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Abstract. During a reaching task, the population vector
is an encoding of direction based on cells with cosine
response functions. Scaling the response by a magnitude
factor produces a vector encoding, enabling vector arith-
metic to be performed by the summation of firing rates.
We show that the response properties of selected popula-
tions of cells in the primary motor cortex and area 5 can
be explained in terms of arithmetic relationships among
load. goal. and motor command vectors. Qur computer
simulations show good agreement with single-cell
recording data.

1 Introduction

1.1 The task

For more than a decade, researchers have conducted
variations of the following experiment involving mon-
keys (usually macaques). Eight light-emitting diodes
(LEDs) are arranged at equidistant points on a circle in
front of the animal, with a ninth LED in the center. The
monkey is trained to select (by pointing or by maneuver-
ing a manipulandum) the LEDs while single-cell record-
ings are made. A trial begins when the center LED is lit,
and the monkey selects it. After a delay, one of the
peripheral LEDs is lit, and the monkey selects the lit
LED. (See Georgopoulos et al. 1983 for the original
definition of this task.)

Many variations of this task have been studied. In
isometric versions, the LED board is replaced with
a video monitor. and the monkey selects the lights via
a‘fixed. force-sensitive joystick (Georgopoulos et al.
1992). In three-dimensional versions. the LEDs are re-
placed by eight lighted pushbuttons arranged at the
corners of a cube in space in front of the monkey, with
a ninth pushbutton at the center (Schwartz et al. 1988:
Caminiti et al. 1990a. b, 1991). Schwartz (1992, 1993) even
reports a variation of this task in which a monkey was
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trained to trace sinusoids of varying widths and frequen-
cies with its finger.

We will concentrate on one variant of the reaching
task in which a static load is attached to the manipulan-
dum in such a way that the load vector can be applied in
any of eight directions (Kalaska et al. 1989, 1990
Kalaska 1991)(Fig. 1). This allows the dissociation across
trials of the intended motion or ‘goal’ direction from the
direction in which the monkey actuaily has to exert force
in order to reach the goal. In discussing this task, we will
refer to the intended motion direction of the hand as the
‘goal vector’ G, and the actual force gxerted as the ‘motor
command’ M. We will refer to the ‘load vector’ imposed
(expressed in hand coordinates) as L.

1.2 The data

Our model addresses data relating subpopulations of
three areas of the motor system: the dorsal premotor area
(PMd), primary motor cortex (MI), and supenior parietal
cortex (area 5). In general, activity in the premotor cortex
precedes activity in the motor cortex, which in turn
precedes activity in area 5 (for a review see Kalaska and
Crammond 1992).

Neurons in shoulder-related areas of PMd have been
recorded whose firing rate covaries with the direction of
the goal vector G (Caminiti et al. 1990a, 1991), while
some neurons in shoulder-related areas of MI and area
5 have firing rates the covary with the directions of both
G and L (Kalaska et al. 1989, 1990). In all three cases, the
firing rates of these neurons correlate closely with a co-
sine function of the vector direction. This allows the
definition of a preferred direction of a neuron as the peak
of the cosine function.

The goal axis of the neuron is defined as the preferred
direction with respect to G and the load axis as the
preferred direction with respect to L. Although indi-
vidual neurons in both the MI and area S populations
show goal and load responses. in the MI population the
goal and load axes are anti-correlated (left haif of Fig. 4),
while in the area S population the goal and load axes are
uncorrelated (left half of Fig. 5).

Although PMd shoulder-related neurons have not
been recorded during the loaded reaching task, in other
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Fig. 1. The experimental setup for the loaded reaching task (from
Kalaska et al. 1989. used with permission of the author and publisher)

tasks they have been shown to be less likely to be sensi-
tive to variations in force than MI neurons (Werner et al.
1991).

The evidence from the motor cortex is inconsistent.
Many researchers have reported a strong correlation
between the firing rates of tonic motor cortex neurons
and static force (see Hepp-Reymond 1988 for a review).
This correlation is sigmoidal, with a large linear range
(Cheney and Fetz 1980; Evarts et al. 1983; Kalaska 1991).
However, a recent experiment by Georgopoulos et al.
(1992) has shown that in the absence of movement, some
shoulder-related MI neurons do not show a relation to
static force; they respond only to dynamic force. We do
not know of a way of reconciling the differences between
this latest result and the previous work. However, Wise
(1993) points out that Georgopoulos et al. looked at
phasic aspects of neurons, while the previous results

looked at tonic aspects. See Hepp-Reymond (1988) for
a review of earlier results that also found dF/dr to be in
phasic aspects of neuronal activity. Cheney and Fetz
(1980) report that pyramidal tract neurons are more
likely to be tonic neurons. while phasic neurons are more
likely to be interneurons. Our model speaks only to the
tonic component of the M1 population.

In area 5. we will concentrate on the population of
shoulder-related neurons reported by Kalaska et al.
(1990). The goal response of these neurons is significantly
stronger than the load response. and the goal and load
axes are uncorrelated. Our theory suggests an explana-
tion for this.

