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Abstract

Biological control systems have long been studied as
possible inspiration for the construction of robotic con-
trollers. The cerebellum is knoun to be involved in the
production and learning of smooth, coordinated move-
ments. In this paper, we present a model of cerebel-
lar control of a muscle-actuated, two-link, planar arm.
The model learns in a. trial-and-error fashion to gen-
erate the appropriate sequence of motor signals that
accurately bring the arm to a specified target. The mo-
tor signals produced by the cerebellum are specified in
muscle synergy space. When the cerebellum fails to
bring the arm to the target, an estra-cerebellar mod-
ule performs low-quality corrective movements, from
which the cerebellum updates its program. In learn-
ing to perform the task, the cerebellum constructs an
implicit inverse model of the plant. This model uses
a combination of delayed sensory signals and recently-
generated motor commands to compute the new output
motor signal. ’

1 Introduction

Modern robotics research is concerned with the con-
trol of complex plants. Such plants exhibit non-trivial
dynamics and potentially long feedback delays. How-
ever, in order to be successful, many control tech-
niques require accurate models of both the plant and
the environment with which the plant interacts. In
biology, both actuator and plant are in a constant
state of flux, and behave in a complex and non-linear
fashion. Delays of the sensory-motor loops are typi-
cally measured in hundreds of milliseconds. Millions
of years of evolution have developed biological con-
trollers that are very good at controlling these sys-
tems. These controllers do not rely on high-quality,
pre-defined models of the plant. Rather, the control
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algorithm is tuned incrementally through experience
with the environment. It is not surprising, then, that
we should turn to biology for inspiration.

The primate cerebellum is known to be involved
in the learning and production of coordinated move-
ments [18]. In our earlier work, we proposed a
biologically-inspired model of cerebellar learning for
control of a one degree-of-freedom (DOF) mass-spring
system [9], and a two-DOF, muscle-actuated arm [6].
This model does not rely on a high-quality, built-in
model of the plant, but rather acquires an implicit
model through experience.

The work is extended in this paper in two key direc-
tions. First, control signals generated by the learning
controller are in a muscle synergy space. An individ-
ual muscle synergy activates a collection of the avail-
able muscles in a coordinated fashion. This language
of motor outputs is more akin to what is available to
motor areas of the brain, including the cerebellum [14].

Second, we introduce a simple, visual-based extra-
cerebellar (EC) controller for producing corrective
movements. When the learning cerebellar controller
is unable to bring the arm to the specified target, the
EC controller produces a short burst of muscle ac-
tivity that moves the arm closer to the target. Due
to the crude implementation of the EC module, how-
ever, the arm moves in short, quick hops, and does not
necessarily move directly toward the target. Despite
these properties, the cerebellar controller learns from
these corrective movements, to generate the appropri-
ate motor signals for bringing the arm to the target.

2 System Architecture

The system architecture, outlined in Figure 1, con-
sists of two control modules (the eztra-cerebellar (EC)
and cerebellar modules), a spinal/muscle processing
system, the arm plant, and a module responsible for
estimating movement errors (representing the inferior
olive).
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Figure 1: The System Architecture. Two control mod-
ules (cerebellar and extra-cerebellar systems) produce
signals in muscle synergy space. These signals are
transformed by the spinal/muscle system into torque
commands that drive the arm plant. Movement errors
are detected by the inferior olive, which are used to
update the cerebellar control program.

The plant used in our experiments is a simulated,
two degree-of-freedom, planar arm (Figure 2). Actua-
tion of the arm is performed by three pairs of opposing
muscles. Two pairs of muscles individually actuate the
shoulder and elbow joints, while the third pair actu-
ates both joints simultaneously. Each pair of muscles
pull against one-another. Activation of the agonist
muscle results in a flexion of the joint(s); activation
of the antagonist results in joint extension. A single
muscle behaves as a non-linear visco-elastic (spring)
element. Control of the arm is achieved by setting the
rest length of each muscle.

