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Abstract

Biological control systems have long been studied as

possible inspiration for the construction of robotic con-

trollers. The cerebellum is known to be involved in the

production and learning of smooth, coordinated move-

ments. In this paper, we present a model of cerebel-

lar control of a muscle-actuated, two-link, planar arm.

The model learns in a trial-and-error fashion to pro-

duce bursts of muscle activity that accurately bring the

arm to a speci�ed target. When the cerebellum fails to

bring the arm to the target, an extra-cerebellar mod-

ule performs low-quality corrective movements, from

which the cerebellum may update its program. In learn-

ing to perform the task, the cerebellum constructs an

implicit inverse model of the plant. This model uses

a combination of delayed sensory signals and recently-

generated motor commands to compute the new output

motor signal.

1 Introduction

Modern robotics research is concerned with the con-
trol of complex plants. Such plants exhibit non-trivial
dynamics and potentially long feedback delays. How-
ever, in order to be successful, many control techniques
require accurate models of both the plant and the en-
vironment with which the plant interacts.

In biology, both actuator and plant are in a constant
state of 
ux, and behave in a complex and non-linear
fashion. Delays of the sensory-motor loops are typ-
ically measured in tens or hundreds of milliseconds.
Millions of years of evolution have developed biologi-
cal controllers that are very good at controlling these
systems. These controllers do not rely on high-quality,
pre-de�ned models of the plant. Rather, the control
algorithm is tuned incrementally through experience
with the environment. It is not surprising, then, that
we should turn to biology for inspiration.

The primate cerebellum is known to be involved in
the learning and production of coordinated movements

�This work is supported in part by the National Institutes of
Health (grant #NIH 1-50 MH 48185-02)

[13]. Two classes of inputs carry information into the
cerebellum: the mossy �bers (MFs) and the climbing

�bers (CFs). The mossy �bers provide both plant state
and contextual information [4]. The CFs, on the other
hand, are thought to provide information that re
ect
errors in recently generated movements [6]. This in-
formation is used to adjust the programs encoded by
the cerebellum.

This paper proposes a controller for a 2-DOF, 6-
muscle simulated arm which is based on the structure
of the primate cerebellum. This controller does not
rely on a high quality, built-in model of the plant, but
rather acquires an implicit model through experience.
In addition, we do not assume the existence of a ref-
erence trajectory on which control or learning may be
based. Finally, control signals are not in the form of
torques to be applied to the joints, but instead control
is performed directly in muscle space.

2 System Architecture

The plant used in our experiments is a simulated,
two degree-of-freedom, planar arm (Figure 1). Actua-
tion of the arm is performed by three pairs of opposing
muscles. Two pairs of muscles individually actuate the
shoulder and elbow joints, while the third pair actu-
ates both joints simultaneously. Each muscle behaves
as a non-linear visco-elastic (spring) element. Control
of the arm is achieved by setting the rest length of each
muscle.

The system architecture, outlined in Figure 2, con-
sists of two control modules (the extra-cerebellar (EC)
and cerebellar modules), a spinal/muscle processing
system, the arm plant, and a module responsible for
estimating movement errors (representing the inferior
olive).

The learning controller (the cerebellar module) is
constructed from an array of adjustable pattern gen-

erators (APGs) [2, 3], each of which drives a single
muscle. These APGs combine the current target posi-
tion with delayed sensory and motor e�erence signals
to produce motor commands that are intended to bring
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Figure 1: A 2 DOF planar arm. The six muscles are

attached in such a way that four of them induce torques

about single joints; the remaining two simultaneously

actuate both joints (Figure adapted from [7]).

the arm to the speci�ed goal. In cases where the arm
does not reach this goal, the static EC module is acti-
vated. This module produces a short, constant burst
of activity in muscle space that brings the arm closer
to the goal.

The contributions of the two control modules are
combined in the spinal/muscle system, which trans-
forms muscle space signals into joint torques. Motor
commands for opposing muscles reciprocally inhibit
one-another (transform S). Then, multiple muscles
induce torques about individual joints, as described
by the transform A.