2 The population vector

Georgopoulos et al. (1983) proposed the sinusoidal func-
tion

b; + k;cost@ — ¢,) (n

as a fit 10 the neural response function mentioned above.
where ¢, 1s the preferred direction, b, a baseline. and &,
a gain. They then proposed the population vector as
a method of calculating movement direction precisely.
Each cell contributes a vector with direction equal to 1ts
preferred direction and length equal to its finng rate. As
long as the preferred directions (¢:) are uniformly distrib-
uted and the baselines (h,)and gains (k,) are uncorrelated
with the preferred direction. the vector sum constitutes
an accurate and precise predictor of the movement direc-
tion (Georgopoulos et al. 1988). This also holds in three
dimensions

The population vector 1s not a representation; it 1s
a means of extracung the value from a representation of
direction 1n which each neuron has a firing rate based on
(1). This representation can be modified to represent
a vector nstcad of just a direction. A vector has both
direction © and magnitude r. If (1) is modified to include
a magnitude 1crm

b; + k;srcostn — @ (2)

then the population vector still extracts @ correctly. The
magnitude r can be extracted by subtracung b,. dividing
by k; (so that each cell represents r cos(¢ — ¢, ). rectfy-
ing at 0. and integraung over all angles ¢;.

This extended representation supports vector arith-
metic. In an earhier paper. we called this representation
a sinusoidal arrav (Touretzky et al. 1993).

Most other models of the motor system that discuss
the reaching task (Bullock and Grossberg 1988: Burnod
et al. 1990. 1992a. b; Lee and Zipser 1993) use (2) for the
neural activity. but the evidence for its preference over (1)
has been weak until recently. Schwartz and Georgopoulos
(1987) report a weak but linear relation to movement
amplitude (distance travelled) along a cell's preferred
direction. K urata (1993) reports a covanance with amph-
tude in the premotor cortex, but only two amplitudes
were used. and so the linearity of this function cannot
be judged. In another two-amplitude task. Riehle and



Requin (1989) report that very few cells had firing rates
related to movement amplitude during a delay period.
However, three recent articles (Schwartz 1992, 1993; Fu et
al. 1993) have demonstrated significant relations to magni-
tude components in the motor and premotor cortices.
Schwartz (1992, 1993) reports that the length of the popu-
lation vector shows a significant correlation to speed in
a tracing task, and that the maximal individual neuronal
covariance with speed occurs in the cell’s preferred direc-
tion. Using a reaching task with six different movement
amplitudes, Fu et al. (1993) found that amplitude is a
significant factor in neuronal firing, with a large linear
component. They aiso state that the interaction terms
between amplitude and direction are significant, and they
suggest that in the interaction term. distance may be a gain
parameter that multiplies the cosine of the direction.

Even if individual neurons do not respond linearly to
r, but instead follow (1), it is still possible to obtain an
ensemble linear response by assigning cells with the same
preferred direction a variety of recruitment thresholds.
Evarts et al. (1983) report that cells with higher thresh-
olds are recruited at higher forces. But the large linear
range of the motor cortical neurons described by Cheney
and Fetz (1980) and the recent results from Fu et al
(1993) would seem to obviate the need for such a mecha-
nism. Either way, because cells have minimal and maxi-
mal firing rates, a recruitment encoding is transiatable to
a linear response and vice versa.

Because the cosine function multiplied by the length
of the vector is precisely the projection or inner (dot)
product function, this encoding is not limited to two
dimensions. It is extendable to n-dimensional vectors,
and so can be used for 3-dimensional motor tasks.

3 Mathematical foundations

For each cell i, we define a preferred vector (in polar
coordinates) T; = (k;, ;). Then, with v = (r, ¢) the vector
being represented. and P; the population representation
of ¥, the firing rate of neuron i is

F(P}, l)= bi+7'-‘i,‘ (3)

where the dot denotes inner product.

As noted above, the distributed dot product encoding
supports vector arithmetic. We can represent the vector
quantity v; =V, + ¥, as a population of cells in which
each cell fires at the rate

F(P;,i)=b;+ (¥; + ¥,) %, 4)
or because dot product distributes over addition,
F(P;., i) = b[ +71 '-‘i( + -;'2 '?i (5)

Because the preferred directions of cells are randomly
distributed throughout 360°, it is unlikely that in the
separate representations of v,,V,, and v,, there will be
exact matches for each preferred direction. Therefore, we
approximate (5) by a symmetric distribution around ¥,.

The probability of a neuron in P, or P, making
synaptic contact with a particular neuron in P, (where
(Py, P, and P, represent v,, V,, and v, respectively) must
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be inversely related to the angie between their preferred
directions. with 0° giving the highest probability of con-
tact and 180° the lowest. We use a gaussian relation in
our simulations. based on our observation of Kalaska et
al. (1989. Fig. 9).!

Each population P, and P, contributes to the sum P,
a bias factor equal to the average baseline B =+ T7_, bi.
thus contributing 2B together. But each neuron in P,
should have a baseline rate of yust B. so we must give P,
neurons a bias term of — B. If the connection strengths
are weighted by W', and W}, (weighting connections
from P, — Py and P, — P,. respectively). the bias term
must be —® = — (W, + H: - 1B

Vector subtraction 15 equivalent to addition of
a negated vector. Negation 1s in turn equivalent to a 180°
rotation. so the subtraction ¥; = v, + ( ~ ¥, ) can be per-
formed by inverting the probabihty of P, neurons
synapsing onto P, neurons. 1.c. a difference of preferred
directions of 180° should vield the highest probability of
a connection.

