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6

Chapter 4 argued that computational models of learning need to incorporate
stimulus representations to allow appropriate generalization of learning
between stimuli. The appropriate degree of generalization will depend on
the particular problem, implying that representations should be adaptable to
suit current task demands. However, the computational resources required
to create appropriate new stimulus representations on the fly are consider-
able; neural-network researchers have addressed this problem by develop-
ing the error backpropagation algorithm described in chapter 4.

However, it is not clear that the sophisticated neural machinery needed to
create the necessary new stimulus representations exists throughout the
brain. One possible evolutionary alternative would be to localize some of
the mechanisms for representational change in a central location (such as the
hippocampus) so that other brain regions (such as cerebral cortex and
cerebellum) could make use of these mechanisms as needed for particular
tasks. This idea forms the basis for the two models of hippocampal function
to be discussed in this chapter.

In both of these models, one network module representing the hippocam-
pal region interacts with other network modules representing other brain
regions, as in Marr’s model (figure 5.9). Hippocampal-region damage in these
network models is simulated by disabling the hippocampal-region module and
observing the behavior of the remaining modules. These models can implement
many aspects of associative learning, particularly classical conditioning, and
they are useful for understanding how the hippocampal region may interact
with the rest of the brain to facilitate certain kinds of learning.

The first model that we review, called the cortico-hippocampal model, is
one that we ourselves originally developed to account for the effects of
hippocampal-region damage on classical conditioning.1 The basic idea of this
model is that the hippocampal region is simulated as a predictive autoencoder
that forms new internal-layer representations to compress redundant
information while differentiating predictive information. These adaptive
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representations are then adopted by long-term storage areas in the cortex and
cerebellum.

The second model, called the Schmajuk-DiCarlo model (or S-D model)
after its originators, takes a very different view of the hippocampal region. It
presumes that the hippocampal region is necessary for the kinds of error-
correction embodied in the Rescorla-Wagner model. Section 6.2 describes
this model and its predictions, with a special emphasis on where it makes
predictions that are similar to or divergent from those of our own cortico-
hippocampal model.

In addition to these two computational models, there have been many
qualitative, or noncomputational, theories of hippocampal-region function
that seek to address many of the same behavioral phenomena. Section 6.3
reviews several prominent qualitative theories and shows how they relate to
the computational models in sections 6.1 and 6.2.

Finally, section 6.4 describes one avenue of cognitive neuroscience
research that has evolved out of the modeling work. As predicted by our
cortico-hippocampal model, under some special conditions, individuals
with medial temporal lobe (hippocampal-region) damage can actually learn
simple associations faster than normal control subjects.

6.1 THE HIPPOCAMPAL REGION AND ADAPTIVE REPRESENTATIONS

Saul Steinberg created a famous cover for the New Yorker magazine, caricaturing
his view of a typical New Yorker’s mental map of the world. Manhattan was
drawn in such fine detail that it took up most of the map. The rest of the coun-
try, the area between New Jersey and California, was squashed into a small area
on the map, marked only by a farm silo and a few scattered rocks.

This painting satirizes many New Yorkers’ belief that they are living in the
most important place in the world. But it also illustrates an important psy-
chological point. Fine distinctions that are meaningful to New Yorkers, such
as the differences between Ninth and Tenth Avenues, are emphasized and
highly differentiated in this mental map; these places are physically pulled
apart and separated from surrounding areas. Broader distinctions that are
irrelevant to the New Yorker, such as the difference between Kansas and
Nebraska, are deemphasized or compressed and given less space in the map.

To some extent, we all create similar idiosyncratic worldviews with
distorted representations; distinctions that are important to us are enhanced
while less relevant ones are deemphasized. For example, students who
are asked to sketch a map of the world tend to draw their home region
disproportionately large and in the center of the map.2 Figure 6.1 is such a
map drawn by a student from Illinois, who overemphasized Illinois relative
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to the rest of the country, omitted most states altogether, and enlarged North
America relative to the other continents. ManyAmerican students show a sim-
ilar pattern. In contrast, European students tend to draw Eurocentric maps,
while students from Australia often place Australia and Asia in the center.

This kind of representational distortion, although somewhat comic in its
egocentricity, is actually very useful. Memory is a limited resource, and indi-
viduals need to allocate that resource preferentially to items that are impor-
tant to them. Thus, an experienced musician may actually devote more area
of his brain to the fine control of finger movements than an average person
would, while someone who has lost a hand through amputation will show
shrinkage of the brain areas associated with finger movement. Chapter 8
will discuss these topics in more detail. For now, though, the chief question
is: How can such representational changes come about? Who decides what
kind of information is important enough to merit extra space and what is
irrelevant enough to be shrunk like the Midwest on Steinberg’s map?
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Figure 6.1 A student from Chicago, asked to sketch a map of the world, drew his home state
disproportionately large while omitting most of the other states. North America was also dis-
proportionately large in relation to the other continents. (Reproduced from Solso, 1991, Figure
10.11A, p. 289.)

gluc_c06.qxd  8/29/00  1:52 PM  Page 147



Several years ago, we proposed a theory of hippocampal function in asso-
ciative learning in which we argued that the hippocampal region is pre-
sumed to operate as an information gateway during the learning process.3

Our theory assumes that the hippocampal region selects what information is
allowed to enter storage and how it is to be encoded by other brain regions.
Specifically, the theory argues that the representation of redundant or unimpor-
tant information is shrunk, or compressed, while the representation of usefully
predictive or otherwise meaningful information is elaborated, or differentiated. Ac-
cording to this theory, the hippocampal region is critical for forming the kind
of idiosyncratic maps of the world shown in figure 6.1. It turns out that this
theory accounts for a range of behavioral data on representational processing
with and without the hippocampus.

The Cortico-Hippocampal Model

Our theory assumes that the hippocampal region monitors statistical regu-
larities in the environment and forms new stimulus representations that
reflect these regularities. Specifically, if two stimuli co-occur or make similar pre-
dictions about future reinforcement, their representations will be compressed to in-
crease generalization between the stimuli. Conversely, if two stimuli never co-occur,
and if they make different predictions about future reinforcement, their representa-
tions will be differentiated to decrease generalization between the stimuli. The idea
that the hippocampus can compress redundant information while differenti-
ating predictive information is also consistent with the anatomy and physi-
ology of the hippocampal region, as other researchers, such as William Levy,
have noted previously.4

As described in chapter 5, a predictive autoencoder is capable of just this
kind of function, compressing and differentiating representations in its inter-
nal layer. For this reason, our theory models the hippocampal-region net-
work as a predictive autoencoder, mapping from stimulus inputs, through
an internal layer, to outputs that reconstruct those inputs and also predict
future reinforcement.

However, the hippocampal region is not the final site of memory storage,
as is evidenced by myriad empirical data showing that old, well-established
memories can survive hippocampal-region damage. Accordingly, our model
assumes that the representations developed in the hippocampal region are eventually
adopted by other long-term storage sites in cortex and cerebellum. Back in chap-
ter 3, we noted that the cerebellar substrates of classical eyeblink condition-
ing are well characterized, and therefore we initially chose to apply our
theory to this behavioral domain.
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A modest elaboration of this cerebellar model introduced in chapter 3
is shown in figure 6.2A: Stimulus inputs (e.g., cues and context information)
are processed by various primary cortical areas and then travel to the
cerebellum via a structure called the pons. The cerebellum learns to map
from these inputs to an output that drives a conditioned motor response.
There is also an inhibitory feedback loop, through the inferior olive, that
measures the error between the actual response (which is a prediction of un-
conditioned stimulus (US) arrival) and whether the US actually arrived. This
allows the cerebellum to update connection strengths via an error-correcting
procedure such as the Widrow-Hoff rule.

This simple cerebellar model does not make provision for any cortical
learning, so we extended it into a hybrid cortico/cerebellar network as
shown in figure 6.2B. Stimulus inputs (CSs and context information) are
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Figure 6.2 (A) The cerebellar model of chapter 3, redrawn to show preprocessing of sensory
input by cortex; the cerebellum receives this input as well as direct CS information via a path-
way through the pons. According to the model presented in chapter 3, the cerebellum learns to
map from this input to a behavioral response (CR); the inferior olive computes the difference
between US and CR and returns this error signal to guide learning in the cerebellum via the
error-correcting Widrow-Hoff rule. (B) The same network, elaborated to allow an additional
level of processing in the cortex. The upper layer of weights in this cortico/cerebellar network
can still be trained by error correction to reduce the difference between CR and US; the lower
layer of weights needs a training signal before it can use a second application of the error-
correction rule.
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provided as external input and activate an input node layer. Information
travels through modifiable connections to an internal node layer represent-
ing cortical processing. In reality, of course, there might be an arbitrary num-
ber of successive cortical processing stages; for simplicity, we model only one.

The output of the cortical layer then travels to an output node representing
the cerebellum, which integrates its sensory inputs and produces a condi-
tioned response (CR). The difference between the CR and US is used as an
error signal to drive learning in the upper layer of weights. The key question
in multilayer network models—as discussed in chapter 4—is how one trains
the lower layer of weights to alter internal-layer representations to facilitate
learning.

This is where we believe that the hippocampal region plays a vital role.
As shown in figure 6.3A, new representations formed in the hippocampal
network’s internal layer can serve as training signals for the cortico/
cerebellar network’s internal layer. In the simplest case, if each network
has the same number of internal-layer nodes, the desired output for each in-
ternal-layer node in the cortico/cerebellar network is simply the actual out-
put of the corresponding hippocampal-region network node.