Errors in cerebellar-generated movements are as-
sessed by the inferior olive (IO), and are measured in
muscle space. This is accomplished indirectly by ob-
servation of muscle length changes in response to the
corrective motor commands generated by the EC mod-
ule. The IO-generated signals are then used to update
the APGs contained within the cerebellar module.

2.1 Arm Model

The plant is a typical planar, 2-DOF arm, whose
dynamics are described as follows:

M (�)�� +C(�; _�) _� = � (�; _�; u); (1)

where:

M (�)=

 
I1 + I2 +M2L

2

1
I2 +M2L

2
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!
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and u is the descending motor command.
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Figure 2: The System Architecture. Two control mod-

ules (cerebellar and extra-cerebellar systems) produce

signals in muscle space. These signals are transformed

by the spinal/muscle system into torque commands

that drive the arm plant. Movement errors are de-

tected by the inferior olive, which are used to update

the cerebellar control program.

Links 1 and 2 correspond to the upper and lower
arm, respectively. The arm parameters, M (mass
of each link), L (link length) Lg (center of gravity),
I (moment of inertia), and Di (joint friction) are
adapted from [7].

2.2 Muscle Model

The muscles are modeled as visco-elastic (spring)
elements, which pull, but do not push. The state of
each muscle is a function of its current length (l), the
rate of change in length (_l), and the muscle rest length,
lr(u). The tension produced by a single muscle is de-
�ned according to:

T (l; _l; u) = f [Q(l � lr(u)) +D _l
1

5 ]; (4)

where f() is a threshold-linear function:
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f(x) =

�
0 x < 0
x otherwise;

(5)

Q is the spring constant, and D is the gain of the non-
linear damping factor.

The rest length of the muscle, lr(u), is a linear func-
tion of the motor command:

lr(u) = l0 � ru; (6)

where l0 is the rest length of the muscle when a 0-
motor command is given. Increases in the motor com-
mand (u) result in a decrease in the muscle rest length.

The non-linear damping term, which models the
e�ects of the spinal muscle stretch re
ex [14, 2], is
formulated such that damping is relatively high for
low velocities, but as velocities increase, the term be-
comes less signi�cant. This has the e�ect of creat-
ing a stickiness in the muscle's behavior, which allows
high-velocity movements without the ringing generally
associated with a purely linear model.

Muscle tensions induce torques about joints accord-
ing to:

� (�; _�; u) = A(�)TT (l; _l; u); (7)

where the matrix A(�) describes the moment arms for
each muscle. In this model, however, the moment arms
are assumed to be independent of �:

AT =

�
a1 �a1 0 0 a3 �a3
0 0 a2 �a2 a4 �a4

�
: (8)

Finally, muscle lengths are related to joint angles
according to:

l = lm �A�; (9)

where lm is the vector of muscle lengths when � =
(0; 0).

2.3 Spinal Processing

In addition to the muscle stretch re
ex already dis-
cussed (and incorporated as part of the muscle model),
spinal processing is viewed as performing one addi-
tional computational step: the reciprocal modulation
of the agonist/antagonist motor commands.

This e�ect is modeled using reciprocal inhibition
with a threshold:

u = f(S û); (10)

where

S =

0
BB@

1 �0:5 0 0 0 0

�0:5 1 0 0 0 0

0 0 1 �0:5 0 0

0 0 �0:5 1 0 0

0 0 0 0 1 �0:5
0 0 0 0 �0:5 1

1
CCA ; (11)

and û is the combined motor commands from the
cerebellar and EC modules. In addition, in S, each
pair of columns, 2i and 2i + 1, correspond to ago-
nist/antagonist muscle pairs.

2.4 Cerebellar Module

In the primate brain, mossy �bers (MFs) carry
plant state, motor e�erence, and other contextual sig-
nals into the cerebellum [4]. These �bers impinge on
granule cells, whose axons give rise to parallel �bers

(PFs). Through the combination of inputs from mul-
tiple classes of mossy �bers and local inhibitory in-
terneurons, the granule cells are thought to provide a
sparse expansive encoding of the incoming state infor-
mation [1].