Result of computer simulations of an earlier, more
restricted formulation of this representation are de-
scribed in Touretzky et al. (1993} New computer simula-
tions are discussed in Sects 3 and 6

4 The loaded reaching tash

Because the load axes of the MI neurons recorded in
Kalaska et al. (1989) are approximately anui-correlated
with their goal axes. these cells can be interpreted as
contributing to a population of cells performing vector
subtraction using the mechanism described in the pre-
vious section. We call this population performing vector
subtraction P,,.? Because the relation of (tonmic pyra-
midal) MI neurons to static force 15 sigmoidal with
a large linear range. we suggest that force is the magni-
tude component of Py,

in order to perform a vector subtracuon. there must
be two input signals: a goal signal and a load signal.? In
our model. we place these two signals 1n two populations
P; and P, (Fig. 2)

' Although this connection structure has not been observed between
neuronal populations. a connection structure that 1s a funcuon of
preferred directions has been observed within a neuronal population
{Georgopouios et al. 1993

2 Ajthough it 1s not necessary that these populations be 1n different
cortical areas. onily that they not share component neurons. for simphi-
aity we will locate them in separate cortical areas. Certainly there are
cells in M1 which do not contnbute 10 P,,. Only 41% of celis in Ml
show a correlation to static load {Werner ct al. 1991). Similarly. there
are cells 1n other coruical areas which could contnbute 10 Py,. For
example, 26% of cells in PMd show a response to load. and 1n some
areas (notably PTNs and their neighbors) the proportion approaches
the 41% seen 1n M1 (Werner et al 1991). Ali we are suggesting is that
the celis recorded by proporuon approaches the 41% seen in Ml
(Wemner et al. 1991). Ali we are suggesting 1s that the celis recorded by
Kalaska et al. (1989) contnbute to the population P,. Analogous
qualifications apply to P, (PMd) and Py (area 5).

3Both G and L will be transiormed by interaction torques (Hollerbach
and Flash 19821, so the vector subtraction must be performed after both
vectors have been transiormed into their shoulider effects.
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Fig. 2. Our mapping between populations and vectors required by the
loaded reaching task

Because there is a population of shoulder-related
neurons in PMd that do not show an individual load
response but do show a cosine response to target direc-
tion, we place this population in P;. As mentioned above.
these PMd neurons tend to show a change in activity
prior to either MI or area 5. Initial accleration. initial
speed, amplitude of movement, and force are all linearly
correlated (Flash and Hogan 1985), so no matter which
quantity forms the magnitude component of P;, the
magnitude component of P,, can be force.

We know of no neuronal recordings that identify
members of P, (i.e. neurons showing only a load re-
sponse), and we offer the existence of such neurons as
a prediction of our theory.

We also propose that the population of area 5 cells
recorded in Kalaska et al. (1990) are members of a_popu-
lation Pg,, performing the vector addition M + L
(Fig.2). Because M =G — L, the two L components
should cancel. If the spread to the input distributions
[standard deviation o of the gaussian in (7) below] were
0. then the two L components would balance exactly, and
individual neurons would not show a load response. But
because the input to each neuron in P;, is a finite
random selection from two gaussian distributions. the
probability is small that every component of the load
signal from the corollary discharge from P,, will be
exactly balanced by the load signal from P,. The two
load signals do not exactly cancel out, predicting a small
(but non-zero) individual load response uncorrelated
with the neuron’s goal axis. This was observed in
Kalaska et al. (1990).

5 Details of the simulations

Our simulations use a simple integrate and fire neuron
model. Each cell has a resting potential of 0 and a thresh-
old ;. (The threshold varies from cell to cell but is
assumed to have a gaussian distribution around 1 with
a variance of 0.5.)

The cell integrates synaptic input linearly over time,
and when the internal sum passes threshold, it fires

a spike. A spike lasts for one time step. after which the cell
enters a refractory state. modeled by a higher threshold
which decays exponentially over time until the threshoid
returns to normal. That 1s

6;=6"+ 0F-exp(— 14-1;) (6)

where 87 is a minimum threshold, and 0! is a refraction
term. so that the maximum threshoid for cell i is 07" + 0F.
The constant 1, controls the rate of decay. and ¢, is the
amount of time since the most recent spike. During the
refractory period. cells continue to integrate inputs. If the
internal sum surpasses the high threshold. the cell spikes
and starts a new refractory cycle. We add noise to a cell
by adding or subtracung a percentage of the average
baseline B to its activation at each time step.

Each population 1s made up of a number of cells (in
our case 1500. sece Table 1)* with preferred directions
scattered randomly through 360° and baseline and gain
parameters randomly chosen within a guassian (using the
polar method. see K.nuth 1969, pp. 104, 113) 50 as to fit the
known data (Schwartz et al. 1988; Fig. 3). We force b, and
kito be > 1.but we do not constrain them to be integral.
Some neurons do have & > b (Schwartz et al. 1988). For
such neurons. h, + A,-rcosi® — ¢;) < 0 for certamn ¢.
Our abstract pyramidal cell naturally rectifies the firing
rate to 0. The rectified cosine function is an approxima-
tion to a true cosinc function, and if the rauo kb 1s not
too large, then the vector arithmetic computations still
produce good results.