The learning controller (the cerebellar module) is
constructed from an array of adjustable pattern gen-
erators (APGs) [3, 4], each of which drives a single
muscle synergy. These APGs combine the current tar-
get position with delayed sensory and motor efference
signals to produce motor commands that are intended
to bring the arm to the specified goal. In cases where

Figure 2: A muscle-actuated, 2 DOF, planar arm
(Figure adapted from [11]). :

the arm does not reach this goal, the static EC module
is activated. This module produces a short, constant
burst of activity in muscle synergy space that brings
the arm closer to the goal.

The contributions of the two control modules are
combined in the spinal/muscle system, which trans-
forms muscle synergy signals into joint torques. Each
muscle synergy [14] activates a subset of muscles. Mo-
tor commands for opposing muscles then reciprocally
inhibit one-another (S). Finally, multiple muscles in-
duce torques about individual joints, as described by
transform A.

Errors in cerebellar-generated movements are as-
sessed by the inferior olive (I0), and are measured in
muscle synergy space. This is accomplished indirectly
by observation of muscle length changes in response
to the corrective motor commands generated by the
EC module. The I0-generated signals are then used
to adjust the APGs contained within the cerebellar
controller.

2.1 Muscle Synergies

In the brain, neurons that send axons down the
spinal cord (to motor neurons) do not typically af-
fect single muscles. Instead, an individual cell often
projects to a group of related muscles [14]. This makes
the learning-to-control problem more difficult. Not
only must the system decide which muscles to acti-
vate to move the limb appropriately, but it must also
recruit the right combination of muscle synergies to
achieve the desired muscle activation.

In the model described here, we make use of a to-
tal of eight muscle synergies. Each of these synergies
activate a subset of the six arm muscles. We refer to
the eight synergies as: S (shoulder agonist), S (shoul-
der antagonist), E (elbow agonist), £ (antagonist),
SE (shoulder agonist, elbow antagonist), SE (shoul-
der antagonist, elbow agonist), SEB (shoulder, elbow,
and biarticulate agonist), and SEB (antagonists).

Figure 3 illustrates the behavior of each muscle syn-
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Figure 3: Behavior of the arm as different synergies
are activated at several points in the workspace. Each
“spider” traces the movement of the endpoint of the
arm in reaction to activation of a single muscle syn-
ergy. The muscle synergy labels (upper right of Figure)
correspond spatially to the upper, center spider.

ergy as a function of position in the workspace. Each
“spider” corresponds to a single starting point. Indi-
vidual legs of a spider are the result of tracking the
endpoint of the arm in response to activation of one
muscle synergy for 50 ms. Movement in arbitrary di-
rections can be obtained by appropriately mixing sev-
eral muscle synergies. Note that as the shoulder ro-
tates through its range, the spiders also rotate in a
corresponding fashion. Hence, individual muscle syn-
ergies approximately encode movements in a cylindri-
cal coordinate system.

2.2 Cerebellar Module

In the brain, mossy fibers (MFs) carry plant state,
motor efference, and other contextual signals into the
cerebéllum [5]. These fibers impinge on grenule cells,
whose axons give rise to parallel fibers (PFs). Through
the combination of inputs from multiple classes of MFs
and local inhibitory interneurons, the granule cells are
thought to provide a sparse, expansive encoding of the
incoming state information [1]. In our model, such
an encoding is computed by the state encoder (Fig-
ure 1) using a CMAC (Cerebellar Model Arithmetic
Computer) [1, 15). This coding scheme makes use of
multiple tilings over the state space. A single tiling
partitions the space defined by several state variables
(e.g. 6., 6., and 1) into discrete, non-overlapping
rectangular volumes (tiles). When the system state
falls into a particular tile, the tile is given an acti-
vation level of 1, and all others within the tiling are
set to 0. Like Albus, we imagine that each tile corre-
sponds to a single granule cell [1]. Due to the large
number of state variables, it is impractical for a single

tiling to effectively partition the entire space. Thus, a
number of tilings are used in parallel, each making use
of different subsets of state variables. Although this
coding scheme is not biologically plausible, it captures
the computational essence of the biology, while being
inexpensive to simulate.