In our model, a sparse, expansive encoding is com-
puted by the state encoder (Figure 2) using a CMAC

(Cerebellar Model Arithmetic Computer) [1, 10]. This
coding scheme makes use of multiple tilings over the
state space. A single tiling partitions the space de�ned
by several state variables (e.g. �e, _�e, and û1) into
discrete, non-overlapping rectangular volumes (tiles).
When the system state falls into a particular tile, the
tile is given an activation level of 1, and all others
within the tiling are set to 0. Like Albus, we imagine
that each tile corresponds to a single granule cell [1].

Due to the large number of state variables, it is
impractical for a single tiling to e�ectively partition
the entire space. Thus, a number of tilings are used in
parallel, each making use of di�erent subsets of state
variables.

The large number of parallel �bers converge on a
much smaller set of Purkinje cells (PCs):

PCj = g(
X
i

PFi �wij); (12)

where PCj is the cell's �ring rate, and wij is the (vari-
able) strength of the synapse from PFi to PCj. g() is
de�ned as a threshold-ramp function:

g(x; �; ��; �; ��) =

(
0 x < �

� + (�� � �)
x� �
�� � �

� � x � ��

�� otherwise:

(13)

A set of Purkinje cells, in turn, provide inhibitory
signals to a single cerebellar nuclear cell. It is the ac-
tivation of the nuclear cell that determines the output
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of the APG. The control signal output by APGk is
computed as follows:

uC k = 1�
1

jLkj

X
j2Lk

PCj; (14)

where Lk is the set of Purkinje cells that are within
APG k.

2.5 Extra-Cerebellar Module

For a given movement, the cerebellar control mod-
ule may generate a pattern of muscle activity that does
not bring the arm to rest at the target position. In
these cases, it is the role of the hard-wired EC mod-
ule to produce one or more corrective movements. It
is not necessary, however, that a perfect correction be
produced. Rather, the minimal constraints are that
1) the corrective movement makes reasonable positive
progress toward the goal, and 2) the movement gener-
ally does not overshoot the goal.

In the model, corrective movements are generated
by short, constant bursts of muscle activation. A crude
activation pattern, uEC, is computed as the arm comes
to rest at a point far from the goal:

uEC = f((ATS)+ J(�g � �)); (15)

where J is a square diagonal matrix consisting of
scaling terms, �g � � is the current deviation of the
arm from the goal, and the "+" operator is the pseudo-
inverse.

The descending muscle motor command is a com-
bination of the cerebellar and EC signals:

û = gate � uEC + uC ; (16)

where gate is a binary indicator of the participation
of the EC system. This gate is only opened when the
arm has begun to slow at a point that is far from the
goal (far being more than 1 cm). Once opened, the
gate remains in this state for a �xed period of time
(50 ms in our experiments) before closing.

3 Learning Algorithm

When the cerebellum does not bring the arm to the
target, requiring the extra-cerebellar module to gen-
erate a corrective movement, the learning algorithm
must determine which of the PF-to-PC synapses must
be updated in order to improve the cerebellum's move-
ment generation performance. This issue, referred to
as the credit assignment problem consists of two com-
ponents. The structural credit assignment problem
asks which of the synapses must be updated in order

to improve the cerebellum's movement-generation per-
formance. The temporal credit assignment problem is
that of dealing with the signi�cant delays between the
time that the cerebellum generates a motor signal, and
the time that it receives corrective information related
to that signal.

3.1 Structural Credit Assignment

In biological systems, the inferior olive is known to
be the source of CF inputs into the cerebellum, which
are thought to carry some form of error information
related to the current movement [6]. Studies in cat
show that when a limb is passively moved by an ex-
ternal force, CFs �re in response to the proprioceptive
inputs from the the limb [5]. In addition, the CFs are
di�erentially responsive to the direction of limb move-
ment. During active movements (such as stepping),
some CF responses are silenced except at the very end
of movement, where certain perturbations are likely to
occur (e.g. due to misanticipation of the height of the
step).