In our simulations. populations can play one of two
roles. Input populations are assumed to fire spikes with
a frequency equal to F(P;. i) in (3). This is simulated by
adding F(P;. 1) a1 1o each cell’s internal sum each time
cycle. A cell spikes when 1t passes threshold. Cells in
input popuiations refract as described above.

Summation populations 1ake synaptic input from two
other populauons. which can be of either type. if celi i is
in a populauon that forms an input to the summation
population. and cell / 15 1n the summation popuiation,
then the probabihity of cell ¢ forming a synapse onto cell
jis

G(8¢;;) = n-expi= 3¢, — u)?/a?) (7)

where x and ¢ are constants. 4¢,; is the angle between ¢,
and ¢, and G(d9,,) has a gaussian distribution.

For vector addition. the peak u of G(4¢,;) for both
input populations 1s at 4¢,; = 0°: for vector subtraction.
the peak for the minuend 1s at 0°, while the peak for the
subtrahend 1s at 180 .

In order 1o implement the necessary bias factor — @,
at every clock cycle the net activation of each cell in the
summaton population 1s decreased by £ - 4¢. If a popu-
lation forming an input to a summation population is

* We require such a large number of neurons in order to both achieve
a high accuracy and replicate the distribution of b and & found in MI
(Schwartz et al. 1988). If this constraint is relaxed, the model is accurate
with only a few hundred neurons.



Table 1. Simulation parameters

Cell parameters:

Number of cells in a population 1500
Mean baseline (b;) 10 spikes/s
Baseline variance 10 spikes/s
Minimum baseline 1 spike/s
Mean gain (k;) 8 spikes/s
Gain variance 8 spikes/s
Minimum gain 1 spike/s
Correlation between gain and baseline 09

Mean threshoid (6;) 1
Threshold variance 0
Minimum threshold 0.1

Theta fali-off [7,, (6)] 0.001
Noise 5%

Time step (A1) 0.1 ms
Minimum spike rate 0 spikes/s
Maximum spike rate 100 spikes/s
Connection parameters :

Connection probability [«, (7)] 1.0
Connection variance {o, (7)] (P; = Py) 2.5 rad
Connection vanance [s, (7)] (P, ~ Py) 25 rad
Connection variance {g, (7)] (Py — P;..) 0.125 rad
Connection variance {o, (7)] (P, - Pg..) 0.125 rad
Connection weight (W5, ) 2
Connection weight (W, ..) 2
Connection weight (Wy¢..) 32
Connection weight (W, _¢.,) 1

weighted by W,, then the weights of the incoming
synapses are set to W, /|%,(j)| where |.#,(j)| is the size
of the set of neurons synapsing from population m onto
neuron j. We have not modeled synaptic or axonal
delays.

In order to determine the represented vector V' =
(¥, ¢') (an approximation to v = (r, ¢)], we calculate ¢’
using the vector hypothesis (Georgopoulos et al. 1988),
and r’ by rectification and integration. We rectify the
wave by subtracting the average baseline B from each
neuron’s frequency (calculated by averaging interspike
intervals), divide by the average gain K = iyn_ ki, inte-
grate over all neurons, and divide by one-half the number
of neurons in the population. This is an approximation to
the integral of half of the cosine wave, which is r'.

Our results show that vector addition and subtrac-
tion can be performed by spiking neurons very quickly.
There is zero latency beyond transmission delays.

6 Results

Our simulations are designed to explore certain aspects
of the theory diagrammed in Fig. 2, specifically, whether
we can match the resuits of Kalaska et al. (1989, 1990)
'that (a) the load axes vary from 180° off the goal response
in the MI population, while in the population in area
5 load axes are uncorrelated with goal axes, and (b) the
average load response of the area 5 cells is smaller
than the average goal response of those cells, while the

Jii

magnitudes of the load and goal responses of the MI cells
differ less. All of the simulations were run using the
parameters in Table 1, chosen to match the data of
Schwartz et al. (1988), see Fig. 3. We should point out,
though, that the proposed architecture is quite robust
and gives good accuracy and precision over a large range
of parameter values.

6.1 Load axes and preferred goal directions

The observation that not all load and goal axes in the MI
population recorded by Kalaska et al. (1989) differ by
exactly 180° is explainable by sampling effects in the
connection pattern between two populations. If the con-
nection pattern is stochastic, then the input selection will
not be entirely balanced around 180°. Any combination
of high variance ¢ and low connection probability x will
produce results like that of Kalaska et al. (1989). In the
Appendix, we give a method for determining the load and
goal axes of a summation neuron in Py, given its connec-
tion matrix, and in this section we use the method to
demonstrate the similarity between our simulations and
the results of Kalaska et al.

The derived goal axis, y; of a summation neuron
j receiving input from P and P, is defined as the prefer-
red vector when L = 0. See the Appendix for the deniva-
tion J;(j) is the input population to cell j from P;.