The large number of PFs converge on a much
smaller set of Purkinje cells (PCs). The state of the
PC j is computed as follows:

Pc; = g()_ PFixuwy),

where PC} is the cell’s firing rate, and w;; is the (vari-
able) strength of the synapse from PF; to PC;j. g() is
defined as the threshold-ramp function:

_ 0 z< A
9(z;0,5: M, A) = {p+(F-PF=3 A<=<X
P otherwise,

where A and X define the lower and upper threshold
of the ramp, and p and p deﬁne the output range of
the ramp.

A set of Purkinje cells, in turn, provide inhibitory
signals to a single cerebellar nuclear cell. The activa-
tion of the nuclear cell determines the output of the
APG. The control signal output by APG} is computed
as follows:

uc, =

IL Al Z Pc;,

JELs

where Lj is the set of Purkinje cells that are within
APG k.
2.3 Extra-Cerebellar Module

For a given movement, the cerebellar control mod-
ule may generate a pattern of muscle activity that does
not bring the arm to rest at the target position. In this
case, the role of the hard-wired extra-cerebellar (EC)
module is to produce one or more corrective move-
ments. It is not necessary, however, that a perfect cor-
rection be produced. Rather, the minimal constraints
are that 1) the corrective movement makes non-trivial
progress toward the goal, and 2) the movement gener-
ally does not overshoot the goal.

In the model, corrective movements are generated
by short, constant bursts of muscle activity, that are
computed from the target error. The target error
is measured in a Cartesian coordinate frame that is
rooted at the endpoint of the arm, and is oriented such
that the Y-axis passes through both the wrist and the
center of shoulder rotation (Figure 4). In this scheme,
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Figure 4: Exztra-cerebellar computation of the correc-
tive movement. The target error (X ) is measured in a
Cartesian coordinate frame that is rooted at the end-
point of the arm.

errors along the Y-axis (+e/—e) translate directly into
movements of the elbow, whereas errors along the X-
axis yield movements of the shoulder. Although this
is a very crude mechanism for generating movements
to the target, it satisfies both the constraints stated
above. More importantly, as we shall see, these crude
corrective movements provide sufficient information
for the cerebellar module to learn an effective control
policy, without the need for a high-quality, pre-defined
model of the plant.

3 Learning Algorithm

When the cerebellum does not bring the arm to
the target, requiring the extra-cerebellar module to
generate a corrective movement, the learning algo-
rithm must determine which of the PF-to-PC synapses
should be updated in order to improve the cerebel-
lum’s movement generation performance. This issue,
referred to as the credit assignment problem consists of
two components [8]. The structural credit assignment
problem is that of determining which synapses should
be updated. The temporal credit assignment problem
is that of properly attributing error signals received at
one instant to synaptic events that have taken place
in the recent past. '
3.1 Structural Credit Assignment

In animals, the inferior olive (I0) is known to be the
source of climbing fiber (CF) inputs into the cerebel-
lum, which are thought to carry some form of error in-
formation related to the current movement [10]. Stud-
ies in cat show that when a limb is passively moved
by an external force, CF's fire in response to the pro-
prioceptive inputs from the the limb [7]. In addition,
the CFs are differentially responsive to the direction
of limb movement. During active movements (such

as stepping), some CF responses are inhibited, except
at the very end of movement, where certain perturba-
tions are likely to occur (e.g. due to misanticipation
of the height of the step) {2].

In the model, CFs deliver error information to the
cerebellum’s APGs (there is exactly one CF for each
APG). The CF behavior draws in two key ways from
the behavior observed in cat. First, from the perspec-
tive of the cerebellar-generated movement, the correc-
tive movement made by the EC module is seen essen-
tially as passive (or unexpected) [4]. Thus, CF signals
only deviate from their background firing rate when
corrective movements are initiated. Second, the in-
crease (or decrease) in CF firing probability is a func-
tion of the rate of stretch of the muscles. Each CF
is maximally responsive to stretches in the muscles
that are activated by the corresponding APG. In other
words, the corrective movement generated by the EC
system is spatially coded in the array of CFs (see Fig-
ure 5). Positive errors (movements along the same
direction as an APG) result in an increase in the cor-
responding CF firing probability (PRy), whereas neg-
ative errors (in the opposite direction as the APG)
result in a decrease in firing probability. .

