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Primate Motor Cortex and Free Arm Movements to Visual Targets in 
Three-Dimensional Space. II. Coding of the Direction of Movement by 
a Neuronal Population 

Apostolos P. Georgopoulos, Ronald E. Kettner,a and Andrew B. Schwartzb 

The Philip Bard Laboratories of Neurophysiology, Department of Neuroscience, The Johns Hopkins University, School of 
Medicine, Baltimore, Maryland 21205 

We describe a code by which a population of motor cortical 
neurons could determine uniquely the direction of reaching 
movements in three-dimensional space. The population con- 
sisted of 475 directionally tuned cells whose functional prop- 
erties are described in the preceding paper (Schwartz et al., 
1988). Each cell discharged at the highest rate with move- 
ments in its “preferred direction” and at progressively lower 
rates with movements in directions away from the preferred 
one. The neuronal population code assumes that for a par- 
ticular movement direction each cell makes a vectorial con- 
tribution (“votes”) with direction in the cell’s preferred di- 
rection and magnitude proportional to the change in the cell’s 
discharge rate associated with the particular direction of 
movement. The vector sum of these contributions is the out- 
come of the population code (the “neuronal population vec- 
tor”) and points in the direction of movement in space well 
before the movement begins. 

Evidence was presented in the preceding paper (Schwartz et al., 
1988) that individual neurons in the motor cortex ofthe monkey 
are broadly tuned with respect to the direction of arm move- 
ments toward visual targets in three-dimensional (3-D) space. 
This suggests that, although single cells possess a preferred di- 
rection, many cells will be active for any particular movement 
and thus that the generation of movement in a particular di- 
rection depends upon the activity in the neuronal ensemble. We 
tested this “population coding” hypothesis by assuming that 
contributions from individual neurons add vectorially to yield 
a neuronal population vector. We found that this population 
vector accurately predicted the direction of movement in space 
before the onset of movement. These findings generalize to 3-D 
space previous results obtained in two-dimensional (2-D) space 
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(Georgopoulos et al., 1983, 1984). The population vector is a 
robust predictor of the direction of movement in space and is 
relatively immune to cell loss. Preliminary findings were pub- 
lished elsewhere (Georgopoulos et al., 1986; Schwartz et al., 
1986). 

Materials and Methods 
Neuronalpopulation. The neuronal population used in the present anal- 
yses consisted of the 475 directionally tuned cells studied by Schwartz 
et al. (1988). The electrical signs of their activity were recorded extra- 
cellularly in the motor cortex of 2 rhesus monkeys while the animals 
reached towards visual targets in 3-D space. The movements started 
from a central point located at shoulder level in front of the animal and 
in the midsagittal plane; they were of equal amplitude and of 8 different 
directions (see Fig. 1 in the preceding paper, Schwartz et al., 1988). The 
movements were monitored as described in Schwartz et al. (1988). The 
directional tuning function and conventions for the vector notation 
adopted in this paper are described in Appendix 1. 

Population coding. We sought a prediction of movement direction, 
M, from the neuronal population. For that purpose the following were 
assumed. First, the ith neuron makes a vectorial contribution (“votes”) 
in its preferred direction, C,, with a magnitude given by a weighting 
function, w,(M), described in the next section. And second, these con- 
tributions sum vectorially to yield the outcome of the ensemble oper- 
ation, the neuronal population vector, P(M): 

P(M) = i w,W)C, 

where N is the number of cells in the population. The hypothesis to be 
tested is that the direction of the population vector is congruent with 
the direction of the movement. We evaluated the outcome of the pop- 
ulation analysis by calculating 2 measures: the spherical correlation, p 
(Fisher and Lee, 1986), between the population vector and the move- 
ment, and the angle between these 2 vectors. 

Weiehtina function. The vreferred direction. C.. in which the vectorial 
-  - ”  

contribution of the ith celi is made in the population, is the same for 
different movements. However, the magnitude, w,(M), of this contri- 
bution depends on the discharge rate of the neuron during movement 
in direction M. Various weighting functions were tested, they are de- 
scribed in detail in Appendix 2. They included functions based on 
experimentally observed discharge rates (weighting functions l-6 in 
Annendix 2) and others (weightinn functions 7-12 in Avvendix 2) based 
on discharge rates predicted-by the directional tuning equation (Eq. 11 
in Appendix 1). Two of the weighting functions were based on unnor- 
malized discharge rates (weighting functions 1 and 7 in Appendix 2), 
whereas the remainder were based on rates normalized with respect to 
various parameters (weighting functions 2-6 and 8-12 in Appendix 2). 