Given this interpretation of the desired output for the cortico/cerebellar
network’s internal layer, the Widrow-Hoff error-correcting rule (from the
Rescorla-Wagner model) can be used to train the lower layer of weights. Over
many trials, the cortico/cerebellar network comes to adopt the same repre-
sentations that were first developed in the hippocampal-region network.*

As figure 6.3B shows, hippocampal-region (HR) damage can be simulated
by disabling the hippocampal-region network. In this case, no new representa-
tions are acquired by the cortico/cerebellar network’s internal layer. However, any
previously acquired representations remain intact. Thus, the cortico/cerebellar
network can still learn new mappings from stimuli to responses based on its
existing representations. For this reason, any new learning that does not
require new representations (such as simply mapping one CS to a US) is
likely to survive HR damage. However, any new learning that does depend
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*If the total number of internal-layer nodes in the two networks is not equal, then the desired
output for each cortico/cerebellar network internal-layer node may be some function of the ac-
tivations of several nodes in the hippocampal-region network. The result is basically the same:
The cortico/cerebellar network comes to adopt a linear transformation of the representations
developed in the hippocampal-region network. This means that although there may be superfi-
cial differences in the two representations, they will show the same underlying logic: If the rep-
resentations of two stimuli are compressed (or differentiated) in the hippocampal-region
network, they will also be compressed (or differentiated) in the cortico/cerebellar network. See
Gluck & Myers, 1993, for additional details.
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Figure 6.3 The cortico-hippocampal model. (A) The intact model receives inputs representing
conditioned stimuli, such as lights and tones, as well as contextual information. One network,
representing the processing that is dependent on the hippocampal region, learns to reconstruct
these inputs and to predict the arrival of the unconditioned stimulus (US), such as a corneal air-
puff. As it does, the hippocampal-region network forms new stimulus representations in its in-
ternal layer that compress redundant information and differentiate predictive information. A
second network, assumed to represent long-term memory sites in cerebral and cerebellar cor-
tices, adopts the internal representation provided by the hippocampal-region network and then
maps from this to an output that represents the strength or probability of a conditioned response
(CR), such as a protective eyeblink. (B) The HR-lesion model, in which the hippocampal-region
network is disabled. The cortical network is no longer able to acquire new hippocampal-region-
dependent internal representations, but it can still learn to map from existing representations to
new behavioral responses.
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on new representations (such as sensory preconditioning or configural learn-
ing) is expected by our model to be disrupted after HR damage. This distinc-
tion accounts for a great deal of data regarding HR-lesion effects, as we will
describe below.

Representational Differentiation

As we noted earlier, the representations formed in the hippocampal-region
network are subject to two biases: a bias to compress the representations of
stimuli that are redundant and a bias to differentiate the representations of
stimuli that predict different outcomes. Each of these biases can be used to
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explain data in intact and HR-lesioned animals. First, we give several
examples of learning behaviors that appear to involve representational
differentiation.

Acquisition. The most rudimentary eyeblink conditioning task is acquisi-
tion: learning to respond to a cue that has been paired with the US. The
Rescorla-Wagner model and the cerebellar model of figure 6.2 both capture
this behavior, suggesting that the cerebellum alone should be sufficient to
mediate conditioned acquisition—and hence learning should not be dis-
rupted by HR lesion. Indeed, acquisition of a conditioned eyeblink response
is not disrupted by HR lesion in humans (figure 6.4A), rabbits (figure 6.4B),
or rats.5

Conditioned acquisition is simulated in the intact cortico-hippocampal
model by presenting a series of training trials. First, the model is given trials
consisting of just the experimental context—call it X—a series of inputs
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Figure 6.4 Conditioned acquisition, learning that a tone CS predicts an airpuff US, is not dis-
rupted by hippocampal-region damage. (A) Humans with medial temporal lobe damage,
including hippocampal-region damage, show normal eyeblink conditioning (Gabrieli et al.,
1995). (B) Rabbits with hippocampal-region damage similarly acquire the conditioned eyeblink
response as fast as control rabbits (Solomon & Moore, 1975). (C) Similarly, the intact cortico-
hippocampal model and HR-lesion model learn at the same speed (Myers et al., 1996). For all
graphs, response rate and percentage CRs represent proportion of trials generating CRs after a
fixed number of CS-US pairings. (Adapted from Myers, Ermita, et al., 1996, Figure 4.)
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*All figures that show performance of the cortico-hippocampal model are the average of ten sim-
ulation runs. Error bars on simulation data reflect variance among multiple simulation runs. Full
details of the model presented in section 6.1 are given in Appendix 6.1 at the end of this chapter.

meant to represent the background sights, smells, and sounds of the experi-
mental setup; the model learns not to give a conditioned response to the con-
text alone. These trials correspond to the time spent acclimating an animal to
the experimental chamber, before any explicit training begins, a standard
procedure in experimental studies of animal conditioning.

Next comes the actual acquisition training. Because the training takes
place in context X, learning to respond to a light CS can be redefined as learn-
ing to respond to light-in-X but not to the context alone X�. With enough
training, the model learns to respond when the light is present but not to the
context alone, as is seen in figure 6.5A.* Figure 6.5B shows the corresponding
changes in internal-layer representation in the cortico/cerebellar network,
copied from the representations in the hippocampal-region network. The
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Figure 6.5 Conditioned acquisition in the intact cortico-hippocampal model. (A) Learning
curve. (B) Representational differentiation of the light CS from the context X alone during train-
ing, reflected in increasing D(light-in-X, X).
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difference in representation between light-in-X and X alone—D(light-in-X,
X), as defined in the previous chapter—grows gradually but consistently
with increasing training. This representational differentiation facilitates the
cortico/cerebellar network’s task of mapping the two inputs to different
responses.

However, this new differentiated representation is probably not necessary
to acquire a conditioned response to a single light CS. The task is so simple
that just about any random recoding in the lower layer of cortico/cerebellar
network weights is probably sufficient. As long as there is at least one node
in the internal layer that gives a different response to light-in-X and X alone,
that node can be used to drive the presence or absence of a CR. In fact, the
HR-lesioned model can learn the correct response about as quickly as the
intact model (figure 6.4C). Thus, the cortico-hippocampal model correctly ac-
counts for the finding that HR lesion does not impair acquisition of a simple
CS-US association.

Discrimination and Reversal. Simple discrimination involves learning
that one CS (light�) predicts the US while a second CS (tone�) does not. This
means that conditioned responses should follow light� but not tone�.
In general, discrimination learning in the eyeblink-conditioning paradigm
is not disrupted by hippocampal-region damage (figure 6.6A).6 Similarly,
hippocampal-region damage generally does not impair a range of discrimi-
nation tasks in animals, including discrimination of odors, objects, textures,
and sounds.7

In the intact cortico-hippocampal model, the hippocampal-region network
constructs new representations that differentiate light� and tone�, facilitat-
ing the mapping of light� to one response and tone� to another (fig-
ure 6.6C,D). However, the discrimination task is so simple that such
representational changes are probably not necessary; any random initial
representations in the cortico/cerebellar network are probably different
enough to allow mapping to different responses. Thus, the HR-lesioned
model should be able to learn a conditioned discrimination. As is shown in
figure 6.6B, there is indeed no impairment: The HR-lesioned model reaches
criterion performance just as quickly as the intact model.

These empirical data have often been interpreted as arguing that condi-
tioned discrimination is hippocampal-independent. Our model offers a dif-
ferent interpretation: The hippocampal-region may not be strictly necessary for
some simple kinds of learning; but when it is present, it normally contributes to all
learning. Even in a simple task such as discrimination (or acquisition), where
a priori representations probably suffice to allow learning, the hippocampal
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region is constantly forming new stimulus representations that compress
redundant information while differentiating predictive information, whether
these new representations are needed or not.

However, the usefulness of this hippocampal participation becomes
apparent if task demands change. For example, suppose the discrimination
is reversed so that after learning to respond to light� but not tone�, the
contingencies are reversed, so tone� now begins to predict the US and
light� does not. In our intact model, the hippocampal-region network has
already done the work of differentiating the representations of light and
tone; once the contingencies reverse, all that needs to be done is to map those
representations to new responses. In the lesioned model, the situation is
quite different: The representations of light and tone are fixed, and so they
are not differentiated during the original discrimination. Thus, the reversal
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Figure 6.6 Conditioned discrimination: learning to respond to one CS light�, which is paired
with the US, but not to CS tone�, which is not paired with the US. (A) Control rabbits learn this
task in about 800 trials; rabbits with hippocampal-region lesion learn at the same speed (Berger &
Orr, 1983). (B) The intact and HR-lesion cortico-hippocampal model likewise learn at the same
speed. (C) In the intact model, there is an initial period when the model responds weakly but
equally to both light� and tone�; then the model begins to discriminate. (D) During learning,
the representations of light and tone are differentiated, reflected in increasing D(light, tone).
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requires first unlearning the original discrimination and then learning the re-
versed discrimination. This process may be quite lengthy in comparison to
reversal in the intact model (figure 6.7B). In rabbit eyeblink conditioning,
several studies show that hippocampal-region damage disrupts discrimina-
tion reversal (figure 6.7A).8

Other Behaviors Involving Predictive Differentiation. Our cortico-hippo-
campal model also predicts that many other paradigms that involve repre-
sentational differentiation will be disrupted after HR lesion.9 These tasks
include easy-hard transfer (the finding that learning a hard discrimination is
facilitated by prior training on an easier version of the task), the overtraining
reversal effect (the finding that reversal is speeded if the original discrimi-
nation is trained for many days beyond criterion performance), and nonmo-
notonic development of the stimulus generalization gradient (the finding
that learning about one stimulus early in training generalizes strongly to
other stimuli, while generalization is reduced when similar learning takes
place later in training).
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Figure 6.7 Discrimination reversal. (A) In the rabbit eyeblink preparation, reversal of a condi-
tioned discrimination is strongly impaired in animals with hippocampal lesion. (Plotted from
data presented in Berger & Orr, 1983.) (B) Similarly, the HR-lesion model is slower to reverse
than the intact cortico-hippocampal model.
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These are novel predictions: no data currently exist documenting the
behavior of HR-lesioned animals on these tasks. However, experiments
in our lab at Rutgers-Newark are under way to test some of these predic-
tions. The results of such experiments will provide a critical test of the model,
either confirming its predictions or showing that the model requires
revision.