3.2 Temporal Credit Assignment

The temporal credit assignment problem results
from inherent delays in the system. First, there is a
significant delay between the time when a PF becomes
active and when the effects of its activation may be
sensed by the 10. Second, the time between the ac-
tivation of a PF and the generation of a corrective
movement (which gives rise to CF signals) can vary
by several hundred milliseconds.

We address these problems through the use of an el-
igibility trace on the synapse [13, 17]. This trace acts
as a memory of recent synaptic activity. The mem-
ory marks the synapse as being eligible for potential
update in the event that later training inputs arrive
from the IO. In our model, we make use of a second-
order eligibility trace (ei;j) [12, 16], whose time-course
is shown in Figure 6. This form of eligibility trace
has the advantage that the memory of PF activation
is temporally blurred over a long period of time. As
we will see, this implies that CF error signals do not
have to be carefully timed relative to PF activity in
order for a useful program to be learned.

Finally, updates to the PF-to-PC synaptic strength
require the coincidence of eligibility and corresponding
CF input:

Aw‘j =-a g(éﬁ) (CFk - CFbuu),
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Figure 5: CF responses to movements in joint space.
Each sub-plot corresponds to the CF of the indicated
APG. Purely horizontal vectors correspond to shoul-
der movements, while vertical vectors correspond to
movements of the elbow. For each possible direction
in joint space (all combinations of shoulder and elbow
movements), the disiance from the origin represents
the probability of a CF spike (P Ry ). The circles indi-
cate the base-line firing probability. Thus, for the APG
that drives the “S” muscle synergy (upper-left panel),
the CF responds most heavily to flezion of the shoul-
der joint (to the right of the origin), and is suppressed
below baseline when an eztension of the shoulder is
sensed. Furthermore, the CF remains al baseline for
pure movement of the elbow.

where CFj is the state of the climbing fiber that
projects to APGy (which contains PCj), a is the
learning rate, and CFpase is the background firing rate
of the climbing fiber. The binary state of CFy is se-
lected randomly as a function of its probability of fir-
ing (P R).).

In cases where the corrective movement is aligned
with APGx, PR, will be high. Thus, on average,
the eligible synapses from the PFs to the PCs within
APG;, will be decremented. The next time that the

200 40 00 600 100 1200 1400 W00 1800 20
t{me)

Figure 6: Eligibility trace &; in response to the tran-
sient activation of parallel fiber i (att =0). Unlike a
first-order trace (as used in [7]), the synapse does not
become eligible for update immediately following a PF
event.

same movement is executed, the PCs of APG}, will be
less active, resulting in a higher level of activity for
APGy. On the other hand, if the corrective move-
ment is in exactly the opposite direction as APGy,
PR, will be near 0, the synapse strengths will be in-
cremented, and PC activity will increase, resulting in
a decrease in APG activity. In essence, the trajectory
that results will be a blend of the original and correc-
tive movements. Over the course of repeated trials,
the cerebellar module will ultimately be able to bring
the arm to the target, and corrective movements will
no longer be necessary.

4 Simulation Results

In this section, the behavior of the model is demon-
strated during learning of a single point-to-point
movement. Each of the eight APGs consists of eight
PCs. The state encoder is made up of 120 separate
tilings. Each tiling receives input from between 3 and
5 state variables, which are drawn from: 6, 6,, error
(i.e 6, — 6), 6, and 4 (the motor efference copy). A
total of 160,000 PFs result from this encoding.