Directional variability of the population vector. The directional vari- 
ability ofthe population vector was estimated using statistical bootstrap- 
ping techniques (Diaconis and Efron, 1983). These methods estimate 
the variability of a parameter by calculating the parameter a large num- 
ber oftimes from random samples ofthe original sample. The variability 
of the parameter can then be obtained directly. In addition to this 
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“statistical” variability, we estimated the variability in the direction of 
the population vector due to variation in cell discharge from trial to 
trial. This latter variability amounts to variation in the length of the 
constituent vectors participating in the population operation. Since there 
were several repetitions of each movement in the experiment, an esti- 
mate of the trial-to-trial variability in cell discharge could be obtained. 
We then assumed that the discharge rate, d,(M), of the ith cell for a 
certain movement in direction M was distributed normally across trials 
with mean d,(M) and variance the experimentally observed from trial- 
to-trial for that cell; particular values of cell discharge for a simulated 
trial were selected randomly from that distribution. 

Three analyses were performed for estimating the directional vari- 
ability of the population vector (see Table 1). Thejirst involved repeated 
random sampling of the experimentally observed population (N = 475) 
without incorporating the trial-to-trial variability in cell discharge; the 
mean discharge rate, d,(M), was used instead. In the second analysis the 
original 475 cells were used, but their activity was made to vary ac- 
cording to their trial-to-trial variability estimated experimentally and 
applied in this analysis as described above. Finally, the third analysis 
incorporated both the random sampling procedure employed in the first 
analysis and the trial-to-trial variability employed in the second analysis 
above. 

The general procedure used for these analyses was as follows. Consider 
a particular direction of movement. (1) First, 100 populations were 
created, each of size N = 475, from the original, experimentally observed 
population. These new populations differed in composition (i.e., which 
cells were included) from each other in the first and third analyses, since 
they were generated by sampling randomly with replacement from the 
original population (N = 475); we mean by “random sampling with 
replacement” that constituent cells were selected randomly from the 
original population and that a particular cell that happened to be selected 
once was still eligible for selection for as many times as the random 
sampling procedure would choose it. For the second analysis, the pop- 
ulation consisted only of the original 475 cells. (The trial-to-trial vari- 
ability was incorporated in the discharge rate for the second and third 
analyses, but not for the first analysis.) (2) One hundred population 
vectors were calculated from these 100 populations using weighting 
function 8 (see Appendix 2) and normalized to unit length. This weight- 
ing function was based on discharge rates predicted by the directional 
tuning function and, therefore, can be applied to directions other than 
those studied experimentally in the present experiments. (3) The mean 
direction of the 100 population vectors was computed and the angle 
between this mean population vector and each of the 100 contributing 
vectors calculated. (4) The resulting 100 angles were rank-ordered. The 
95th percentile was used as the half-angle, 6, at the apex of a 95% 
confidence cone for the direction of the population vector. 

Efect of population size on the variability of the direction of the pop- 
ulation vector. The effect of the population size (i.e., the number of cells 
in the population) on the directional variability of the population vector 
was studied by calculating this vector from populations of various sizes, 
N, and computing the corresponding angle 6 as described for the third 
analysis in the preceding section. Twenty population sizes were used 
with N varying from 10 to 475 cells (see Results) for each of the 8 
movement directions tested. For a population of size N, 100 samples 
of N cells were obtained from the parent population of 475 cells using 
random sampling with replacement. Thus, 100 subpopulations were 
obtained for each combination of population size and movement di- 
rection, and 100 population vectors calculated. The mean 6 for each 
population size and direction, and the grand mean 6 for a given pop- 
ulation size across all movement directions were computed. The latter 
served as an estimate of the effect of population size on the directional 
variability of the population vector. 

Evolution of the population vector in time. We determined the pop- 
ulation vector every 20 msec during the reaction and movement time 
for each of the 8 movement directions used in the task as follows. Eight 
time histograms, one for each movement direction, were constructed 
for each of the 475 cells in the population using a 20 msec binwidth. 
The histograms were aligned to the onset of the movement. A time 
series of population vectors was then created by calculating the popu- 
lation vector every 20 msec using the following weight for the contri- 
bution of the ith cell: 

w,(M, t) = d,(M, t) - a,, (2) 
where w,(M, t) is the magnitude of the contribution of the ith cell’s 
vector to the population vector at time bin t for movement M (the value 

Table 1. Sources of variability included in estimating the directional 
variability of the population vector (see text for details) 

Analysis 

Trial-to-trial 
Random sampling of variability in 
the original population discharge 

First Yes 
Second No 
Third Yes 

No 
Yes 
Yes 

oft will be negative or positive, corresponding to a time bin preceding 
or following the onset of movement, respectively); d,(M, t) is the average 
(over 5-8 repetitions) frequency of discharge of the ith cell at time bin 
t, and a, is the average (over 5-8 repetitions) frequency of discharge of 
the cell during the last 0.5 set ofthe control time. The population vector, 
P(M, t), for successive time bins t is 