Representational Compression

Just as the hippocampal region is assumed to differentiate the representa-
tions of stimuli that should be mapped to different responses, the hippocam-
pal region is assumed to compress the representations of stimuli that
co-occur and should be mapped to similar responses. Behaviors that reflect
representational compression should be disrupted after hippocampal-region
damage.

Sensory Preconditioning. One simple example is sensory precondition-
ing, which was discussed in several earlier chapters. Recall that sensory pre-
conditioning involves unreinforced exposure to a compound of two stimuli
(tone&light� exposure), followed by light-US pairings (light� training). The
associations learned to the light should partially transfer to tone, as a result
of the paired exposure. Hippocampal-region damage (specifically fimbrial
lesion) abolishes sensory preconditioning in the rabbit eyeblink preparation,
as shown in figure 6.8A.*10 Because the predictive autoencoder in chapter 5
was sufficient to mediate this effect (refer to figure 5.19), it should come as no
surprise that our intact cortico-hippocampal model shows the same effect
(figure 6.8B).11 In the intact model, tone&light� exposure results in compres-
sion of the representations of tone and light, since both stimuli co-occur and
neither predicts the US or any other salient event. Subsequent associations to
light partially activate the representation of tone, and the learning transfers.
In the lesioned model, there are no representational changes during the ex-
posure phase, and as long as light and tone are distinct stimuli that activate
different (fixed) representations, there is little chance that associations made
to light will transfer to tone.
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*Fimbrial lesion does not involve removal of the hippocampus but instead cuts an important
input and output pathway by which subcortical structures communicate with the hippocampus.
As such, the effects of fimbrial lesion may not be identical to hippocampal lesion. The implica-
tions of damage or disruption to this pathway will be further discussed in chapter 9. 
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Learned Irrelevance. Another behavior involving representational com-
pression is learned irrelevance.12 The paradigm is schematized in table 6.1.
In phase 1, subjects in the exposed group are given presentations of a CS
(e.g., light) and a US, uncorrelated with each other. Subjects in the nonex-
posed group are given equivalent time in the experimental context but re-
ceive no presentations of light or the US. In phase 2, all subjects receive
light-US pairings. As shown in figure 6.9A, subjects in the exposed group are
much slower to learn the light-US association.

In the intact cortico-hippocampal model, phase 1 exposure to a CS (e.g.,
light) and a US causes representational changes. The representation of the
light becomes compressed, together with the representations of the back-
ground contextual cues, since neither predicts the US well. In effect, the light
is treated as a sometimes-occurring aspect of the context, one that is of no use
in predicting US arrival. This representational compression of light and con-
text will hinder phase 2 learning to respond to the light but not the context
alone. Thus, as shown in figure 6.9B, there is a learned irrelevance effect in
the intact cortico-hippocampal model. Since learned irrelevance is inter-
preted in terms of representational compression, it is not shown in the HR-
lesion model (figure 6.10B).
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Figure 6.8 Sensory preconditioning. (A) In rabbit eyeblink conditioning, phase 1 exposure to
the compound tone&light�, followed by light� training, results in stronger phase 3 responding
to tone than in animals that are given separate exposure to the components (tone�, light�) in
phase 1; this effect is eliminated in animals with damage to the hippocampal region (fornix
lesion). (Adapted from data presented in Port and Patterson, 1984.) (B) Similarly, the intact but
not HR-lesioned cortico-hippocampal model shows sensory preconditioning.
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At the time we first published this prediction, it was a novel implication of
the cortico-hippocampal model. Since then, we have shown in our lab that
learned irrelevance is severely disrupted by HR lesion in the rabbit eyeblink-
conditioning preparation (figure 6.10A).13 These results provide further
evidence that the representational compression contributing to learned irrel-
evance depends on the hippocampal region. Our empirical data further
demonstrate that the exact lesion extent is critical in determining whether or
not learned irrelevance is disrupted, suggesting that different hippocampal-
region structures contribute differently to the effect. We will return to this
issue, and the actual empirical data, in chapter 9.

Our cortico-hippocampal model predicts that other behaviors that reflect
representational compression will also be disrupted by HR lesion. These in-
clude latent inhibition and contextual effects, which will be discussed more
fully in chapter 7. Some of these predictions have also been confirmed by
recent experimental studies.
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Table 6.1 The Learned Irrelevance Paradigm

Group Phase 1 Phase 2

CS/US exposure Light and airpuff (uncorrelated) Light → airpuff
. . . . SLOW!

Sit exposure (Animal sits in experimental chamber) Light → airpuff
. . . . normal speed
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Figure 6.9 Learned irrelevance. Both intact rabbits (A) and the intact cortico-hippocampal
model (B) show slower learning of a CS-US association following exposure to the CS and US
uncorrelated with each other. (A is drawn from data presented in Allen, Chelius, & Gluck, 1998.)
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Limitations of the Cortico-Hippocampal Model

Although our cortico-hippocampal model accounts for a considerable range
of data on intact and hippocampal-lesioned animals, there are several effects
that it does not address. The model is specifically limited to model classical
conditioning. This limited domain was chosen specifically because it is
possible to construct a model of the cerebellar substrates of eyeblink con-
ditioning with some assurance that the model accurately reflects the brain
substrates. However, this approach means that the model does not apply
easily to other domains. Recently, we have shown that the model can be ex-
tended to address instrumental conditioning, a form of learning in which
reinforcement is contingent on the subject’s response, and category learning,
in which people learn to classify objects into predefined classes.14 However,
there are other domains that lie well outside the model’s ability; these in-
clude spatial learning, declarative memory, and delayed nonmatch to sample
(DNMS), three behaviors that were mentioned in chapter 2 as important
areas of research into hippocampal function. These are limitations of the
current computational model but not necessarily of the basic underlying
theory. An important direction for future research will be to see how well the
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Figure 6.10 Learned irrelevance and HR-lesion. (A) In rabbits, hippocampal-region damage
(specifically, entorhinal lesion that also cuts off the major information pathways into and out of
hippocampus) eliminates learned irrelevance: Animals that are given prior exposure to the CS
and US uncorrelated learn at about the same rate as animals that are given exposure to the con-
text only (Sit Exposure). (B) Likewise, the HR-lesion model does not show learned irrelevance.
(A is drawn from data presented in Allen, Chelius, & Gluck, 1998.)

gluc_c06.qxd  8/29/00  1:52 PM  Page 160



fundamental information-processing principles of representational compres-
sion and differentiation can account for hippocampal function in more com-
plex behaviors such as spatial learning and recognition learning.

Extinction. There are, however, phenomena within the model’s domain of
classical conditioning for which the model fails to accurately account for all
relevant empirical data. One example is extinction. After learning a response
to one CS (light� training), if an animal is given CS-alone trials (light�
training), the conditioned response gradually weakens, or extinguishes.
Extinction is problematic as a psychological phenomenon because there is
considerable evidence that the process is more complicated than simply
undoing a CS-US association; instead, subjects appear to learn a CS-noUS
association that competes with the earlier CS-US association.15 The idea that
the earlier CS-US association is not destroyed, but merely suppressed, is con-
sistent with the finding that an extinguished association can be reacquired
more quickly than it was originally acquired.16

The cortico-hippocampal model does not contain any explicit mechanism
for the simultaneous maintenance of CS-US and CS-noUS associations. Dur-
ing extinction, all that occurs is that the mapping between the representation
of CS and the US is replaced by a mapping to noUS. No representational
changes are involved, and so extinction occurs at the same speed in the intact
and lesioned models (figure 6.11B). This behavior is superficially correct—
hippocampal-region damage does not affect extinction in animals (figure
6.11A)17—but is nonetheless an oversimplification. Extinction also occurs
much more quickly in the model than in experimental subjects.

To account for these data, additional mechanisms would have to be postu-
lated in the model to account for all these aspects of extinction. At the present
time, sufficient controversy surrounds the true nature of extinction that it
seems premature to try to add such a mechanism to the model. However, it
would be a fruitful exercise to try to implement some of the possible mecha-
nisms in a model of extinction and see which accounts for the greatest array
of empirical data. It has been suggested that extinction does not erase CS-US
learning but, rather, makes this learning more sensitive to context.18 Thus, the
correct response in the old context was to produce a CR, but in the new con-
text, no CR should occur. We will return to contextual issues in chapter 7.

Timing Effects. A second major class of data for which our original cortico-
hippocampal model does not account is stimulus interval effects such
as trace conditioning. Trace conditioning is defined by introducing a short
interval between CS offset and US onset (refer to figure 2.17). Trace
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conditioning is disrupted by hippocampal-region damage—if the trace inter-
val is long enough.19 The version of the cortico-hippocampal model de-
scribed here does not incorporate temporal information such as the number
of milliseconds between CS and US onset. Therefore, it cannot directly model
stimulus interval effects. Recently, we have developed a generalized version
of our model that includes recurrent connections within the network,
thereby allowing it to demonstrate some aspects of temporal and sequential
processing, including trace conditioning.20

However, introducing temporal information into the cortico-hippocampal
model does not solve a more fundamental problem. The cortico-
hippocampal model assumes that the hippocampal region is critical when
new stimulus representations are required that involve redundancy com-
pression or predictive differentiation. There is no obvious way to relate this
assumption to the finding of a hippocampal role in trace conditioning; trace
conditioning does not seem to require new stimulus representations—only
the formation of an association between CS and US. Thus, our theory does
not provide a good understanding of why trace conditioning should depend
on the hippocampal region. At present, the best that can be done is to note
that the model does not rule out additional possible hippocampal-region
functions such as a role in short-term memory that might help to maintain
a representation of the CS during a trace interval. Interestingly, trace
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Figure 6.11 Acquisition and extinction. (A) In the rabbit eyeblink preparation, extinction of a
trained response is not significantly slowed by hippocampal-region damage. In both cases,
extinction typically takes longer than acquisition of the original response. (Plotted from data
presented in Berger & Orr, 1983.) (B) In the cortico-hippocampal model, extinction is not slowed
in the HR-lesion model; however, in contrast to the animal data, both intact and HR-lesioned
models show extremely rapid extinction. The model probably does not adequately capture the
complexities of extinction in animals.
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conditioning is not universally reported to depend on the hippocampal re-
gion.21 One possible reason for this discrepancy between studies is variance
in exact lesion extent;22 this would be consistent with a suggestion that dif-
ferent hippocampal-region subareas perform different functions and that
some are more involved in trace conditioning than others.