The sensory afference delay to the state encoder
(T1 in Figure 1) is 50 ms; motor efference delays (T2)
range from 15 to 75 ms; the descending motor com-
mand delay (T3) is 50 ms; the sensory afference delay
to the EC module (T4) is 50 ms; and inferior olive
delay (T5) is 20 ms. A simulation timestep of 5 msis
used.

At the beginning of a trial, the arm is placed in
an initial starting configuration (start in Figure 74),
and the target location is presented to the controller
(goal in the Figure). The movement is then triggered,
and proceeds under cerebellar control until the mod-
ule turns off all descending motor commands, and the
arm comes to rest. If the arm has stopped moving at a
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Figure 7: Plant/neural behavior on trial 8. A Move-
ment of the arm in Cartesian space. The initial
and target positions are indicated, as is end-poini of
the first (cerebellar-generated) movement. B Traces
of kinematic and internal variables. theta(s) and
theta(e) correspond to the joint angles of the shoulder
and elbow, respectively. theta_d(s|e) represent the
joint velocities. tan vel is the tangent velocity of the
wrist in Cartesian space. For each APG, two iraces
are shoun: the APG activity and the corresponding
CF activity. The APGs correspond to the following
muscle synergies: S (a), S(b), E and E (c and d),
SE (e), SE (f), SEB (g), and SEB (h). EC_burst
indicates when the EC system generated a corrective
movement.

position that is not near the target, the EC system is
triggered, which initiates a corrective arm movement.

The trial terminates if the arm reaches the target posi-
tion or the EC system has generated 9 bursts without
successfully reaching the target. A new trial is then
initiated, with a resetting of the arm position and the
selection of a new target position. In the experiment
presented below, however, only a single start/target
pair is used.

Figure 7 illustrates the behavior of the plant and
the cerebellar control module during the eighth learn-
ing trial. The movement produced by the cerebellar -
module has a duration of 450 ms, and brings the arm
most of the distance to the target. The primary con-
tributors to this movement are the APGs that acti-
vate muscle synergies E and SEB (APGc and AGPg
in Figure 7B). In addition, a minor role is played by
the APGs that drive S and SE (APGa and APGe).

Following the cerebellar-generated movement, two
small movements are produced by the EC system. In
the first of these corrective movements, the EC system
recruits the APGs that drive E, S, SE, and SEB.
This is indicated indirectly by the high level of activ-
ity of the corresponding climbing fibers (CFa, CFc,
CFe, and CFyg), and by the low activity of the oppos-
ing CFs. During learning, these CF signals cause the
original cerebellar-generated movement to be blended
with the corrective movements. As seen in Figure 8B,
this ultimately leads to a significant increase in the
initial burst of three APGs (S, E, and SEB).

By trial 28, the cerebellar module has learned to
generate an appropriate motor pattern for reaching
the target (Figure 8), and no longer requires the aid
of the EC module. APGs S, E, and SEB are the pri-
mary contributors to this final motor program. Com-
paring Figures 7A and 8A, note that even though
the EC module generates a trajectory made up of
two discrete hops, the final trajectory produced by
the cerebellar module does not reflect this behavior.
This happens because the cerebellum does not simply
append corrective movements onto its original move-
ment, but rather blends the EC-generated movement
into its own.

The cerebellar controller is capable of learning sin-
gle target movements within about 20-30 trials of ex-
perience. In addition, the cerebellum’s ability to store
and appropriately generalize over a set of targets has
been tested. In these experiments, the start and target
positions for a given trial are selected from a uniform
distribution over an 80 x 80 degree range of the joint
space. After 10,000 learning trials, the cerebellar con-
troller produces movements with an average of 3.5mm
error in the endpoint position (average movement dis-
tances are 29 cm). Furthermore, the controller hits
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Figure 8: Final plant/neural behavior (irial 28). A
The cerebellar control module generates the entire
movement to the target (in less than 200ms). B Trace
labels are the same as in Figure 7. APGs S (a), E
(¢), and SEB (g) contribute the most to producing
the movement. Note that no climbing fiber signals are
generated in this case.

the target on 98% of the trials (within 1 cm of the
goal), and reaches to within 2 cm of the goal on 99%
of the trials.