= 2 whE (8)
ieSq(f)

The derived load axis 4; is defined as the preferred vector
when G = 0. It is calculated by analogy to y,

ieSf(j)

If one rotates the load axes so that their correspond-
ing goal axes are at 0°. one can see the approximate
anti-correlation of the goal and load axes. This is the
information contained in Fig. 9 of Kalaska et al. (1989).
Our Fig. 4 compares our simulation results with the data
reported in that figure.

One can calculate 4; for cell jin P, by summing the
contributions from 4, for cells in P,, and %, for cells in P,
that synapse onto cell j. 3; for cell j in P;, can be
calculated from the influence of 3; for cells in P,, that
synapse on cell j. Figure 5 compares our simulation
results with the data reported in Kalaska et al. (1990).

6.2 Magnitudes of load and goal responses

A higher proportion of cells are sensitive to load in Ml
than in area 5 (Werner et al. 1991; Kalaska and Cram-
mond 1992; Kalaska et al. 1992), and those cells that do
respond to load in area 5 have a smaller response to load
than cells in M1 (Kalaska 1991). Our theory suggests that
this is because the population of cells in area 5 recorded
in Kalaska et al. (1990) are part of a population
Pg.. which is performing the calculation M + L, or since
M= G -L, that Pg.. is calculating (G — L) + L. A cell
in Pg.,, will be sensitive to load if and only if the inputs
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Fig.4. Comparison of load axes with respect to goai axes for Ml and Py,
showing distribution of angular difference between preferred directions
(goal axis) and maximum response to load (load axis). Left data from
Kalaska et al. (1989), used with permission of the author and publisher.

from P, and the load component of the corollary dis-
charge from P, fail to cancel.

We can analytically determine the response of a cell
to load or goal by examining the lengths of 4; and ¥,
respectively (not shown in Figs. 4 and 5), e.g., a cell with
a long load axis has a stronger gain with respect to L and
thus a stronger response to it.

In our simulations, we can adjust the weights of the
connections between P; and P,,, between Py, and Pg.,, as
well as between P, and Py and P, and P;.;. We can also
adjust the connection variance ¢ of the gaussian G(d¢;)
for each of these connection matrices. There are not
enough data to constrain a model with this many para-
meters, so we showed that our simulations perform accu-
rate vector arithmetic over a wide range of parameters and
chose a set of parameters that replicated the data well.

As long as the strength of the load input from the
corollary discharge from P,, and that of the load input
from P, into Pg., are equal, the two loads will balance,
and the average response to load from P;., neurons will
be small. On the other hand, because there is no negative
G to counter-balance the G signal transmitted through

Fig. 3A-C. Comparison between baseline and gain distributions in
data recorded from MI (568 celis, left) and P, in our simulation (1500
celis, right). Top, comparison of b; (baseline). Middle. distribution of k,
(gain). Bottom, correlation of k, and b,. Left-hand graphs are from
Schwartz et al. (1988), used with permission of the author and publisher
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Right, output of our simulations. Note that many cells have close to
a 180° difference between goal and ioad axes. but for a significant percent-
age the difference 1s much lower. Left, 262 cells: right, 250 cells chosen
randomly from 1500. Right bar graph 1s percentage over all 1500 ceils

the corollary discharge from P,,, the neuronal response
of P; , neurons to G will be of normal magnitude.

The parameters in Table i include small variances for
the input connecttions P, ; to better balance the res-
pon-ses to load from Py, and from P,. The higher weight
for the connecuon from P, to P; , 1s required because
the negative ioad signal 1s diluted by passing through P,,.

We can see the differential response to G and L in
Pg., across a wide range of parameters. Given the para-
meters in Table |. our simulations show that the ratio
between goal and load responses in Py is L:1, but in
Pg., the ratio 1s 2.4: 1. Although these results are a func-
tion of the parameters used. for a broad range of values
for Wy.¢.. and B, _ .. the goal response in Pg., is
larger than the ioad response.

6.3 Varyving parameiers: robustness

Although we report parameters in this paper tuned to
match the biological data (see Fig. 3-5). our simulations
showed fast, accurate. and precise answers over a large
range of values. The parameters in Table 1 enable vector
addition with an accuracy of better than +7.5%. The -
answers are most accurate when B > K > 0. When the
connection probability {x of the gaussian G(4¢;;) in (7)] is
higher or the connection vanance (g) is lower, the variation
in the difference between load and goal axes in Py, is much
less, and the accuracy of the vector arithmetic increases.
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Fig.5. Comparison of load axes with respect to goal axes for area 5 and
Pg.1. Left, data from Kalaska et al. (1990). used with permission of the
author and publisher. Right, output of our simulations. Left, 100 cells;

7 Other interpretations

7.1 MI: interaction torques

Flash and Mussa-Ivaldi (1990) have shown that the
stiffness of the human arm is not equal in all directions.
but rather that it is stronger along the axis passing
through the hand and shoulder than perpendicular to
this axis. Kalaska et al. (1989} do. in fact, report that the
length of the population vector in MI compensating for
the load is shorter when compensating for loads towards
and away from the body than when compensating for
side-to-side loads. In our model we do not require L to be
defined by the external load, but by the load felt at the
shoulder. (The recordings are in shoulder-controlling
populations.)