Many other computational models do address a role for the hippocampus
in timing (including trace conditioning).23 Future work remains to determine
whether a single model can capture both the representational and temporal
aspects of hippocampal-region function (and also spatial learning, DNMS,
and episodic memory).

Neurophysiological Support for the Cortico-Hippocampal Model

If the hippocampal region does adapt stimulus representations to minimize
redundancy while preserving predictive information, it should be possible to
observe the results of this process via neurophysiological recordings of cell
firing in the hippocampal region. It is now possible to simultaneously record
the activation of dozens of neurons within a small area of brain. The set of fir-
ing activity across a set of neurons is a pattern analogous to the activities
across a set of nodes in a network model and can be viewed as the brain’s
representation of the current inputs. The difference between the brain’s
representation of one input A as a pattern of neuronal firing and a second
input B can be quantified by using a D(A, B) metric just like that defined for
the network model. Thus, it is possible to measure D(A, B) in a specific region
of the brain both before and after training and then calculate whether the
neural representations have become more or less similar. This approach has
obvious limitations: It is possible to simultaneously record only a small sam-
ple of the vast number of neurons in any brain region, and—as with any
sampling method—it is possible that the small sample may not accurately re-
flect the larger population. However, if the predicted changes in D(A, B) are
visible among even a small sample of neurons, it is a reasonable inference
that similar changes occur throughout the population.

By using this method, it is possible to observe changes in hippocampal fir-
ing patterns as a result of learning. For example, during rabbit eyeblink con-
ditioning, some neurons in the hippocampus that do not respond strongly to
a CS will gradually increase responding to that CS if it is repeatedly paired
with a US.24 In a discrimination task, some neurons will respond to the CS
(light�) but not to the CS (tone�).25 Averaged over many neurons, these
changes will result in increased D(light, tone) much like that shown in figure
6.6D. Importantly, these changes in hippocampal neuronal activity precede
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the development of the behavioral CR,26 just as representational changes pre-
cede development of the response in the predictive autoencoder of our hip-
pocampal model (refer to figure 5.18).

Rabbits are not the only animals to show these kinds of changes predicted
by our cortico–hippocampal model. In one experiment, monkeys were
trained on a visual discrimination, in which they had to make an arm move-
ment when they saw one stimulus A� but not when they saw a second stim-
ulus B�. Figure 6.12A shows how a single neuron in the hippocampus
responded during this task.27 Initially (trials 1 through 20), there is a similar
response to both stimuli A and B. With further training, these neurons begin
to become more active when stimulus A was presented than when stimulus
B was presented. These changes preceded the behavioral evidence of learn-
ing, evidenced by correct arm movements. Of all the hippocampal neurons
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Figure 6.12 Representational changes during discrimination learning. Neurophysiological
recordings of neuronal activity suggest representational differentiation during learning.
(A) Recordings from monkey hippocampus during learning to make a motor response to one
stimulus (A�) but not a second (B�). Initially (trials 1–10), there is little difference in respond-
ing to the two stimuli; with further training (trials 20–30), there is significantly greater neuronal
activity to the rewarded stimulus A�. (Adapted from Cahusec et al., 1993, Figure 2.) (B) Record-
ings from rat dentate gyrus during training to respond to tone A� but not tone B�. The graph
shows the pattern of responding on a single presentation of the tones, averaged across several
trials, in an animal that had learned the appropriate responses. When either tone comes on
(200 msec into the trial), there is initially a response. However, only for the rewarded stimulus
A� is this response maintained for the duration of the trial. (Adapted from Deadwyler, West, &
Lynch, 1979, Figure 4.)
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that showed task-related activity, about 22% altered their activity patterns to
discriminate the two stimuli; most of these maintained these new response
patterns across the experiment. However, many did not maintain their new
activity patterns once the behavior was fully acquired. As the authors of this
study note, this would be consistent with the idea that the hippocampus has
a limited capacity for pattern storage, and at some point, old learning is
transferred elsewhere (e.g., cortex) and new learning overwrites the old in
hippocampus.28

In another study, Deadwyler and colleagues recorded neuronal activity in
the dentate gyrus of rats that were being trained to make a motor response to
one tone A and not to another tone B.29 Initially, neuronal activity (in the form
of extracellular unit discharge patterns) looked similar after presentation of
either tone. By the time the conditioned response had been acquired, neu-
ronal discharge in the dentate gyrus differentiated the two stimuli; specifi-
cally, neurons might respond to both stimuli, but only the rewarded stimulus
(A) elicited sustained activity (figure 6.12B). Although these tone-evoked re-
sponses occur slightly before the initiation of the behavioral response, Dead-
wyler et al. argue that the dentate activity is probably not directly related to
the production of a motor movement. Instead, the dentate gyrus may con-
tribute to learning which of two or more competing responses is appropriate
to a given stimulus and may encode information about expected reward by
means of differential discharge patterns. A related study has also shown that
hippocampal cells in the rat that encode place information change as a result
of learning, differentiating the representations of landmarks.30

Taken together, the neurophysiological evidence currently available is remark-
ably consistent with the implications of our cortico-hippocampal model, suggesting
that hippocampal neuronal representations can and do change to reflect associations
between stimuli and rewards. The results do not prove that the hippocampus
itself creates these representational changes; it is possible that another brain
region develops appropriate representations and merely passes this informa-
tion to hippocampus. However, these neurophysiological findings are clearly
consistent with the idea that the hippocampus creates new stimulus repre-
sentations, much like the internal-layer nodes in a predictive autoencoder.

6.2 SCHMAJUK AND DICARLO (S-D) MODEL

Nestor Schmajuk and his colleagues have presented in several papers
an evolving series of computational models of cortico-hippocampal interac-
tion in conditioned learning.31 These models are similar in spirit and aim to
our cortico-hippocampal model in that these models are concerned with
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Figure 6.13 (A) The S-D model of classical eyeblink conditioning (Schmajuk & DiCarlo, 1992)
assumes that CS information reaches the cerebellum by two pathways: a direct CS-cerebellum
pathway and an indirect pathway via neocortex. This assumption is consistent with known
anatomy. The S-D model assumes that the neocortex recombines CS information to allow con-
figural learning. Finally, the cerebellum integrates information from both the direct and indirect
CS pathways to produce a CR. (B) The S-D model assumes that the hippocampus has two roles
in conditioned learning. First, it calculates the strength of the US prediction by summing the
activations from cerebellum. The hippocampal output is a measure of how strongly the US is
predicted. This US prediction measure is passed to other brain regions, which compare it against
the actual US and compute a prediction error. This prediction error is similar to the error mea-
sure in the Rescorla-Wagner rule, and the learning rate is proportional to the magnitude of this
error. (C) The second function of the hippocampus in the S-D model is to broadcast the error sig-
nal to the neocortex. According to this model, hippocampal-region damage should impair both
the computation of the aggregate error signal as well as the ability of the neocortex to develop
new configural nodes.

information-processing roles for different brain subregions and how these
subregions exchange information. Moreover, Schmajuk’s models are also
meant to address much of the same body of empirical data as our cortico-
hippocampal model. However, the particular function that Schmajuk and his
collaborators assign to the hippocampus differs from that supposed by our
model, leading to some predictions that may differentiate the two models.

Schmajuk and DiCarlo have presented a computational model of the
hippocampal-system processing in classical eyeblink conditioning, often re-
ferred to as the S-D model.32 The S-D model assumes that CS information reaches
the cerebellum via two routes: a direct path and an indirect path involving associa-
tion cortex (figure 6.13A). This dual-pathway assumption seems anatomically
valid.33 Schmajuk and DiCarlo suggest that CS information is combined in
the cortex to allow configural learning. Then, they argue, the cerebellum
integrates information from both the direct and indirect pathways to pro-
duce a CR.

The S-D model assumes that the hippocampal system has two roles in con-
ditioned learning. The first is shown in 6.13B. According to the Rescorla-
Wagner learning rule (refer to MathBox 3.1), learning is proportional to an
error measure, which is the difference between the actual and predicted US.
The S-D model assumes that the hippocampus is critical in computing this
error. Specifically, the hippocampus in their model is presumed to calculate the US
prediction; other brain areas compare this predicted US against the actual US and
calculate the total error. This error signal is then used to guide learning.
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Figure 6.13C illustrates the second role for the hippocampal region in the
S-D model: The cerebellar units can update weights directly on the basis of the error
signal, whereas the cortical units require specialized error signals broadcast by the
hippocampus. In neural network terms, the cortical units are hidden units
between the input and output layers, and the hippocampal circuitry is spe-
cialized to compute error signals for these hidden units—by implementing a
version of error backpropagation.