PW, t) = i; w,W, t) C, 
/-I 

(3) 

where C, is the preferred direction of the ith cell. 
Construction of “neural” trajectories. The time series of population 

vectors in Equation 3 above is based on the changing patterns of activity 
of motor cortical neurons. These patterns, and the resulting population 
vectors, can be considered to represent in the motor cortex the spatial 
plan of the movement before the movement begins. We visualized this 
plan by assuming that the instantaneous direction and length of the 
population vector is reflected, following a time delay, in the instanta- 
neous direction and length of the upcoming movement trajectory. For 
this analysis we generated a time series of population vectors using 
histograms of neuronal discharge aligned to the onset of movement as 
described above. 

Let t be the time bin relative to the onset of movement. We represent 
an actual movement trajectory in 3-D space as a consecutive series of 
movements, each of 20 msec duration; the trajectory can then be vi- 
sualized as a spatial series of vectors of length s(t) and direction M(t), 
where M is a vector of unit length, connected tip to tail as t increases: 

iWWt)~> t=1 , . . , n. (4) 
For the purpose of comparison of the actual (see Schwartz et al., 1988) 
with the “neural” trajectories, the length of the ongoing movement 
vectors was normalized with respect to the maximum vector length, 
S max, intheseries(t=l,...,n): 

{s’(t)} = W&,,, 1, t= 1 , . , n. (5) 
Therefore, 

{s’(t)M(t)l, t= l,...,n. (6) 
The normalized trajectory (expression 6) was plotted as follows. The 
first vector (t = 1) started from the point of origin of the movement, 
and subsequent vectors (t = 2, 3, . . . , n) were attached to each other 
tip to tail. 

A neural representation of the movement trajectory based only on 
directional information from the population vector was constructed as 
follows. Let r be the time delay between the first change in the population 
vector and the onset of movement, P(t - 7) be the population vector 
at time t - 7, and let Q(t - 7) be a vector of unit length in the direction 
of P(t - T). Then, the normalized trajectory predicted from the time 
varying direction of the population vector and the length of the move- 
ment is 

W(t)Q(t - 41, t=1,2 ,..., n. (7) 
Finally, in a different analysis, we assumed that the population vector 

provides both directional and distance information about the trajectory 
in space. The predicted distance traveled in time bin t was assumed to 
be equal to the length of the population vector at time t - T, p(t - T), 
where 

p(t - T) = I P(t - 7) 1. (8) 
This means that the normalized trajectory based entirely upon the pop- 
ulation vector is 

IAt - dQ(t - T)~P,.,,), t=l,2 ,..., n, (9) 
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Figure 1. An example of population 
coding of movement direction. The blue 
lines represent the vectorial contribu- 
tions of individual cells in the popula- 
tion (N = 475). The movement direc- 
tion is in yellow and the direction of the 
population vector in red. 

which is equivalent to 

{W - +P”,axl, t=1,2 ,..., n. (10) 

We evaluated the spatial correspondence between the normalized 
actual trajectories (expression 6) and their presumed neural represen- 
tations (expressions 7 and 10) by inspection of their superimposed plots; 
statistical techniques for comparing 2 times series of 3-D vectors are 
not available. 

Theoretical analysis of the population code. We explored analytically 
the mathematical operations underlying the population coding de- 
scribed above. In particular, we identified some of the properties of the 
constituent elements and of the distributions of these properties that 
are sufficient for the code to predict the direction of movement perfectly. 
An important aspect is the form of the directional tuning function and 
the joint distributions of the various parameters of that function. These 
mathematical analyses are described in Appendix 3. 

Results 
The direction of the population vector was close to the direction 
of the movement. Overall, the direction of the population vector 
and the direction of the corresponding movement were strongly 
correlated (p = 0.990, n = 8 directions, p < 0.001; weighting 
function 8 in Appendix 2; see Table 2). An example is shown 
in Figure 1. The blue lines represent the vectorial contributions 
of the individual cells when the movement was in the direction 
indicated by the yellow line. The direction of the population 
vector is the red line. The angle between the direction of move- 
ment and the population vector was 13.7”. The average angle 
between the population and movement vector across the 8 
movement directions tested was 14.6“. The 95% directional con- 

r 

Figure 2. A 95% directional variabil- 
ity cone around the population vector 
(red). The population is the same as in 
Figure 1, but the movement direction 
(yellow) is different. 
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POP. VECTOR VARIABILITY DECREASES WITH POP. SIZE 
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fidence cone is shown in Figure 2; the half-angle 6 at the apex 
of the cone was 11.2”. The average 6 was 10.6” for the 8 move- 
ments. The values of these 6’s were obtained using both random 
sampling of the population and incorporating the trial-to-trial 
variability in cell discharge (see Materials and Methods). The 
average 6 when only random sampling of the population was 
used was 6.2”; when only the trial-to-trial variability was intro- 
duced in the discharge rate of the same cells in the original 
population, the average F was 8.4”. 