In the model, CFs deliver error information to the
cerebellum's APGs (there is one CF for each APG).
The CF behavior draws in two key ways from the be-
havior observed in cat. First, from the perspective
of the cerebellar-generated movement, the corrective
movement made by the EC module is seen essentially
as passive (or unexpected). Thus, CF signals only de-
viate from their background �ring rate when corrective
movements are initiated. Second, the increase (or de-
crease) in CF �ring probability is a function of the rate
of stretch of the muscles. Each CF is maximally re-
sponsive to stretches in the muscles that are activated
by the corresponding APG (we will refer to this as the
direction of the APG). In other words, the corrective
movement is spatially coded in the array of CFs.

The �ring probability of the array of CFs, PR, is
computed according to:

PR = g(�(ST _l)): (17)

Positive errors (movements along the same direction
as an APG) result in an increase in the correspond-
ing CF �ring probability (from the baseline), whereas
negative errors (in the opposite direction as the APG)
result in a decrease in �ring probability.

3.2 Temporal Credit Assignment

The temporal credit assignment problem results
from certain delays in the model. First, there is a sig-
ni�cant delay between the time when a PF becomes
active and when the e�ects of its activation may be
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Figure 3: Eligibility trace �eij in response to the tran-

sient activation of parallel �ber i.

sensed by the inferior olive. Second, the time between
the activation of a PF and the generation of a cor-
rective movement (which gives rise to CF signals) can
vary by several hundred milliseconds.

We address these problems through the use of an
eligibility trace on the synapse [8, 12]. This trace acts
as a memory of recent synaptic activity. The memory
marks the synapse as being eligible for potential up-
date in the event that later training inputs arrive from
the inferior olive.

In our model, we make use of a second-order eligi-
bility trace [11], whose time-course is shown in Figure
3. We compute this trace as follows:

�elig
deij

dt
= �eij + PFi ; (18)

�elig
dêij

dt
= �êij + eij ; (19)

where eij and êij are the �rst and second-order eligi-
bility terms, and �elig is the memory time constant.

The potential plasticity of a synapse, �eij, is de�ned
as a function of both the �rst- and second-order eligi-
bility terms:

�eij = f(3 êij � eij): (20)

The eligibility trace has the advantage that the
memory of PF activation is temporally blurred over
a long period of time. As we will see, this implies that
CF error signals do not have to be carefully timed rel-
ative to PF activity in order for a useful program to
be learned.

Finally, updates to the PF-to-PC synaptic strength
require the coincidence of eligibility and corresponding
CF input:

�wij = �� g(�eij) (CFk � CFbase); (21)
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Figure 4: Plant behavior on trial 13. The initial and

target positions are indicated, as is end-point of the

�rst (cerebellar-generated) movement.

where CFk is the climbing �ber that projects to APGk

(which contains PCj), and whose binary state is se-
lected as a function of its probability of �ring (PRk).
� is the learning rate, and CFbase is the background
�ring rate of the climbing �ber.

In cases where the corrective movement is aligned
with APGk, PRk will be near 1. Thus, on average,
the marked synapses from the PFs to the PCs within
APGk will be decremented. The next time that the
same movement is executed, the PCs of APGk will
be less active, resulting in a higher level of activity for
APGk. On the other hand, if the corrective movement
is in exactly the opposite direction as APGk, PRk will
be near 0, the synapse strengths will be incremented,
and PC activity will increase, resulting in a decrease in
APG activity. In essence, the trajectory that results
will be a blend of the original and corrective move-
ments.

4 Simulation Results

In this section, the behavior of the model is demon-
strated during learning of a single point-to-pointmove-
ment. Each of the six APGs consists of eight PCs. The
state encoder is made up of 120 separate tilings. Each
tiling receives input from between 3 and 5 state vari-
ables, which are drawn from: �, �g , error (i.e �g � �),
_�, and û (the motor e�erence copy).
The sensory a�erence delay to the state encoder (T1

in Figure 2) is 50 ms; motor e�erence delays (T2) range
from 15 to 75 ms; the descending motor command de-
lay (T3) is 50 ms; the sensory a�erence delay to the
EC module (T4) is 50 ms; and inferior olive delay (T5)
is 20 ms. A simulation timestep of 5 ms is used.