Hippocampal-system damage is simulated in the S-D model by disabling
both of the putative hippocampal functions. First, there is no longer any way
to calculate the predicted US. Most of the power of the Rescorla-Wagner
model (and the Widrow-Hoff learning rule) comes from the ability to predict
the US on the basis of all available cues. The lesioned S-D model cannot form
such an aggregate prediction of the US and is reduced to simple learning
about individual CSs. Thus, the S-D model predicts that hippocampal dam-
age will impair behavioral phenomena such as blocking that require this
error signal based on an aggregate prediction of the US.

Second, the lesioned S-D model cannot form new configural nodes in the
cortex, and it is restricted to simpler CS-US learning in the cerebellum. Thus,
the S-D model correctly produces unimpaired CS-US learning after hip-
pocampal lesion: The indirect CS-cortex-cerebellum pathway is dysfunc-
tional because the cortical units cannot update without hippocampal error
signals, but the direct CS-cerebellum pathway is operational and allows
learning. Other forms of learning, such as sensory preconditioning, that
depend on CS-CS associations, are disrupted by damage either to the cortical
system or to the hippocampal system that provides its error signals.

There are numerous additional complexities to the S-D model that are not
discussed here,34 but the description given above is sufficient to illustrate the
basic principles by which the model operates. Applied to classical condi-
tioning, the S-D model can account for a sizable range of empirical findings.
These include the sparing of discrimination learning, but impairment of
reversal, after hippocampal lesion; the broadening of the generalization gra-
dient in lesioned animals; and the loss of latent inhibition after hippocampal
lesion.35 In addition, because it is a real-time model, it can successfully
account for such temporal effects as trace conditioning and phasic cue occa-
sion setting, which are beyond the scope of our own cortico-hippocampal
model.36

In later work, the S-D model has been extended to include attentional pro-
cessing and novelty detection.37 The basic idea behind these subsequent
models is that when a mismatch occurs between prediction and reality, at-
tention to the current stimuli is increased and the prediction generator is
updated. Thus, during the first CS-US pairing, the unfamiliar CS generates
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high attention, facilitating its association with the US; during latent inhibi-
tion, the CS becomes familiar, reducing attention and impairing the ability of
that CS to enter into subsequent associations. More recently, Schmajuk has
suggested that the two hippocampal-system functions proposed in the S-D
model can be subdivided and mapped to various hippocampal-region sub-
structures.38 Chapter 9 will discuss these elaborations in more detail.

Comparison with Gluck and Myers’s Cortico-Hippocampal Model

Because the S-D model and our cortico-hippocampal model both address the
same domain (classical eyeblink conditioning), there is a great deal of over-
lap in their predictions. However, there are several important points on
which the two models differ. The most basic of these concerns the ability to
predict the US based on all available CSs. The S-D model sites this aggregate
prediction in the hippocampus and assumes that hippocampal lesion abol-
ishes it. Our cortico-hippocampal model, by contrast, follows Thompson’s
cerebellar theory39 in assuming that this (and all other aspects of the
Rescorla-Wagner model) are implemented in the cerebellum. The HR-
lesioned cortico-hippocampal model does continue to compute a prediction
of the US based on all available cues and to use this information to guide
error-correction learning. Thus, the S-D model and cortico-hippocampal
model make different predictions about the effects of hippocampal-region
damage on behavioral effects that, in the intact animal, reflect aggregate pre-
diction of the US. While there are behavioral data testing these predictions,
the data are unfortunately mixed in many cases.

Conditioned Inhibition. One example of such an effect is conditioned
inhibition: learning to respond to one cue (e.g., light�) when presented
alone but not when paired with another cue (e.g., tone&light�).

The Rescorla-Wagner model can solve this task by setting a positive
weight on light and a negative weight on tone so that light alone produces a
response but tone and light together cancel each other out and produce no
response. Both the Rescorla-Wagner model and the cerebellar model of
chapter 3 show this effect. This implies that the cerebellum should be suffi-
cient to mediate conditioned inhibition, and therefore hippocampal-region
damage should not disrupt performance. Paul Solomon tested this idea in
rabbit eyeblink conditioning and found that rabbits with hippocampal-
region damage could learn the task just as well as control rabbits, as shown
in figure 6.14A.40

Because the cortico/cerebellar network of figure 6.2B incorporates the
error-correcting learning procedure from the Rescorla-Wagner model, both
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our intact and HR-lesioned models show conditioned inhibition, as is seen in
figure 6.14B.

The intact S-D model can also produce conditioned inhibition. However,
the lesioned S-D model cannot, as is shown in figure 6.14C. This is because
the S-D model assumes that hippocampal-region damage disrupts the ability
to compute the output error that is needed to learn competing responses to
light depending on whether tone is present or absent. Therefore, the lesioned
S-D model cannot learn different responses to light and to tone and light and
cannot produce conditioned inhibition.41

Thus, the data from Solomon and colleagues study of conditioned inhibi-
tion are consistent with our cortico-hippocampal model but conflict with the
predictions of the S-D model.

Blocking. Another behavioral paradigm in which our cortico-hippocampal
model and the S-D model make differing predictions is blocking. The basic
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Figure 6.14 Conditioned inhibition: learning to respond to light� but not light&tone�. Results
are expressed as a percent of response to light� in intact animals or model. (A) Rabbit eyeblink
conditioning data: Both intact and hippocampal-lesioned animals can learn a strong response to
light� and a weak response to light&tone� after about 700 blocks of training; the lesioned ani-
mals are slightly better at withholding responses to light&tone�. (From data presented in
Solomon, 1977, Figure 2.) (B) The cortico-hippocampal model: After 1000 blocks of training, both
the intact and HR-lesion models give strong responses to light� and weaker responses to
light&tone�; again, the HR-lesion model learns slightly faster. (C) The S-D model makes the
opposite prediction: Although the intact model can learn the task, the lesioned model is unable
to discriminate light� and light&tone� and gives intermediate responses to both. This is
because the S-D model assumes that the hippocampus is necessary for cue competition effects.
(From data presented in Schmajuk & DiCarlo, 1992, Figure 11.)
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paradigm is schematized in table 6.2. Animals in the Pretrained group re-
ceive tone� training followed by tone&light� training; when later tested
with the light alone, they show no response. By comparison, control animals
in the Sit-exposure group, which receive only tone&light training, show at
least partial responding to the light stimulus.

Figure 6.15A shows that blocking is unaffected in the HR-lesioned cortico-
hippocampal model; by contrast, the lesioned S-D model predicts that the
light CS will acquire strong associative strength (figure 6.15B). Unfortu-
nately, the empirical data are ambiguous here; blocking has been reported to
be both impaired and spared following hippocampal-region damage in dif-
ferent studies.42 It is not clear what conclusions to draw from these conflict-
ing results. Perhaps future data will clear up this controversy and provide
strong support for one model or the other. Another possibility is that the
brain has multiple sites that subserve stimulus competition effects—in
the hippocampus and cerebellum and elsewhere—and the particular effects
of hippocampal-region damage will depend critically on details of the proce-
dural parameters used in each study. This is especially relevant given that the
empirical studies of blocking cited above employed a variety of lesion tech-
niques that produce different degrees of HR damage.

Configural Learning (Negative Patterning). The notion that a task may be
either impaired or spared after hippocampal lesion, depending on a variety
of procedural details, has implications for a wide range of tasks. One signifi-
cant task for studies of hippocampal function in recent years has been con-
figural learning, such as the negative patterning task. Recall from chapter 3
that this task involves learning to respond to two stimuli (e.g., light� and
tone�) but not to their compound (light&tone�).

Many animal studies have found that hippocampal lesion disrupts the
ability to learn negative patterning (e.g., figure 6.16A), but a few studies also
showed that negative patterning was spared.43 Both the cortico-hippocampal
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Table 6.2 The Blocking Paradigm

Group Phase 1 Phase 2 Phase 3: Test

Pretrained Tone → airpuff Tone&light → Tone → ?
airpuff 

⇒ no blink

Sit exposure (Animal sits in Tone&light → Tone → ?
experimental airpuff
chamber) ⇒ partial blink
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and S-D models predict that negative patterning should, in general, be dis-
rupted by hippocampal-region damage, as figures 6.16B and C show. The
two computational models make similar predictions here because both
assume that the hippocampal region is necessary to form new representa-
tions that encode cue configurations (though the two models assume that
somewhat different mechanisms underlie this process).

However, both models also assume that hippocampal-region damage will
not affect the cue configurations that are already learned and stored outside
the hippocampal region (e.g., in cortex). This leads to a subtle prediction of
both models: For some configural tasks, preexisting configural representa-
tions may exist and suffice to allow the problem to be solved—even without
the benefit of hippocampal processing.

Figure 6.17 shows an example from the cortico-hippocampal model:* 100
simulation runs with the intact and HR-lesioned model were trained on the
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(B) The S-D model predicts that blocking should be eliminated by hippocampal lesion.
(Redrawn from data presented in Schmajuk & DiCarlo, 1992, Figure 7.)

*Note that the simulations shown in figure 6.17 were not generated from the standard cortico-
hippocampal model used elsewhere in chapters 5 and 6 but were instead a version that had
fewer internal-layer nodes (four each in the hippocampal region and cortico/cerebellar net-
works) and also stronger initial weights in the lower layer of the cortico/cerebellar network.
This increased the probability that some HR-lesioned networks would reach criterion perfor-
mance, for demonstration purposes.
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negative patterning task. Solving the task was defined as reaching a criterion
performance level, defined as ten consecutive trials on which the simulation
generated a CR greater than 0.8 to the components light� and tone� but less
than 0.2 to the compound light&tone�. By this definition, 80% of the intact
simulations did solve the task, reaching criterion performance on discrimi-
nating the light� and tone� trials from the light&tone� trials. Of the re-
maining 20%, most simulations still responded somewhat more strongly to
the components than to the compound.