The variability in the direction of the population vector de- 
creased as the population size increased. This is shown in Figure 
3, in which the mean of 8 6’s (one for each movement direction) 
is plotted against the population size. It can be seen that the 
curve tends to an asymptote after a population size of approx- 
imately N = 150 cells. At N = 475, the average 6 was 11.2”. 

The results described above were based on the calculation of 
the population vector using weighting function 8 (see Appendix 
2). Various other measures, observed experimentally or pre- 
dicted from the tuning Equation 11 (see Appendix l), also re- 
sulted in population vectors that were significantly correlated 
with the direction of movement. These results are shown in 
Table 2 (see Appendix 2). 

Evolution in time of the population vector 

A different, and crucial, question is whether the population vec- 
tor calculated from the actual, ongoing time-varying discharge 
of cells during the reaction time, i.e., before the onset of move- 
ment, can predict the direction of the upcoming movement. 
Indeed, this was the case. An example is shown in Figure 4, in 
which the target direction, the time series of the population 
vector, and the instantaneous velocity of the movement are 
plotted as projections onto the frontal and sagittal planes. It can 
be seen that the direction of the population vector and of the 
movement are close to the target direction. It can be seen in 

Figure 4 that the population vector points in the direction of 
movement 160 msec before the onset of movement. It is im- 
portant to emphasize that these results were obtained using the 
actually observed, not predicted, discharge rates and that a fine 
time grain of successive, nonsliding, nonsmoothed time win- 
dows of 20 msec was used. This demonstrates that the popu- 
lation code proposed holds well for experimentally observed 
neural data and a fine time resolution. 

Neural representation of the upcoming movement trajectory 

Figure 5 displays superimposed actual (yellow) and neural rep- 

Table 2. Spherical correlations (p) and average angles (4) between 
movement and population vectors calculated using various weighting 
functions, as defined in Appendix 2 

Weighting 
function 

1 0.484 34.1 

2 0.963 16.1 

3 0.644 29.4 

4 0.978 13.5 

5 0.881 17.0 

6 0.975 13.1 

7 0.466 34.9 

8 0.990 14.6 

9 0.602 29.9 

10 0.996 9.8 

11 0.899 16.0 

12 0.994 11.8 

The probability levels for p were calculated using the randomized permutation 
method described by Fisher and Lee (1986). The significance levels obtained for 
all weighting functions were p c 0.005 or lower. 
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Figure 4. Evolution of the population vector in time. Front and side 
views of time series of population (P) and movement (M) vectors are 
shown. Population and movement vectors are normalized relative to 
their respective maximum. Movement vectors are averages from one 
animal. STZM, onset of target light; MOV, onset of movement. 

resentations (red) of trajectories normalized and constructed 
as described in Materials and Methods. The “neural” trajectory 
was constructed based on both directional and length infor- 
mation obtained from the population vector. It can be seen that 
the spatial correspondence between the 2 kinds of trajectories 
is close. This suggests that the trajectory of the upcoming move- 
ment can be visualized in the motor cortex using these tech- 
niques before it unfolds in 3-D space. Very similar results were 
obtained when only directional information was used from the 
population vector. 

Theoretical considerations concerning the neuronal population 
coding 
A mathematical analysis of the operations involved in the pop- 
ulation coding described above is given in Appendix 3. The 
results of this analysis showed that the following 3 basic con- 
ditions are sufficient for the population coding to predict per- 

Figure 5. Normalized actual C~~ellow) and “neural” (orange) trajecto- 
ries. See text for details. 