Hollerbach and Flash (1982) demonstrate that be-
cause of interaction torques between the elbow and
shoulder joints, forces opposing at the hand are not
necessarily opposing at the shoulder. It is possible, there-
fore, that the reason the load and goal axes in the MI
population do not differ by exactly 180° is because the
load-countering and hand-motion effects of the muscle
units they innervate do not exactly differ by 180°.

If this is the biological reason, then it is still possible
to interpret the response functions of MI neurons as

- 300 ~0 v
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a vector subtraction using distributed dot products. but
the use of this interpretation becomes questionable.

We can design an experiment to differentiate these
hypotheses. If only one joint is involved in the experi-
ment, then the load and goal vectors are directly oppo-
site. If the spread of the distrnibution of load and goal axes
reported by Kalaska et al. is due entirely to interaction
torques. it should disappear.

What advantage could there be in such a spread?
Because the number of neurons synapsing on a summa-
tion neuron increases monotonically as ¢ (7) increases,
allowing a non-zero spread expands the input population
and improves the frequency summation properties of the
summation neuron. Essentially, a non-zero ¢ allows the
summation neuron to use the law of large numbers to
average out discretization effects in its input.

In a one-dimensional elbow experiment. recording
from SMA. ML, and putamen, Crutcher and Alexander
(1990) report three classes of neurons: ‘directional’,
‘muscle-like’, and *other’. Directional cells were defined as
those which showed a preference for flexion or for exten-
sion but did not show a relation to loads; muscle-like cells
showed a preference for direction and for loads opposite
to their direction; other ceils were those which showed
a preference for direction and for load assisting move-
ments in their preferred direction. Although interpreting



the timing results from these experiments is beyond the
scope of this paper, directional cells could either truly
have no load response or their ioad axes could be perpen-
dicular to their preferred directions. Muscle-like cells
could be explained by load axes opposite their preferred
directions, and other cells by load axes parallel to their
preferred directions. Our model shows that this third
class of cells does not have to be interpreted as anomai-
ous; they could be generated by the same connectivity
distribution as the other two classes.

7.2 Burnod et al.’s model

Caminiti and his colleagues have reported (1990a, b,
1991) that the encoding of the direction of arm movement
(which we call G) varies as a function of the rotation of
the arm in shoulder-centered coordinates. Our theory is
compatible with this: the subtraction we are proposing
occurs after the rotation has been compensated for. In
fact, their model (Burnod et al. 1990, 1992a, b) could be
the source of G because their output representation has
the required mathematical properties to be interpreted as
a distributed dot product representation.

8 Predictions

In this section, we detail our predictions: that a popula-
tion of neurons in arm-related areas of PMd will be
found to be connected to another population of arm-
related neurons in MI so that the synaptic efficacy is
a function of the difference in preferred directions, that
this second population will be found to be connected to
a third population of arm-related cells in area 5 with
a similar connection structure, and that a population
representing the load signal L exists somewhere in the
brain with connections to the arm-populations in MI and
in area 5.

8.1 Connection functions

Georgopoulos et al. (1993) used timing difference distri-
butions to determine the connection strength within
a neu-ronal population in MI. They found that the prob-
ability of connection is inversely proportional to the
similarity of the two preferred directions. Our model
requires this property between neuronal populations, in
particular, between P, and P, between P; and P,,
between Py and Pg,;, and between Py, and P;... We have
identified neurons which could contribute to the popula-
tions Pg, Py, and Pg;.,, which makes this prediction
directly testable.

82 P,

The load vector L must be represented in some popula-
tion of cells P,. This population will have to be separated
from P, either in space or in time. Kalaska et al. (1989)
report that during the center hold time, the cells show
a strong load response, implying that the separation
might be in time. Other possibilities include the thalamus,
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somatosensory cortices, or cerebellum. The motor stretch
reflex is mediated through the motor cortex (a) directiy,
(b) via the cerebellum, and (c) via the somatosensory
cortices. See Hepp-Reymond (1988) for a review. Fortier
et al. (1989) have shown cosine response functions in the
cerebellum.

9 Discussion: hierarchical vs parallel processing

An overly simplistic interpretation of our model is that
the motor cortex computes a motion command by sub-
tracting the load vector from the goal vector in a purely
feed-forward process. We make no such claim. Cortical
areas are typically reciprocally connected, and within an
area there are many intnnsic connections which must
play some role in processing. Whether the primate motor
system is primarily hierarchical or heterarchical in nature
is as yet unreasoived. See Alexander et al. (1992), Fetz
(1992), Johnson (1992), Kalaska et al. (1992), Kalaska and
Crammond {1992) for reviews of this issue.

Although our paper talks in terms of cells ‘perform-
ing’ specific arithmetic operations such as M<=G — L.
all we are really claiming is that a vector arithmetic
relationship holds among certain populations. The
causal basis for this relationship need not be nearly as
simple as the feed-forward circuitry used in our simula-
tions. However. the preferred directions of cells within
a population representing a vector quantity must in some
way determine their connectivity with cells in other such
populations.