The results were very different for the HR-lesion model: 80% of HR-lesion
simulations failed to solve the task. Interestingly, the 20% of HR-lesion simu-
lations that did master the task reached criterion performance just as quickly
as the intact simulations; in fact, the fastest learners were HR-lesioned, not
intact, simulations. This seemingly paradoxical result arises because the
intact model is slowed down in learning because it has to construct new
stimulus representations to differentiate components light� and tone� from
the compound light&tone�; in the HR-lesioned model, these representations
rarely exist (and hence 80% of the simulations fail), but if by chance the rep-
resentations do already exist, then learning is very rapid because all that
needs to be done to reach criterion performance is to map from these preex-
isting representations to the correct responses.
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Figure 6.16 Negative patterning involves learning to respond to two cues, light� and tone�,
but to withhold responding to their compound light&tone�. (A) Normal rats can learn to
respond to the components but not the compound; hippocampal-lesioned rats are generally
found to be unable to withhold responding to the compound light&tone�. Both the cortico-
hippocampal model (B) and the S-D model (C) predict that, on average, this and other configural
tasks will be greatly disrupted after HR-damage. (A is plotted from data presented in Sutherland &
Rudy, 1989, Figure 2. B is plotted from data presented in Schmajuk & DiCarlo, 1992, Figure 14.)
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Thus, under certain (possibly rare) conditions, learning in the HR-
lesioned model may be faster than in the intact model. Certain kinds of ex-
perimental procedures may be especially likely to tap into preexisting,
hippocampal-independent systems, in which case configural learning may
be reliably faster after hippocampal-region damage. Such results have occa-
sionally been reported in the literature,*44 lending support to this model
prediction.

174 Chapter 6

Figure 6.17 Individual performance on negative patterning in the cortico-hippocampal model.
The cortico-hippocampal model and S-D model both predict that, while HR lesion will disrupt
negative patterning on average, occasionally and seemingly at random an animal’s preexisting
representations may suffice to solve the problem. Out of 100 simulation runs with both the intact
and HR-lesion cortico-hippocampal model, 80% of intact and 20% of HR-lesioned simulations
solved the negative patterning problem within 20,000 training blocks. Those HR-lesioned simu-
lations that solved the problem did so as fast as or faster than the intact simulations.
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*Gallagher & Holland, 1992, showed that rats with hippocampal lesions were slightly faster
than normal to acquire feature-neutral association (AC�, A�, BC�, B�). Han, Gallagher, &
Holland (1998) showed that this effect was strengthened if the time between trials was reduced.
Bussey et al., 1998, showed that rats with fornix lesions learned faster than normal on a trans-
verse patterning task (prefer A over B, B over C, and C over A). Eichenbaum & Bunsey, 1995, re-
ported that rats with hippocampal lesions were better than control animals in a paired-associate
task (AB�, CD�, AC�, BD�). Each of these tasks embeds configural components. It is very
much an open question which precise features of these experiments (including animal species,
stimulus modalities, procedural variations, and precise lesion techniques) contribute most to the
finding of impaired, spared, or facilitated configural learning after hippocampal-region damage.
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6.3 RELATIONSHIP OF MODELS TO QUALITATIVE THEORIES

The previous sections reviewed two computational models that were meant
to address information processing in the hippocampal region and how that
information might be used by other brain structures during learning. One
advantage of computational models is that they provide a reality check: A re-
searcher might propose a mechanism for learning that sounds plausible as a
verbal argument, but would not work in practice. If the mechanism can be
implemented in a computational model, that suggests that the mechanism
would indeed operate as expected. A computational model does not prove
that the brain operates in a certain way, but if the model successfully ac-
counts for a large portion of existing data and makes predictions that are
later confirmed by experimental testing, then that suggests that the model is
on the right track.

A second use of computational models is that they can often provide pos-
sible explanations for issues that were not obvious before. For example, the
cortico-hippocampal and S-D models provide one interpretation for the
paradoxical finding that, although configural learning may often be devas-
tated following hippocampal-region damage, in some rare cases it is spared
or even facilitated. Thus, it may not be particularly useful to attempt to di-
chotomize tasks according to whether they can or cannot survive hippocampal-region
damage. The computational-modeling approach suggests that it is more useful to
consider what kinds of information the hippocampal region normally processes and
which tasks may be expected generally to depend on this information.

Other researchers have also taken information-processing approaches to
understanding the hippocampal region and have developed qualitative the-
ories about the hippocampal region’s role that are often very useful as
heuristics to predict behavior in the lesioned animal or human. In many
cases, these qualitative theories are consistent with the computational mod-
els described above. This section reviews several prominent qualitative theo-
ries of hippocampal-region function, and notes how they relate to the
computational models described in sections 6.1 and 6.2.

Stimulus Configuration

Several prominent theories of hippocampal-region function have assumed
that the hippocampal region is involved in stimulus configuration (or
“chunking”), whereby a set of co-occurring stimuli come to be treated as a
unary whole (or configuration) that can accrue associations.45 For example,
the negative patterning task requires subjects to learn to respond to two
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stimuli (light� and tone�) but not their compound (light&tone�). This is
easily solved if it is assumed that light and tone can enter into direct ex-
citatory associations with the US but that the compound light&tone is a
separate entity that can enter into direct inhibitory associations with the US.
In fact, early studies demonstrated that such configural tasks were especially
sensitive to hippocampal-region damage.46 However, later studies sug-
gested that hippocampal-lesioned animals could indeed solve some con-
figural problems.47 While configuration may be especially sensitive to
hippocampal-region damage, it is clearly not universally abolished by such
damage.

An alternative interpretation of configuration is embodied by the cortico-
hippocampal model. The model assumes that the hippocampal region forms
new stimulus representations that may compress (or chunk or configure) co-
occurring stimuli. This will facilitate learning of such tasks as negative pat-
terning that depend on stimulus configuration. In the lesioned model, the
cortico/cerebellar network is left with a set of fixed lower-layer weights,
which do perform a recoding of stimulus inputs. Depending on the initial
state of these weights, there is always some probability that a random con-
figuration may be encoded by those weights. In such a case, a configural task
may well be solved by the lesioned model. Thus, the cortico-hippocampal
model expects only a general tendency toward a lesion deficit in configural
learning, not an absolute deficit. This interpretation is consistent with the
finding in a few studies that, although lesioned animals are generally im-
paired at a configural task, they may occasionally solve a configural task as
quickly as—or faster than—control animals.48 It is also consistent with the
observation, in many studies, of wide individual variance in how animals
solve configural tasks. For example, near the end of a study of negative
patterning in normal rabbits, most animals were reliably giving eyeblink
CRs to the components light� and tone� but not to the configuration
light&tone�.49 However, about one-fourth of the rabbits were showing a dif-
ferent pattern: responding strongly to one component and weakly to the con-
figuration—but also failing to respond to at least one of the components. An
additional rabbit was showing the opposite failure: responding reliably to
both components and also responding strongly to the compound.50 Thus, as
in the model in figure 6.17, some individual rabbits learn quickly and some
learn slowly or not at all. The variation can be even more pronounced in
lesioned animals.

Thus, the computational models implement much of the spirit of the con-
figural theory while also demonstrating how and why exceptions to the rule
might exist.
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Contextual Learning

A related class of theory implicates the hippocampal region in contextual
processing. Specifically, the hippocampus has been proposed as the source
for contextual tags to memories, which identify the spatial and temporal set-
tings in which events occur.51 Context is usually defined as the set of back-
ground cues that are present during a learning experience but distinct from
the experimentally manipulated CS and US; example contextual stimuli in-
clude visual features of the room, background noises, temperature, and time
of day. Contextual processing is often disrupted after hippocampal-region
damage. For example, humans with medial temporal lobe amnesia can often
acquire new information but not recall the spatial and temporal context in
which it occurred.52 Conversely, the nondeclarative (or incremental or proce-
dural) learning that is often preserved in amnesia tends to be acquired
slowly, over many trials, and therefore is less strongly associated with any
particular context.

Chapter 7 will consider the role of the hippocampal region in contextual
processing in more detail; for now, it is sufficient to note that the cortico-
hippocampal model assumes that all co-occurring stimuli (CS, US, and context) in-
fluence the development of hippocampal-mediated stimulus representations. Thus, if
CS-US learning occurs in one context, the representation of CS will include
contextual information. In contrast, the lesioned model does not develop
new stimulus representations but only forms direct CS-US associations; in
most cases, the context will not be sufficiently predictive of the US to enter
into any associations. Thus, in many cases, there are differences between the
context-sensitivity of the intact and lesioned model, and these differences
parallel the behavior of intact and lesioned animals.

Stimulus Selection

Some early theories of hippocampal function viewed the hippocampal
region as an attentional control mechanism, responsible for reducing atten-
tion to stimuli that are not significant, are not correlated with reinforcement,
or are irrelevant with respect to predicting reinforcement.53 These theories
are concerned with stimulus selection: how individual stimuli are “tuned
in” or “tuned out” of attention.

Traditionally, psychological theories of stimulus selection have fallen into
two broad classes: reinforcement modulation theories and sensory modu-
lation theories. Reinforcement modulation theories consider the effective-
ness of the reinforcer (e.g., the US) to be modulated by the degree to which
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the US is unexpected, given all the cues (e.g., the CS) present. So a rein-
forcer that is predicted by a CS would not support new learning, while one
that is unexpected would support new learning. The Rescorla-Wagner
model described in chapter 3 is an example of a reinforcement modulation
theory.

In contrast, sensory modulation theories of stimulus selection focus on the
ability of CSs to enter into new associations, on the basis of how much they
add to the overall ability to predict reinforcement.54 Thus, a CS that predicted
an otherwise unpredictable US would be very likely to enter into associa-
tions; a CS that did not add to the ability to predict the US would not enter
into new associations. Both reinforcement and sensory modulation theories
can account for some—but not all—learning behaviors.