fectly the direction of movement: first, that the directional tun- 
ing function be any of a broad category of functions that are 
radially symmetric around a preferred direction; second, that 
the preferred directions be distributed uniformly in 3-D space; 
and third, that the values of the tuning parameters b and k (see 
Eq. 11) be randomly distributed with respect to the preferred 
direction. It is reasonable to suppose that the successful coding 
of movement direction by the neuronal population demonstrat- 
ed in the present study reflects the fact that the conditions above 
were fulfilled by the cells in the population. Indeed, that is the 
case. First, the directional tuning function described by Equation 
11 (see Appendix 1) is radially symmetric around a preferred 
direction. Second, the preferred directions of cells in the pop- 
ulation were distributed throughout 3-D space. This is shown 
in Figure 6, which depicts an equal-area projection plot of the 
preferred directions. (The plot was constructed as described in 
Schwartz et al., 1988). The preferred directions of the 475 di- 
rectionally tuned cells are shown as squares or crosses, corre- 
sponding to directions in the upper or lower hemisphere, re- 
spectively, of the unit sphere. Third, the values of the tuning 
parameters b and k seem to be independent of the preferred 
direction; this is illustrated in Figure 7, A and B, respectively. 
Each plot is the same equal-area projection plot of the preferred 
directions as in Figure 6, but the size of the symbols is propor- 
tional to the value of the corresponding tuning parameter. It 
can be seen that the magnitude of these parameters, and there- 
fore the size of the symbols, varies throughout the distribution 
of the preferred directions so that there is no particular area in 
the distribution associated with large or small values only. These 
data show that the experimentally observed distributions ap- 
proximate the theoretical requirements: to the extent that they 
are not perfect, the correspondence observed between the di- 
rection of the population vector and that of the movement will 
also not be perfect. 
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Discussion 
Behavioral performance and neuronal populations 
There is little doubt that most, if not all, functions subserved 
by the brain involve the combined activity of neuronal popu- 
lations (Pitts and McCulloch, 1947; Mountcastle, 1967; Erick- 
son, 1974; Johnson, 1974; Edelman and Mountcastle, 1978; 
Arbib, 198 1). Studies of single-cell activity have shown that the 
presentation of a sensory stimulus, or performance in motor 
tasks, is associated with changes in the discharge of many neu- 
rons in each of many brain areas. The question is how a par- 
ticular function (e.g., judging the quality of a stimulus or plan- 
ning and executing a movement) is realized by the corresponding 
neuronal ensemble(s). 

An indication concerning which aspects of population activity 
are relevant to a certain function has been provided by careful 
analysis of the properties of single cells in comparison with the 
psychophysical capacities of human subjects or animals: Can 
behavioral performance be accounted for by the properties of 
single cells? If so, no additional principles of population action 
need to be invoked: in theory, at least, the behavioral capacities 
in question could be subserved by a neuronal population con- 
sisting of functionally homogeneous elements, that is, of cells 
with the same properties. For example, localization of a stimulus 
on the body surface, or in the visual field, is probably subserved 

Figure 6. Equal-area projection plot 
of preferred directions (N = 475). 

by the activation of cells in the somatic sensory, or visual, areas, 
respectively, consisting of neurons with receptive fields in the 
part of the body, or the retina, stimulated. However, in other 
cases, behavioral capacities cannot be explained on the basis of 
the functional properties of single cells, for the relevant infor- 
mation may be available only at the population level. For ex- 
ample, the responses of quickly adapting primary skin afferents 
carry information concerning the frequency but not the intensity 
of a vibratory stimulus, although that intensity can be judged 
very well psychophysically (Talbot et al., 1968): this suggests 
that the coding ofvibratory intensity is carried by the population 
of fibers activated. Indeed, this has been shown to be the case 
(Johnson, 1974). Population codes for other systems have been 
discussed by several investigators (Erickson, 1974; McIlwain, 
1975; Kim and Molnar, 1979; Sachs and Young, 1979; Heet- 
derks and Batruni, 1982; van Ginspergen et al., 1987). 

Neuronal representation of the direction of arm movement in 
space.. neuronal population coding 

The direction of an arm movement in space is an important 
factor to which neuronal activity in the motor and posterior 
parietal (area 5) cortex relates (Georgopoulos et al., 1982; Ka- 
laska et al., 1983, 1985; Schwartz et al., 1988). However, the 
frequency of discharge of single neurons rarely changes in as- 
sociation with only one direction of movement. Instead, single 
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suggests that the neuronal ensemble itself is the relevant “neural 
unit” that carries unique advance information concerning the 
direction of the upcoming movement. The analyses presented 
in this paper concern a population code that can provide that 
information. 

The essence of the code proposed previously (Georgopoulos 
et al., 1983) and extended in the present studies is that individual 
cells make weighted vectorial contributions (“vote”) along the 
axis of their preferred direction. It was found that the vector 
sum of these contributions, that is, the population vector, points 
in the direction of the movement. The results of Appendix 2 
(see Table 2) indicate that the code is robust with respect to the 
weight chosen, although normalized weights resulted in more 
accurate predictions. They also show that the population vector 
predicted well the direction of movement when using actually 
observed discharge rates (weighting functions l-6 in Appendix 
2) or rates predicted from the tuning equation 11 (weighting 
functions 7-12 in Appendix 2); in fact, the accuracy of the 
prediction of the movement direction by the population vector 
depended more on the kind of weighting function itself rather 
than whether it was based on actually observed or predicted 
rates. These considerations are important for they have different 
implications: the fact that the population code works for the 
experimentally observed data indicates that these actual data 
are sufficient, that is, that there is no need for more regular, 
smoother data for accurate predictions to be obtained, however, 
the fact that accurate results were also obtained using discharge 
rates predicted from Equation 1 is of more general significance., 
for it allows application of the population coding scheme to 
movement directions other than those studied in the present 
experiments. 