At the beginning of a trial, the arm is placed in
an initial starting con�guration (start in Figure 4),
and the target location is presented to the controller
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(e and f). EC burst indicates when the EC system

generated a corrective movement.

(goal in the Figure). The movement is then triggered,
and proceeds under cerebellar control until the mod-
ule turns o� all descending motor commands, and the
arm comes to rest. If the arm has stopped moving at a
position that is not near the target, the EC system is
triggered, which initiates a corrective arm movement.
The trial terminates if the arm reaches the target posi-
tion or the EC system has generated 9 bursts without
successfully reaching the target. A new trial is then
initiated, with a resetting of the arm position and the
selection of a new target position. In the experiment
presented below, however, only a single start/target
pair is used.

Figures 4 and 5 illustrate the behavior of the plant
and the cerebellar control module during the 16th
learning trial. The movement produced by the cere-
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Figure 6: Final plant behavior (trial 27). The cerebel-

lar control module generates the entire movement to

the target.

bellar module has a duration of 800 ms, and brings
the arm approximately 70% of the distance to the tar-
get. The primary contributors to this movement are
the APGs that activate the elbow agonist (APGa in
Figure 5) and the biarticulate agonist muscle (APGe),
with a less signi�cant role played by the shoulder ag-
onist (APGc).

Subsequent movements are due to the bursts gen-
erated by the EC system. In generating the �rst cor-
rective movement, the EC system recruits the APGs
driving all three agonist muscles.This is indicated indi-
rectly by the high level of activity of the corresponding
climbing �bers (CFa, CFc, and CFe), and by the low
activity of the opposing CFs.

During learning, these CF signals cause the original
cerebellar-generated movement to be blended with the
corrective movements. As seen in Figure 7, this ulti-
mately leads to an increase in the initial burst in all
three agonist muscles.

By trial 27, the cerebellar module has learned to
generate an appropriate motor pattern for reaching
the target (Figures 6 and 7), and no longer requires
the aid of the EC module to reach the target. The
biarticulate and shoulder agonist APGs (APGe and
APGa) are the primary contributors to this �nal motor
program. Comparing Figures 4 and 6, note that even
though the EC module generates a trajectory made up
of three discrete hops, the �nal trajectory produced by
the cerebellar module does not re
ect this behavior.
This happens because the cerebellum does not simply
append corrective movements onto its original move-
ment, but rather blends the EC-generated movement
into its own.

The cerebellar controller is capable of learning sin-
gle target movements within about 20-30 trials of ex-
perience. In addition, the cerebellum's ability to store
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and appropriately generalize over a set of targets has
been tested. In these experiments, the start and target
positions for a given trial are selected from a uniform
distribution over an 80� 80 degree range of the joint
space. After 10000 learning trials, the cerebellar con-
troller produces movements with an average of 0.7 cm
error in the endpoint position (average movement dis-
tances are 28 cm). Furthermore, the controller hits the
target on 86% of the trials (within 1 cm of the goal),
and reaches to within 2 cm of the goal on 99% of the
trials.

5 Conclusions and Future Work

A biologically-inspiredmodel of cerebellar control of
a 2-DOF planar arm has been presented. In the design
of the control system, we have deviated in several ways
from more traditional control methods.

First, our model attempts to exploit the non-
linearities of the plant, instead of suppressing them.
From the point of view of higher control centers, non-
linear damping (provided by spinal re
ex circuits)
causes the muscle to \stick" at low velocities, while

still allowing for rapid contractions. This property al-
lows for fast arm movements without ringing near a
target location (a problem that is faced with linear
systems).