Interestingly, a few behaviors, such as blocking, can be explained in terms of
either (or both) approaches: At the end of phase 1, the trained CS (e.g. tone�)
perfectly predicts the US. When the second light� CS is added, reinforcement
modulation theories expect that the well-predicted US should not enter into
new associations with the light. At the same time, sensory modulation theo-
ries expect that the light, which adds no new information, should not enter
into new associations with the US. Thus, both sensory modulation and rein-
forcement modulation may normally contribute to a strong blocking effect.

The cortico-hippocampal model and the S-D model of hippocampal-
region function incorporate both sensory and reinforcement modulation.
The cortico-hippocampal model assumes that the cortico/cerebellar regions
(which are capable of error-correction) can perform reinforcement modula-
tion, while the hippocampal region is needed for sensory modulation. Thus,
our model predicts that some—but not all—stimulus selection effects will be
disrupted after hippocampal-region damage. Specifically, reinforcement
modulation should survive HR lesion, while sensory modulation should not.

More generally, because stimulus selection depends on two substrates
(cortico/cerebellar and hippocampal), our model expects that many behaviors that re-
flect stimulus selection may be reduced but not eliminated by HR lesion, because re-
moving one of two sources of stimulus selection may leave the other intact. This may
explain why some stimulus selection behaviors, such as blocking, sometimes
survive hippocampal lesion and sometimes are eliminated.

Intermediate-Term and Working Memory

The fact that HR-lesioned monkeys are impaired at delayed nonmatch to
sample—but only if there is a long enough delay between sample and
choice—suggests that the hippocampal region has a role in maintaining
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information over the course of a few minutes. This kind of memory is often
called intermediate-term memory (as distinct from the short-term memory
that we use to remember a telephone number by constant rehearsal or long-
term memory, which can last years). A related concept is working memory:
intermediate-term memories that contain information relevant to the current
task at hand. For example, in the monkey delayed nonmatch to sample
(DNMS) paradigm, working memory allows the monkey to remember
the sample item across a short delay; however, on each new trial, the sample
item is different, and working memory updates to reflect this. A working-
memory task in rats might involve a maze in which there is food in a number
of locations at the start of each trial; to obtain all the food in the shortest pos-
sible time, the rat must use working memory to remember which locations it
has visited (and depleted) so far on the current trial. Performance on this
kind of task is disrupted by hippocampal-region damage.55 Trace condition-
ing also requires the ability to maintain CS information during the short in-
terval until the US arrives and is likewise disrupted by hippocampal-region
damage.

Several researchers have suggested that a critical component of these
tasks is the ability to represent information over short periods of time, and
some have suggested that the hippocampus functions as a buffer, holding
critical bits of information for a short time.56 In fact, there are some neuro-
physiological data suggesting that neuronal activity in the hippocampus
may temporarily encode recent stimuli.57 More recently, researchers have
suggested that the hippocampus is critical when the task has a temporal dis-
continguity, meaning that the items to be associated do not overlap in
time.58

Howard Eichenbaum, Tim Otto, and Neal Cohen have suggested that the
intermediate-term memory buffer can be specifically localized within the
parahippocampal region, including entorhinal, perirhinal, and parahippo-
campal cortices.59 One function of this buffer would be to compress or “fuse”
individual stimuli into compound percepts.60 We will return to the possible
selective role of entorhinal cortex and other parahippocampal structures in
chapter 9; for now, we note that the stimulus fusion that Eichenbaum and
colleagues attribute to the entorhinal cortex is perfectly consistent with the
stimulus compression that the cortico-hippocampal model views as one as-
pect of hippocampal-region function.61 The hippocampal region may be
involved in constructing new representations that compress together stim-
uli that co-occur or are similar in meaning; this compression could apply
equally to stimuli that are superficially dissimilar, and to those that are
separated in time or in space.62
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Cognitive Mapping

Perhaps the most devastating effect of hippocampal-region damage in rats is
on spatial learning. The strong spatial impairment in hippocampal-lesioned
rats has led to theories suggesting that the hippocampus (or hippocampal
region) is specialized as a spatial mapping system.63 Partial support for these
theories comes from neurophysiological studies showing that individual
cells in hippocampal subfields CA3 and CA1 respond preferentially when
the animal is in a particular region of space. A variety of computational mod-
els have shown that the known anatomy and physiology of these subfields is
sufficient to give rise to place field behavior and allow various kinds of spa-
tial learning.64

Perhaps the primary problem with the simplest spatial theories is that
hippocampal-region damage can result in a broad range of deficits that have
no obvious spatial component; examples include conditioning tasks such as
disrupted sensory preconditioning in HR-lesioned animals and disrupted
recognition in humans with medial temporal damage (refer to chapter 1).
The spatial theory has since been extended to assume that the hippocampus
is only disproportionately, but not exclusively, involved in spatial process-
ing65 or that the hippocampal region is involved in cognitive mapping,
which ties spatial as well as contextual, semantic, and other information into
unified memories.66 This, then, would lead to the impairment in episodic
learning observed in human amnesia.

An alternative interpretation of the lesion impairment in spatial learning
suggests that the hippocampus is not specialized for spatial learning per
se, but rather that a “place” is simply a configuration of local views of
space.67 Thus, since configural processes seem to be especially sensitive to
hippocampal-region damage, spatial learning is also susceptible to
hippocampal-region impairment. This interpretation is consistent with the
fact that some hippocampal cells that show spatially determined responses
during a spatial task can have other behavioral correlates during a nonspatial
task.68

“Flexible” Memory

In contrast to theories that implicate the hippocampal region specifically in
one kind of memory—be it configural, contextual, spatial, or even declara-
tive—some researchers have suggested that the hippocampal region of an in-
tact animal is involved in learning even the most elementary associations.
For example, in the cortico-hippocampal model, the hippocampal region is
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not necessary for learning a CS-US association; however, in the intact model,
the hippocampal region constructs new representations even during such a
simple task and thereby influences the way in which CS-US associations are
formed. This may not be evident during learning, and so there may be little
or no difference in the CR development of an intact or hippocampal region-
lesioned animal (or model). But the hippocampal-mediated representations
will become very evident if the animal (or model) is later challenged to use
that learning in a generalization or transfer task.

Eichenbaum, Cohen, and colleagues have advanced a qualitatively similar
view.69 They propose that the hippocampus is involved in forming stimulus
representations that are sensitive to the relationships between stimuli.70

Hippocampal-independent memories are assumed to be inflexible, in the
sense that they can be accessed only through reactivation of the original stim-
uli and situations in which the learning took place. For example, rats can be
trained to prefer odor A� over odor B� and to prefer odor C� over D�. Later,
when presented with odors A and D, normal rats reliably choose A but
hippocampal-lesioned rats may choose randomly—as if they had never been
exposed to either odor before.71 In chapter 8, we will discuss this kind of task
in more detail and show how the cortico-hippocampal model can be extended
to address some of its features. For now, though, we simply note a surface sim-
ilarity between Eichenbaum and Cohen’s theory and the cortico-hippocampal
model. A central feature of Eichenbaum and Cohen’s flexible learning is the
creation of stimulus representations that emphasize the relationships between
stimuli. This is consistent with the cortico-hippocampal model, in which
hippocampal-region representations emphasize predictive features and deem-
phasize irrelevant features; such representations may be used flexibly in new
contexts whose irrelevant features differ from those of the learning context.

6.4 IMPLICATIONS FOR HUMAN MEMORY
AND MEMORY DISORDERS

The first and most important implication of the computational models dis-
cussed in this chapter is that hippocampal-region damage does not indis-
criminately abolish the ability to learn. Animals with HR lesion can acquire
some kinds of new information, including simple acquisition of conditioned
eyeblink responses and other stimulus-response associations.

It is now well established that humans with anterograde amnesia from
medial temporal (including hippocampal-region) damage can also learn
motor-reflex responses.72 Similarly, by focusing on what amnesic subjects can
do rather than on their impairments, it may be possible to accomplish
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significant and subtle learning in these individuals. Amnesic subjects are
able to acquire and retain new motor skills such as mirror-tracing and cogni-
tive skills such as grammatical rules if the learning takes place incrementally,
over many trials, and does not require episodic memory of individual learn-
ing sessions.73 Similarly, amnesic subjects can learn to categorize objects on a
computer screen into arbitrary classes by repeated exposure to members of
the categories.74 Amnesic subjects have even been taught rudimentary com-
puter programming skills using methods that take advantage of spared
learning abilities.75

The animal and model data also suggest that some kinds of conditioning
should be disrupted by HR lesion. For example, discrimination reversal may
be greatly slowed in relation to controls, although HR-lesioned animals may
master the reversal given enough trials. One question is whether humans
with medial temporal (HR) damage will show a similar pattern of impaired
and spared learning. At this point, it is still very much an open question
whether amnesic individuals can reverse a learned discrimination as well as
control subjects do.76

In other kinds of paradigm, in which control animals are slowed by prior
exposure, HR-lesioned animals can outperform control animals. For exam-
ple, controls but not HR-lesioned animals are slow to learn a CS-US associa-
tion following uncorrelated exposure (learned irrelevance) to the CS and US.
Recently, we developed in our laboratory a computerized task that embeds
some features of learned irrelevance into a video game task.77 The task in-
volved learning that some screen events (like CSs) predict other screen
events (like USs). Subjects were seated at a computer screen and told that
they would see a magician trying to make a rabbit appear under his hat (fig-
ure 6.18). On each trial, the subjects were to guess whether or not the magi-
cian succeeded. The appearance of the rabbit was conceptually analogous to
the to-be-predicted US, and the subjects’ predictions were equivalent to an
anticipatory CR.