5 Conclusions and Future Work

A biologically-inspired model of cerebellar control
of a two-DOF planar arm has been presented. In
the design of the control system, we have deviated in
several ways from more traditional control methods.
First, the output of our cerebellar controller is not

torque to be applied to a set of joints. Rather, its out-
put falls within a more abstract actuation space. ‘On
the engineering side, this allows us to consider multi-
ple actuators affecting individual joints, and multiple
joints being driven by a single actuator - without hav-
ing to rely on a detailed model of these dependencies.
From the biological perspective, this approach is also
more satisfying. If one assumes that joint torques are
the currency of output from the cerebellum, then it
becomes necessary to assume that lower-level mech-
anisms are performing the complex transformation
from joint torque space into muscle space. However, it
is precisely the structure of the cerebellum that makes
it very well suited to learning such a transformation.
In taking advantage of this property, it is not neces-
sary to directly represent joint torques at all.

Second, our model does not make use of reference
trajectories, as has been assumed in other models of
cerebellar control [11, 16]. More specifically, there 18
little physiological evidence to support the idea that
another subsystem provides to the cerebellum a de-
tailed kinematic plan - a plan which happens to satisfy
certain dynamic optimality criteria. Rather, we see
such a higher-level system as providing a target posi-
tion and possibly some constraints about the desired
path (e.g. a few via points). The actual trajectory
taken by the arm, then, arises from the interaction
between the controller and the natural dynamics of
the arm.

The learning problems addressed by our cerebellar
model fall into two categories: structural and tempo-
ral credit assignment. The structural credit assign-
ment problem is solved 1) by marking active PF-to-
PC synapses as eligible for future update, and 2) by
using a spatially-coded CF activity pattern to select
the correct subset of marked synapses. The CF activ-
ity pattern is a function of proprioceptive inputs that
result from the generation of corrective movements.
The error-corrective module (the EC controller) pro-
duces low quality corrective movements only when the
cerebellum is unable to bring the arm to the target lo-
cation.

The error-corrective teacher concept is one that we
feel is fairly general. Consider a set of reflexes that
are designed to respond to unexpected events (e.g. not
reaching a goal position, unexpected muscle pulls, col-
lisions with the environment, or slipping of a grasp).
By “eavesdropping” on these reflexes (via propriocep-
tive or other sensory inputs), the 10 can provide the
cerebellum with a signed error-corrective signal. With
this information, the cerebellum can learn to produce
motor outputs similar to those generated by the re-
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flexes, but in an anticipatory manner — correcting the
movement before the reflex-generating conditions can
occur. However, the cerebellum does not simply gen-
erate the equivalent of the reflex movement just prior
to the reflex-triggering event. Rather, the reflexive
motor signal is blended with motor signals that have
been generated by the cerebellum over the previous
several hundred milliseconds.

In the model, the temporal credit assignment prob-
lem results from two factors: 1) the significant hard-
wired delay between the time that the cerebellum gen-
erates a motor command and the time that its “ef-
fects” are seen at the plant; and 2) the variable time
delay between the activation of a PF, and the behav-
ioral event that triggers a corrective movement (thus
initiating a CF signal). These problems are addressed
in this model through the use of a second-order eli-
gibility trace, which maintains a temporally-smeared
memory of recently active PF-to-PC synapses.

Finally, the model’s ability to rapidly learn an ap-
propriate motor trajectory is the result of the sparse,
expansive encoding provided by the granule cell layer
(which give rise to the PFs). Such an encoding ensures
that two very different movements do not overlap sig-
nificantly in their representation. This implies that
learning for one movement does not tend to interfere
with learning for the other.

In continuing work, we are examining how the
model may be adapted to produce more human-like
trajectories. The model is currently only constrained
in its behavior to reach the target location at the end
- of the movement. Rather, we would like to integrate
other forms of feedback, such that the cerebellar mod-
ule is constrained in the types of trajectories that it
learns to generate (this issue has been addressed by

others [11, 16]).
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