Directional tuning, population coding, and muscle events 

The population coding described in this paper can best be viewed 
as a general case of coding directional variables for it has been 
applied successfully to other cases that do not deal with the 
control of muscles; for example, the population vector con- 
structed from broadly tuned directional responses of visual neu- 
rons in parietal area 7 predicted well the direction of a moving 
visual stimulus (Steinmetz et al., 1987). However, the present 
application to motor cortex can provide an insight into the 
motor cortical control of movement. 

Recent studies (Fetz and Cheney, 1980; Shinoda et al., 198 1; 
Lemon et al., 1986; see also Schwartz et al., 1988, for discussion) 
have shown that single motor cortical cells commonly engage 
several motoneuronal pools than just one and that, within a 
particular pool that is engaged, the connections of the cortico- 
motoneuronal cell are widespread (Lemon and Mantel, 1987). 
This “one-to-several” relation between motor cortical cells and 
motoneuronal pools, and the reasonable assumption that a par- 
ticular motor cortical cell could engage different pools at dif- 
ferent strengths, may explain the observation of the present 
study that the preferred directions of single motor cortical cells 
differ among different cells and are distributed throughout 3-D 
space (Fig. 6; see also Schwartz et al., 1988). Thus, the multi- 
plicity of preferred directions is in accordance with the sugges- 
tion that single cells may relate to groups of muscles, so that a 
particular cell may engage several motoneuronal pools in a 
weighted fashion: the relative ratios of those weights would then 
determine the preferred direction of the muscle group involved, 
that is, the direction of movement with which that muscle group 
is most active. Given that there can be many combinations of 

Figure 7. Equal-area projection plots of tuning parameters versus pre- 
ferred direction. The size of the symbols is proportional to the value of 
the parameters b (A) and k (II). 

cells discharge with movements in many directions but at dif- 
ferent rates. The result is a directional tuning function that is 
broad: it possesses a peak in the cell’s preferred direction but 
also an appreciable spread that extends throughout the direc- 
tional continuum. This means that many cells in the ensemble 
will be active with movements in any particular direction and 
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engaging different motoneuronal pools with different weights, 
the number of the resulting preferred directions can be very 
large. Therefore, what seems to be represented in the motor 
cortex is a combinatorial aspect of motoneuronal engagement. 

According to this viewpoint, the broadness of the directional 
tuning of single cells has certain implications: it means that the 
muscle group to which the cell relates will be engaged in many 
directions of movement, although at different intensities of ac- 
tivation. Thus, the resultant movement of the arm is regarded 
in this scheme as the outcome of coactivation of many muscle 
groups, each of which is being controlled as a separatejiinctional 
unit. Then, the motor cortical population reflects the totality of 
this operation, the spatial outcome of which is movement in 
the desired direction. The population coding scheme proposed 
in this paper provides a way by which this operation at the 
neuronal population level can be described and visualized. 

The proper matching of the output of motor cortical popu- 
lations to spinal motor mechanisms with respect to reaching in 
space is a product of evolution and of the long period of trial- 
and-error during which infants learn to reach accurately in space 
(see Georgopoulos, 1986, for a review). Recent advances in our 
understanding of the spinal neuronal systems subserving reach- 
ing (Lundberg, 1979; Alstermark et al., 1986a, b) offer indica- 
tions as to how motor cortical control of reaching could be 
exerted at the spinal level. This subject has been discussed in 
the first paper of this series (Schwartz et al., 1988). 

Theoretical aspects of the population code for movement 
direction 
Appendix 3 shows analytically that a large class of weighting 
functions will yield perfect predictions provided that the weight- 
ing functions are radially symmetric around the preferred di- 
rection, that the preferred directions are uniformly distributed 
in space, and that the tuning parameters are independent of 
preferred direction. These, indeed, are theoretically sufficient 
conditions for the code to be perfect. The fact that the code 
yields results that are close to those experimentally observed 
indicates the proximity of the experimental distributions to the 
theoretically perfect ones. Therefore, the good prediction by the 
population vector of the direction of the movement is not just 
due to the large number of neurons in the ensemble but to the 
fact that the experimentally observed distributions are of the 
proper kind. The actual results can then be considered as ex- 
perimental, and therefore somewhat noisy, realizations of the 
perfect case. 