We have offered a way of interpreting cell responses
in MI and area 5 in terms of vector arithmetic relations.
Cells with cosine responses in the reaching task have
been found throughout the motor system (PMd:
Caminiti et al. 1990a. 1991; MI: Schwartz et al. 1988; area
5: Kalaska et al. 1989; cerebellum: Fortier et al. 1989).
Vector arithmetic would be useful in many aspects of
movement and cognition.
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Appendix

In this section, we derive the analytical equation for the
goal axis y; for Py, summation neurons. The equations for
the load axis 4; for Py neurons and for y; and 4; for
P;., neurons are analogous.

In order to simplify the following equations, we define
wi; = W, /|SL(j)I. where w}; is the synaptic efficacy be-
tween cell i in P, and cell j in P,,, ¥, is the (constant)
connection weight between populations P, and Py, and



slo

| FL(J)]is the cardinality of the set of cells in P, synapsing
on cell j. We define w’ analogously. We also define
=(W,+ Wz —1)B.
Thus. we can write the frequency of neuron j in Py, as:

F(PMs.]) -3+ Z “ F(PL,I)
i€SLj)
+ Y wieF(Pg,i) (10)
i€S{j)
and by substituting in (3)
F(Py,j)=—RB + Z w -« (b; +L- °T;)
LESL(f)
+ Y wibi+G-1) (11)
1€S6(J)

We can transform this equation by splitting the summa-
tions:

F(Py,j)=—-B+ Y wkb+ ¥

PESL(]) iesel))
+ Y whL-zi+ Y wi-Gro (12
teSilj) 1€}
By (3):
F(Py, j)=b; + M-%, (13)

Thus, by substitution, we have

bi+M-%= - @ + X owhbi+ Y owieb,
et TYAN
+ Z W,!'j'i-a’-ii+ Z wfj-a-?i (14)
iesft)) 1€S61j)

When L, G, and M are all zero. we get

bi=—-@+ Y wh-b+ Y. wieb, (15)
i€SL(j) 1€56111

Because b; is a constant, this gives the value for b;
even when the vectors are non-zero. We can subtract b
from (14) to get

= Yy wh L7, + Y owie G-1, (16)
1€J(j) t€SglJ)
The goal axis, 7j, 18 defined as the preferred vector

when L = 0. When L = 0. the summation based on its
dot product is also 0, and we get

M3= ¥ wi-G.3 (17)
i€sq(j)
or
M-},=f}- Y wieg (18)
iesfg(j)

Since M =G when L = 0, we have
3= Y w,-Gj-'i-,» (19)
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In other words, the goal axis of a P,, summation

neuron is the weighted average of the preferred vectors of
its input population from P;.

References

Alexander GE. DeLong MR. Crutcher M (1992) Do cortical and basal
ganglionic motor areas use ‘motor programs’ to control move-
ment? Behav Brain Sci 15:656—665

Bullock D. Grossberg S (1988) Neural dynamics of planned arm move-
ments: emergent invariants and speed-accuracy properties during
trajectory formation. Psychol Rev 95:49-90

Burnod Y. Caminiti R. Johnson P. Grandguillaume P, Otto [ (1990)
Model of visuomotor transformations performed by the cerebral
cortex to command arm movements at visual targets in the 3-d
space. In: Eckmiller R {ed) Advanced neural computers. Elsevier,
New York, pp 3341

Burnod Y. Grandguiliaume P, Otto I. Ferramna S. Johnson P. Caminiti
R (1992a) Visuomotor transiormations underlying arm movements
toward visual targets: a neural network model of cerebral cortical
operations. J Neurosci 12:1435-1453.

Burnod Y, Grandguillaume, P. Otto 1. Johnson P, Caminiti R (1992b)
Reaching toward visual targets. u. Computational studies. In:
Caminiti R. Johnson P. Burnod Y (eds) Control of arm movement
in space. Experimental brain research, vol 22. Springer Berlin
Heidelberg New York. pp 159-174

Caminiti R. Johnson P. Burnod Y. Galli C. Ferraina S (1990a)
Shift of preferred directions of premotor cortical cells with arm
movements performed across the workspace. Exp Brain Res
83:228-232

Caminiti R. Johnson P. Urbano A (1990b) Making arm movements
within different parts of space: dvnamic aspects in the primate
motor cortex. J Neurosct 10:2029 2058

Camuniti R. Johnson P. Galli C. Ferraina S. Burnod Y (1991} Making
arm movements within different parts of space: the premotor and
motor cortical representation of a coordinate system for reaching
to visual targets. J Neurosci 11.1182-1197

Cheney P, Fetz E (1980) Funcuonal classes of primate cortico-
motoneuronal cells and therr relation to active force. J Neuro-
physiol 44:773-791

Crutcher M D, Alexander GE (1990) Movement-related neuronal activ-
ity selectively coding either direcuon or muscle pattern in three
motor areas of the monkey. J Neurophysiol 64:151-163

Evarts EV, Fromm C, Kroller J. Jennings VA (1983) Motor cortex
control of finely graded forces J Neurophysiol 49:199-1215.