Second, the output of our cerebellar controller is
not torque to be applied to a set of joints. Rather, its
output falls within a more abstract actuator space. On
the engineering side, this allows us to consider multi-
ple actuators a�ecting individual joints, and multiple
joints being driven by a single actuator { without hav-
ing to rely on a high-quality model of these dependen-
cies. From the biological perspective, this approach is
also more satisfying. If one assumes that joint torques
are the currency of output from the cerebellum, then it
becomes necessary to assume that lower-level mecha-
nisms are performing the complex transformation from
joint torque space into muscle space. However, it is
precisely the structure of the cerebellum that makes it
very well suited to learning such a transformation. In
taking advantage of this property, it is not necessary
to directly represent joint torques at all.

Finally, our model does not make use of reference
trajectories, as has been assumed in other models of
cerebellar control [7, 11]. More speci�cally, there is lit-
tle physiological evidence to support the idea that an-
other subsystem provides to the cerebellum a detailed
kinematic plan { a plan which happens to satisfy cer-
tain dynamic optimality criteria. Rather, we see such
a higher-level system as providing a target position
and possibly some constraints about the desired path
(e.g. a few via points). The actual trajectory taken
by the arm, then, arises from the interaction between
the controller and the natural dynamics of the arm.

The learning problems addressed by our cerebellar
model fall into two categories: structural and tempo-
ral credit assignment. The structural credit assign-
ment problem is solved 1) by marking active PF-to-
PC synapses as eligible for future update, and 2) by
using a spatially-coded CF activity pattern to select
the correct subset of marked synapses. The CF activ-
ity pattern is a function of proprioceptive inputs that
result from the generation of corrective movements.
The error-corrective module (the EC controller) pro-
duces low quality corrective movements only when the
cerebellum is unable to bring the arm to the target
location.

The error-corrective teacher concept is one that we
feel is fairly general. Consider a set of re
exes that
are designed to respond to unexpected events (e.g. not
reaching a goal position, unexpected muscle pulls, col-
lisions with the environment, or slipping of a grasp).
By \eavesdropping" on these re
exes (via propriocep-
tive or other sensory inputs), the inferior olive can pro-
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vide the cerebellum with a signed error-corrective sig-
nal. With this information, the cerebellum can learn
to produce motor outputs similar to those generated
by the re
exes, but in an anticipatory manner { cor-
recting the movement before the re
ex-generating con-
ditions can occur. However, the cerebellum does not
simply generate the equivalent of the re
ex movement
just prior to the re
ex-triggering event. Rather, the
re
exive motor signal is blended with motor signals
that have been generated by the cerebellum over the
previous several hundred milliseconds.

The temporal credit assignment problem results
from two factors: 1) the signi�cant hard-wired delay
between the time that the cerebellum generates a mo-
tor command and the time that its \e�ects" are seen
at the plant; and 2) the variable time delay between
the activation of a parallel �ber and the behavioral
event that triggers a corrective movement (thus initi-
ating a CF signal). These problems are addressed in
this model through the use of a second-order eligibility
trace, which maintains a temporally-smeared memory
of recently active PF-to-PC synapses.

Finally, the model's ability to rapidly learn an ap-
propriate motor trajectory is the result of the sparse,
expansive encoding provided by the granule cell layer
(which give rise to the PFs). Such an encoding ensures
that two very di�erent movements do not overlap sig-
ni�cantly in their representation. This implies that
learning for one movement does not tend to interfere
with learning for the other.

In continuing work, we are expanding our model
in several directions. First, individual APGs are no
longer constrained to control single muscles. Rather,
we have begun experimentation with the more general
case, in which the cerebellum performs control in a
muscle synergy space [9]. Each synergy di�erentially
projects to multiple muscles, thus providing a large
repertoire of available movement directions.

Second, it has been assumed thus far that target
locations are speci�ed in joint space, and that this in-
formation is available to the EC system. We are ex-
perimenting with an algorithm that assesses positional
errors in a visual coordinate system, rather than pro-
viding these errors directly in joint space.

Finally, we are interested in considering the role of
other regions of the primate brain in solving the con-
trol problem. Speci�cally, we view the motor cortex as
working in collaboration with the cerebellum to con-
trol the limb. In addition, the premotor areas provide
a gateway through which visual information may be
cast into a motor-centered representation. Finally, the
basal ganglia are seen as providing the machinery for
the sequencing of discrete steps during performance of

a task.
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