Directional variability of the population vector as a function of 
the population size 

The directional variability of the population vector decreased 
as the population size increased. Conversely, Figure 3 shows 
that the population code is relatively immune to cell loss: only 
when the population size was reduced below ca. 150 cells did 
the directional variability of the population vector increase ap- 
preciably and rapidly. A different aspect of the curve shown in 
Figure 3 concerns the minimum number of cells in the popu- 
lation that could provide a good estimate of the direction of the 
upcoming movement; this number is approximately 200-300 
cells. This raises the possibility that information concerning the 
direction of movement in space could be adequately processed 
by many functionally distinct neuronal ensembles rather than 
by a single, large population. However, we have no evidence, 
at present, to support one or the other of these alternatives. 

Evolution in time of the population vector: time processes 
involved in planning the direction of arm movement in space 

The generation of movement is a process that evolves in time. 
Given the instructions that define the task, appropriate signals 
trigger the series of brain events that ultimately result in gen- 
erating the movement desired. The spatial goal of reaching is 
that the movement to be directed to the target. Therefore, we 
suppose that the appearance of the target initiates the neural 
processes that will direct a movement in the appropriate direc- 
tion. The method employed in this study permits the visual- 
ization, through the population vector, of a spatial plan of the 
movement as it is being formed during the reaction time. This 
provides a fine grain for tracing the formation of the motor 
cortical command for the direction of movement. Indeed, a 
directional signal in the population vector appeared after the 
presentation of the target and before the movement began, and 
pointed in the direction of the movement dictated by the target 
light. In other experiments (Crutcher et al., 1985) monkeys were 
trained to withhold their movement towards a light and move 
towards it later, after 0.5-3.2 set, in response to its dimming. 
It was found that the population vector lengthened approxi- 
mately 100 msec after the onset of the light and pointed in the 
direction of the upcoming movement during the delay period 
imposed. Of course, in all these cases the population events and 
the population vector were reconstructed post hoc; however, it 
is reasonable to assume that similar, and probably more accu- 
rate, results would be obtained if the cells composing the en- 
semble studied had been recorded simultaneously during the 
course of a single movement. 

The population vector provides a potentially powerful tool 
for interpreting neural events in relation to various aspects of 
behavior. An example was presented in this paper when “neu- 
ral” trajectories of the upcoming movement were constructed 
from the population vector derived for successive time intervals 
during the reaction time and the spatial plan of the uncon- 
strained movement was thus visualized (Fig. 5). We predict that 
more complicated trajectories could also be visualized in the 
same way; for example, trajectories through a maze or trajec- 
tories that are planned ahead to go around an obstacle. In these 
cases, the “neural” trajectories constructed from the population 
vector before the movement starts would show the directional 
turns dictated by the instructions or physical constraints and 
implemented by the movement that follows. These predictions 
can be tested in appropriately designed experiments. 

Appendix 1: Directional tuning function 
Let X, Y, Z be the positive axes of a Cartesian coordinate system with 
origin at the starting point of the movement (center button). The move- 
ment direction in 3-D space will be represented by a vector M of unit 
length that makes angles x, $, and w with axes X, Y, Z, respectively. 
The vector M is specified by its X, y, z components (m,, m,, ml, re- 
spectively), where 

m, = cos x, m, = cos #, m, = cos w 

(m: + m: + m:)% = 1. 

We adopt the notation that vectors are capitalized and in boldface. 
The discharge rate of each cell in the population during the total 

experimental time (TET epoch, from the onset of the target until the 
end of the movement) can be described by a cosine function of the 
direction of movement according to the following directional tuning 
function: 

d,(M) = b, + k,cos O,,, (11) 
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where d,(M) is the predicted discharge rate of the ith neuron with move- 
ment in direction M, b, and k, are constants, C, is the neuron’s preferred 
direction, and O,,, is the angle formed between C, and M. The statistical 
methods by which b,, k,. and C, are calculated are described in Schwartz 
et al. (1988). Equation 8 can potentially yield negative values for 
d,(M) (see Schwartz et al., 1988). In those cases, d,(M) was set to zero 
for the analyses in which Equation 11 was used. 

Appendix 2: Weighting functions 
The following weighting functions were tried. Given 8 movement di- 
rections, n repetitions of each movement, and the observed discharge 
rate d;(M,, k) ofthe ith neuron during the TET epoch of the kth repetition 
of the jth direction, we define the following for a particular movement 
direction M,: 

(a) The average observed discharge rate across repetitions of one 
movement direction: 

D:, = l/n 2 d: (M,, k) (12) 
k=l 

(b) The grand average rate across repetitions and all movement di- 
rections: 

(13) 

(c) The half-range of D’ for 8 movements: 

R,, = (maximum D$ - minimum D;)/2 (14) 

(d) The predicted discharge rate based on the tuning function: 

D,, = d,(M) = b, + k,cos O,,,, (13 

where Or,,, is the angle between the cell’s preferred direction and the 
direction of movement. 