Fetz E (1992) Are movement parameters recognizably coded in the
activity of single neurons? Behav Bramn Sci 15:679-690

Flash T. Hogan N (198%) The coordination of arm movements: an
expenimentally confirmed mathematical model J Neurophysiol
5:1688-1703

Flash T. Mussa-lvaldi F (1990 Human arm stifiness charactenstics
duning the maintenance of posture. Exp Brain Res 82:315-326

Fortier P. Kalaska J. Smith A (1989 Cerebellar neuronal activity
related to whole-arm reaching movements in the monkey.
J Neuro-physiol 62:198-211

Fu Q, Suarez J. Ebner T (1993) Neuronal specification of direction and
distance dunng reaching movements in the superior precentral
premotor area and pnmary motor cortex of monkeys. J Neuro-
physiol 70:2097- 2116

Georgopoulos A, Carmimii R. Kalaska J. Massey J (1983) Spaual
coding of movement: a hypothesis concerning the coding of move-
ment direcuon by motor cortical populations. Exp Brain Res
(Suppl) 7:327-336

Georgopoulos A, Kettner R, Schwartz A (1988) Primate motor cortex
and free arm movements to visual targets in three-dimensional
space. it. Coding of the direction of movement by a neuronal
population. J Neurosc1 8:2928- 2937

Georgopoulos A. Ashe J, Smyrmis N. Taira M (1992) The motor cortex
and the coding of force. Science 256:1692-1695

Georgopoulos A, Taira M. Lukashin A (1993) Cognitive neurophysiol-
ogy of the motor cortex. Science 260:47-52

Hepp-Reymond M (1988) Functional organization of motor cortex and
its paruicipation in voluntary movements. In: Steklis H, Erwin
J (eds) Neurosciences (Comparative Primate Biology, Vol 4) Liss,
New York

Hollerbach JM. Flash T (1982) Dynamic interactions between limb
segments during planar arm movement. Biol Cybern 44:67-77



Johnson P (1992) Toward an understanding of the cerebral cortex and
reaching movements: a review of recent approaches. In: Caminiti
R. Johnson P. Burnod Y (eds) Control of arm movement in space.
Experimental Brain Research. vol 22. Springer. Berlin Heidelberg
New York, pp 199-262

Kalaska J (1991} What parameters of reaching are encoded by dis-
charges of cortical cells? In: Humphrey D. Freund HJ (eds) Motor
control: concepts and issues. Wiley, New York, pp 307-330

Kalaska J. Crammond D ( 1992) Cerebral cortical mechanisms of reach-
Ing movements. Science 255:1517-1523

Kalaska J. Cohen D, Hyde M, Prud’homme M ( 1989) A comparison of
movement direction-related versus load direction-related activity
in primate motor cortex, using a two-dimensional reaching task.
J Neurosci 9:2080-2102

Kalaska J, Cohen D, Prud’homme M, Hyde M (1990) Parietal area
5 neuronal activity encodes movement kinematics not movement
dynamics. Exp Brain Res 80:351-364

Kalaska J, Crammond D, Cohen D, Prud’homme M. Hyde M (1992)
Comparison of cell discharge in motor, premotor, and parietal
cortex during reaching. In: Caminiti R. Johnson P. Burnod Y (eds)
Control of arm movement in space. Experimental Brain Research.
vol 22. Springer. Berlin Heidelberg New York, pp 129-146

Knuth D (1969) The art of computer programming: seminumerical
algorithms, Vol 2. Addison-Wesiey, Reading, Mass

Kurata K (1993) Premotor cortex of monkeys: set- and movement-
related activity reflecting amplitude and direction of wrist move-
ments. J Neurophysiol 69:187-200

317

Lee SJ. Zipser D (1993} A network model of direction tuning and
mental rotation. Soc Neurosci Abstr 19:1207

Riehle A. Requin J (1989) Monkey primary motor and premotor
cortex: single-cell acuvity related to prior information about direc-
tion and extent of an intended movement. J Neurophysiol
3:534-549

Schwartz A. Georgopoulos A (1987) Relations between the amplitude
of 2-dimensional arm movements and singie cell discharge in
primate motor cortex. Soc Neurosci Abstr 13:244

Schwartz A, Kettner R. Georgopoulos A (1988} Pnmate motor cortex
and free arm movements 0 visual targets in three-dimensional
space. i. Relations between single cell discharge and direction of
movement. ] Neurophysiol 8:2913-2927

Schwartz A (1992) Motor cortical activity duning drawing movements:
single-unit activity  dunng sinusoid tracing. J Neurophysiol
68:528-541

Schwartz A (1993) Motor corucai acuivity during drawing movements:
population representation during sinusoid tracing. J Neurophysiol
70:28-36

Touretzky D. Redish AD. Wan H {1993) Neural representation of space
using sinusoidal arravs. Neural Comput 5:869-884

Werner W, Bauswe:n E. Fromm C (1991) Statc firing rates of premotor
and primary motor cortical neurons associated with torque and
joint position. Exp Brain Res 86:293-302

Wise SP (1993) Monkev motor cortex: movements. muscles. moto-
neurons and metncs. Trends Neurosc |6:46-49



	img353.pdf
	img354.pdf
	img355.pdf
	img356.pdf
	img357.pdf
	img358.pdf
	img359.pdf
	img360.pdf
	img361.pdf
	img362.pdf
	img363.pdf