Subjects in our study were divided into two groups: Exposed and Non-
exposed. In phase 1, for all subjects, the appearance of the rabbit US was con-
tingent on a particular “magic word” in the magician’s cartoon word
balloon. For subjects in the Nonexposed group, the cartoon balloon was al-
ways uncolored (gray). For subjects in the Exposed group, the cartoon bal-
loon was colored red or green, and the color was not correlated with the
rabbit US. Later, in phase 2, the balloon color perfectly predicted the rabbit
US. Thus, balloon color was the CS that predicted US arrival. Subjects who
had previously been exposed to this color CS, uncorrelated with the US, were
slower to learn the association between CS and US in phase 2 than were
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subjects who had not been exposed. Thus, normal subjects showed learned
irrelevance.78

Recently, we tested a group of individuals with amnesia resulting from
medial temporal (HR) damage and a group of matched control subjects on
this task.79 In phase 1 (in which the “magic word” predicted the rabbit), am-
nesic and control subjects all learned quickly, regardless of exposure condi-
tion (figure 6.19A). In phase 2, the control subjects showed a strong learned
irrelevance effect: The Exposed group learned more slowly than the Non-
exposed group. However, among amnesic subjects, the learned irrelevance
effect was eliminated: Exposed and Nonexposed groups learned at the same
rate (figure 6.19B).

One implication of these findings in animals and humans is that under
certain conditions that slow CS-US learning in normal subjects, the amnesic sub-
jects learn more quickly than controls! Of course, the normal subjects learn more
slowly because they are learning more: They are learning about environmen-
tal regularities during exposure, and this same learning is what disrupts later
association.

A second implication of these findings is that although both controls and am-
nesic subjects appear to learn similarly in phase 1, they are actually learning differ-
ently. This difference shows up during phase 2, when subjects are challenged
to apply their learning in new ways. Thus, transfer tasks may be a more use-
ful way to demonstrate differences between these groups than the initial
learning. This in turn has potential implications for diagnosing syndromes,
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Is there a rabbit under the hat? Yes.
Correct!

Is there a rabbit under the hat?  Is there a rabbit under the hat? No.
Correct!

Figure 6.18 A computerized task that embeds some aspects of learned irrelevance. Subjects
watch a computer screen that shows a magician trying to produce a rabbit under his hat (A).
Conceptually, the appearance of the rabbit is the to-be-predicted event (US). Subjects guess
whether the rabbit will appear on each trial. The hat is then raised to show whether the rabbit is
present (B, C), and corrective feedback is given. In phase 1, the rabbit is predicted by a particu-
lar magic word in the magician’s cartoon word balloon. In phase 2, the rabbit is predicted by a
particular color (red or green) in the word balloon. (Adapted from Myers, McGlinchey-Berroth,
et al., 2000, Figure 1.)
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such as Alzheimer’s disease, that involve hippocampal-region damage. We
will consider the application of related human experiments to the prediction
of the early stages of Alzheimer’s in chapter 9.

SUMMARY

• Hippocampal-region damage in network models is simulated by disabling
a hippocampal-region module and observing the behavior of the remaining
modules.
• Gluck and Myers’s cortico-hippocampal theory argues that the hippocam-
pal region plays a crucial role in the recoding or rerepresentation of stimulus
representations during learning. Specifically, if two stimuli co-occur or make
similar predictions about future reinforcement, their representations will be
compressed to increase generalization between the stimuli. Conversely, if
two stimuli never co-occur and make different predictions about future
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Figure 6.19 Results from the learned irrelevance paradigm shown in Figure 6.19. (A) In phase 1,
subjects learned to predict the rabbit US on the basis of a neutral cue (a particular magic word).
Subjects in the exposed condition were also given uncorrelated exposure to a color CS; subjects
in the nonexposed condition never saw this CS in phase 1. Among normal subjects, there was no
significant difference in total errors between the two conditions; amnesic subjects in both condi-
tions also performed the same as controls. (B) In phase 2, the color CS predicted the rabbit US.
Normal subjects who had been exposed to the CS in phase 1 took longer to learn this CS-US
association than did nonexposed subjects. Thus, normal subjects showed learned irrelevance. By
contrast, amnesic subjects did not show learned irrelevance: Exposed and nonexposed amnesic
subjects learned the phase 2 task at the same speed—and much faster than exposed control sub-
jects. (Adapted from Myers, McGlinchey-Berroth, et al., 2000, Figure 2.)
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reinforcement, their representations will be differentiated to decrease gener-
alization between the stimuli.

• The cortico-hippocampal model assumes that the representations devel-
oped in the hippocampal region are eventually adopted by other long-term
storage sites in cortex and cerebellum.

• The hippocampal region may not be strictly necessary for some simple
kinds of learning; but when it is present, it normally contributes to all
learning.

• The cortico-hippocampal model has limitations in accounting for data on
extinction and response timing.

• Taken together, the neurophysiological evidence that is currently available
is remarkably consistent with the implications of our cortico-hippocampal
model, suggesting that hippocampal neuronal representations can and do
change to reflect associations between stimuli and rewards, much like the
internal-layer nodes in a predictive autoencoder.

• The Schmajuk-DiCarlo (S-D) model assumes that CS information reaches
the cerebellum via two routes: a direct path and an indirect path involving
association cortex. Specifically, the hippocampus in this model is presumed
to calculate the predicted US, while other brain areas compare this predicted
US against the actual US and calculate the total error. This error signal is then
used to guide learning. In addition, cerebellar units can update weights di-
rectly on the basis of the error signal, whereas the cortical units require spe-
cialized error signals broadcast by the hippocampus.

• It may not be particularly useful to attempt to dichotomize tasks according
to whether they can or cannot survive hippocampal-region damage. Com-
putational modeling suggests that it is more useful to consider what kinds of
information the hippocampal region normally processes and which tasks
may be expected generally to depend on this information.

• In many cases, qualitative theories of the hippocampal region are very con-
sistent with a subset of the implications of computational models when the
models are applied to specific domains or tasks.

• Because selective attention depends on both cortico/cerebellar and hip-
pocampal substrates in the cortico-hippocampal model, the model expects
that many behaviors that reflect selective attention may be reduced but not
eliminated by HR lesion.

• In studies of associative learning in cognitive analogs of conditioning
tasks, both control and amnesic subjects appear to learn similarly during an
initial phase of training, but transfer task performance suggests that they are
actually using different strategies to learn.
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186 Chapter 6

APPENDIX 6.1 SIMULATION DETAILS

The cortico-hippocampal model of section 6.1 was described at a very gen-
eral level, without reference to mathematical details such as number of nodes
or learning rates. In fact, over the years, we have implemented the model
with a wide number of parameter choices; the qualitative behavior of the
model is usually independent of these choices, although the absolute speed
or accuracy of learning may vary. All of the cortico-hippocampal model sim-
ulations presented in section 6.1 were based on a single implementation (the
same one used in Myers & Gluck, 1994), and each figure represents the aver-
age of ten simulation runs with that implementation, except as otherwise
noted in the text.

The external inputs consisted of four CSs and fourteen contextual stimuli,
each of which could be either present or absent. The contextual stimuli were
initialized randomly but thereafter held constant for the remainder of the ex-
periment. (A different set of randomly initialized contextual stimuli was
used if there was to be a contextual shift in the experiment.) At any given mo-
ment, one or more CSs could be present along with the US. A trial consisted
of one presentation of each stimulus combination to be trained, interspersed
with context-alone trials in a 1:19 ratio. Thus, for discrimination learning (CS
A predicts the US, but CS B does not), one trial would include a presentation
of A (with the US), nineteen context-alone presentations, a presentation of B
(with no US), and nineteen more context-alone presentations.

The hippocampal-region network contained eighteen input nodes, ten
internal-layer nodes, and nineteen output nodes. The output nodes learned
to reconstruct the eighteen inputs as well as predicting whether the US was
present. The network was trained by error backpropagation, as described in
MathBox 4.1 and Rumelhart, Hinton, and Williams (1986). The learning rate
was set at 0.05 when the US was present and 0.005 otherwise; the momentum
was set at 0.9.*

The cortico/cerebellar network also contained eighteen input nodes, along
with sixty internal-layer nodes and one output node. The activity of the out-
put node was interpreted as the strength or probability of a CR in response to
the current inputs. The upper layer of weights was trained according to the
Widrow-Hoff rule (MathBox 3.1); desired output was the same as the US. The

*Note that there is a wide range of parameters for the model that would produce similar rates of
learning; for example, setting the learning rates to be equivalent on US-present and US-absent
trials but greatly increasing the ratio of context-alone versus CS+ trials would produce generally
similar, though not necessarily identical, behavioral properties.
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learning rate was set at 0.5 when the US was present and 0.05 otherwise. For
each internal-layer node c, the desired output was defined as the sum over all
hippocampal-region network internal-layer nodes h of the activity of h times
the weight from h to c. These weights were initialized according to the ran-
dom distribution U(�0.3. . .�0.3) and were held constant throughout the
experiment.

All nodes in the system used a sigmoidal output function as defined in Math-
Box 4.1, Equation 4.3. All weights and biases in the hippocampal-region net-
work were initialized according to the random distribution U(�0.3. . . �0.3).
Upper-layer weights and output bias in the cortico/cerebellar network were
initialized in the same way. Lower-layer weights and internal-layer node
biases in the cortico/cerebellar network were initialized according to the
random distribution U(�15. . . �15). This, in combination with the large num-
ber of internal-layer nodes in the cortico/cerebellar network, maximized the
chance of useful representations existing in the HR-lesioned model.

Before any training, the entire system was initialized with 500 context-
alone presentations, simulating the time spent acclimatizing an animal to the
experimental chamber before any conditioning begins. The model was as-
sumed to have “learned” a task when it reached criterion performance, de-
fined as ten consecutive trials correctly generating a CR of at least 0.8
whenever the US was present and at most 0.2 when the US was absent.
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