We used the following weighting functions (for reasons of simplicity 
we omit the subscripts). 

1. D’ 
2. D’ - D’ 
3. D’lR 
4. (D’ - D’)lR 
5. D’lD’ 
6. (0’ - D’)/D’ 
7. D 
8. D-b 
9. D/k 

10. (D - b)lk 
11. D/b 
12. (D - b)/b 

Weighting functions l-6 and 7-l 2 are based on observed and predicted 
discharge rates, respectively. Weighting functions 1 and 7 use unnor- 
malized rates, whereas functions 2-6 and 8-l 2 are normalized in various 
ways. (Weighting function 8 was used in the analyses described in the 
text.) The measures D’ and R are approximations of b and k, respec- 
tively. The results obtained with these functions are summarized in 
Table 2. It can be seen that all functions yielded high and statistically 
significant spherical correlations, although the best predictions were 
obtained with normalized weights. 

Appendix 3 
The following is a mathematical proof which states that for a class of 
radially symmetric weighting functions, population vectors generated 
by the population equation described in Materials and Methods section 
(Eq. 1) will predict the direction of movement if several assumptions 
are made. 

Assumptions 

1. The preferred directions, C,, are uniformly distributed on the unit 
sphere. 

2. Each weighting function, w,, is radially symmetric with respect to 
C, but can vary from neuron to neuron so that 

w,(M) = WC&.,; P,, . . . &,A 

where OCIM is the angle between C, and M, and p,, . . . @,, is a set of m 
parameters that specify the form of w, for the ith neuron. Radial sym- 
metry results from the dependence upon the angle between C, and M, 
instead of M itself. 

3. Each w, must be tuned in the sense that the average value of w, for 
movements with components in the direction of C, is larger than for 
movements away from C,. 

4. The distributions of p,, . . . p,, and that of the C, are independent. 
5. The population vector can be expressed as an expectation 

P(M) = -W,wJWI, 
where E is an expected value with respect to the C, 

Proof 

Consider first the simpler case where the parameters p,, . . . p,, do not 
vary. Then for the ith neuron, 

wO’U = w(@,-,,A 
and for each weighting function, 

s Mw(O,,,) dM = K,, (16) 
where 6 is a positive constant. The orientation of the result follows from 
the symmetry of w,, which requires a resultant vector along its axis of 
symmetry, C,. The positivity of 6 follows from Assumption 3. 

Since M and C, are both directions that vary over the sphere and 
because 0, ,,, = O,,c,, one can switch the roles of M and C, in Equation 
16 so that 

s- C,w(O,,,) dC, = 6M. (17) 

The population vector, P, is defined by 

P(M) = EKW, ,\,)I 
= 

s C,w@c,,,)probC) dC,. 
The uniformity of C, implies that prob(C,) is a positive constant, which 
will be called (Y, so that 

and substituting from Equation 17 

= &M. 

Thus, when p,, , . . /3,,, do not vary: 

P(M) = E[C,w(O,,,)] = o16M. (18) 
This implies that the population vector points in the same direction as M. 

We now turn to the more general case where the parameters &, . . . 
p,,,, are allowed to vary. In this case, 

w,(M) = WC%,,,; P,I . . . Pm,) 
and 

P(M) = EKw(%c,; P,, . . . P,Jl. 
We can rewrite this expression because the parameters p,, . &, are 
independent of C,, so that 

= ELW-,W%,,,; P,, . . . Pm) I P,I . . . P,,l~. (19) 
However, since parameters p,, . . . p,,,, are constant for the conditional 
expectation, we can use the same arguments that resulted in Equation 
18 to show that 

E[C,w@,,,; P,I . . . Pm) I AI . . . Pm1 
= a@,, . . Pm) WL . . . PJM 

where a and 6 are now positive functions of the parameters p,, . . . p,,. 
This means that 

P(M) I ~;\f$ . . Pm) W,, . . . PJMI 
a ,I... Bun) w% . . . P,,)~. 

Here, the expectation is positive because the functions, (Y and 6, are 
positive. This proves that the population vector points in the direction 
of M for the more general case in which the parameters @,I . . . p,,, can 
vary. 

In particular, all the weighting functions in Appendix 2 allow perfect 
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prediction of movement direction under the assumptions above. For 
example, 

w,(M) = b, + k,cos(OC,,,) 

for positive b, and k, fits the assumptions of this proof. w,(M) is radially 
symmetric about C, because COS(@~,~,) is symmetric about C,, and w, is 
tuned because it attains its maximum for movements in the direction 
of C, (i.e., when Oc,,, is zero). 
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