response to a sensory
stimulus with a latency of a few hundred milliseconds or less, then for certain
stages in processing, the neuronal anatomy is probably configured for look-up
short-cuts. Visual pattern recognition, for example, can be done in about 200
300 msec, which means there is only time for about 20-30 neuronal steps from
retinal stimulation to motor output (Thorpe and Imbert 1989, Thorpe 1990).

Evidently the response latency for many tasks, including visual recognition,
shows that there is insufficient time for the brain to be engaged in following
the massive set of 3000-50,000 steps (or more) found in conventional com-
puter vision programs (Feldman and Ballard 1952). Figuring out the next move



in chess or figuring out how to make a bridge with popsicle sticks is, by
contrast, relatively slow, and clearly involve many steps, but whether these are
steps in a long sequence of look-ups representing possible <move-next move>
pairs, or whether some rely on different principles altogether remains to be
seen. Given their finite capacity, nervous systems cannot store answers for
every possible contingency. To cope with novelty, nervous systems must
cycle through multiple states to search for an adequate solution. With practice,
however, the new problemsolution pairs can be compiled into a look-up
table.41
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