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The recognition of visual objects is a fundamental, frequently
performed cognitive task with two essential requirements, invari-
ance and specificity. For example, we can recognize a specific face
among many, despite changes in viewpoint, scale, illumination
or expression. The brain performs this and similar object recog-
nition and detection tasks fast1 and well. But how?

Cells found in macaque inferotemporal cortex (IT)2, the high-
est purely visual area in the ventral visual stream thought to have
a key role in object recognition3, are tuned to views of complex
objects such as a faces: they discharge strongly to a face but very
little or not at all to other objects. A hallmark of these cells is the
robustness of their responses to stimulus transformations such
as scale and position changes. This finding presents an interesting
question: how could these cells respond differently to similar
stimuli (for instance, two different faces) that activate the retinal
photoreceptors in similar ways, but respond consistently to scaled
and translated versions of the preferred stimulus, which produce
very different activation patterns on the retina?

This puzzle is similar to one presented on a much smaller scale
by simple and complex cells recorded in cat striate cortex4: both
cell types respond strongly to oriented bars, but whereas simple
cells have small receptive fields with strong phase dependence,
that is, with distinct excitatory and inhibitory subfields, complex
cells have larger receptive fields and no phase dependence. This
led Hubel and Wiesel to propose a model in which simple cells
with neighboring receptive fields feed into the same complex cell,
thereby endowing that complex cell with a phase-invariant
response. A straightforward (but highly idealized) extension of
this scheme would lead from simple cells to ‘higher-order hyper-
complex cells’5.

Starting with the Neocognitron6 for translation-invariant
object recognition, several hierarchical models of shape process-
ing in the visual system have subsequently been proposed to
explain how transformation-invariant cells tuned to complex
objects can arise from simple cell inputs7,8. Those models, how-
ever, are not quantitatively specified, or lack comparisons with
specific experimental data. Alternative models for translation-
and scale-invariant object recognition are based on a controlling
signal that either appropriately reroutes incoming signals, as in

the ‘shifter’ circuit9 and its extension10, or modulates neuronal
responses, as in the ‘gain-field’ models for invariant recogni-
tion11,12. Although cells in visual area V4 of macaque cortex can
show an attention-controlled shift or modulation of their recep-
tive fields in space13,14, there is still little evidence that this mech-
anism is used to perform translation-invariant object recognition
or whether a similar mechanism also applies to other transfor-
mations (such as scaling).

The basic idea of the hierarchical model sketched by Perrett
and Oram7 was that invariance to any transformation (not just
image-plane transformations as in the case of the Neocognitron6)
could be built up by pooling over afferents tuned to various trans-
formed versions of the same stimulus. Indeed, it was shown ear-
lier15 that viewpoint-invariant object recognition was possible
using such a pooling mechanism. A learning network (Gaussian
RBF) was trained with individual views of a complex, paperclip-
like object rotated around one axis in three-dimensional space
to invariantly recognize this object under rotation in depth. In
the network, the resulting view-tuned units fed into a view-
invariant unit; they effectively represented prototypes between
which the learning network interpolated to achieve viewpoint-
invariance.

There is now quantitative psychophysical16–18 and physiologi-
cal evidence19–21 for the hypothesis that units tuned to full or par-
tial views are probably created by a learning process, and that the
view-invariant output may be explicitly represented by a small
number of individual neurons19,21,22. In monkeys trained on a
restricted set of views of unfamiliar target stimuli resembling
paperclips and subsequently required to recognize new views of
‘targets’ rotated in depth among views of a large number of sim-
ilar ‘distractor’ objects, neurons in anterior IT selectively respond
to the object views seen during training17,21. This design avoids
two problems associated with previous studies investigating view-
invariant object recognition. First, by training the monkey to rec-
ognize novel stimuli instead of objects with which the monkey is
quite familiar (faces, for example), it is possible to estimate the
degree of view-invariance derived from just one view of the object.
Moreover, using a large number of distractor objects allows view-
invariance to be defined with respect to the distractor objects.
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This is a key point, because the VTU’s (view-tuned unit’s)
invariance range can be determined only by comparing a
neuron’s response to transformed versions of its preferred
stimulus with responses to a range of (similar) distractor
objects—just measuring the tuning curve is not sufficient.

After training with just one object view, these are cells show-
ing limited invariance to three-dimensional rotation around the
training view (Fig. 1)21, consistent with the view-interpolation
model15. Moreover, the cells can also be invariant to translation
and scale changes, even though the object was previously pre-
sented at only one scale and position.

These data put in sharp focus and in quantitative terms the
question of the circuitry underlying the properties of the view-
tuned cells. Although the original model describes how VTUs
can be used to build view-invariant units15, it does not specify
how the view-tuned units arise. Thus, a key problem is to explain
in terms of biologically plausible mechanisms, the VTUs’ invari-
ance to translation and scaling obtained from just one object
view. This invariance corresponds to a trade-off between selec-
tivity for a specific object and relative tolerance (robustness of
firing) to position and scale changes. Here, we describe a model
that conforms to anatomical and physiological constraints, repro-
duced the invariance data described above and made predictions
for experiments on the view-tuned subpopulation of IT cells.
Interestingly, the model was also consistent with data from exper-
iments regarding recognition in context23 or the presence of mul-
tiple objects in a cell’s receptive field24.

RESULTS
The model is based on a simple hierarchical feedforward archi-
tecture (Fig. 2). Its structure reflects the assumption that, on
the one hand, invariance to position and scale and, on the other
hand, feature specificity must be built up through separate
mechanisms. A weighted sum over afferents coding for sim-
pler features, that is, a template match, is a neuronal transfer
function suitable for increasing feature complexity. But does
summing over differently weighted afferents also increase
invariance?

From the computational point of view, the pooling mecha-
nism should produce robust feature detectors, that is, it should
permit detection of specific features without being confused by

clutter and context in the receptive field. Consider a complex cell,
as found in primary visual cortex, which preferentially responds
in a phase-invariant way to a bar of a certain orientation4. Accord-
ing to the original complex-cell model4, a complex cell may be
seen as pooling input from an array of simple cells at different
locations to generate its position-invariant response.

There are two alternative idealized pooling mechanisms,
linear summation (‘SUM’) with equal weights (to achieve an
isotropic response), and a nonlinear maximum operation
(‘MAX’), where the strongest afferent determines the postsy-
naptic response. In both cases, the response of a model com-
plex cell to a single bar in the receptive field is position
invariant. The response level would signal similarity of the
stimulus to the preferred features of the afferents. Consider
now the case of a complex stimulus, like a paperclip, in the
visual field. In the case of linear summation, responses of a
complex cell would be invariant as long as the stimulus stayed
in the cell’s receptive field, but the response level now would
not allow one to infer whether there actually was a bar of the
preferred orientation somewhere in the complex cell’s recep-
tive field, as the output signal is a sum over all the afferents.
That is, feature specificity is lost. In the MAX case, however,
the response would be determined by the most active afferent
and, hence, would signal the best match of any part of the stim-
ulus to the afferents’ preferred feature. This ideal example sug-
gests that the MAX mechanism provides a more robust
response in the case of recognition in clutter or with multiple
stimuli in the receptive field (see below). Note that a SUM
response with saturating nonlinearities on the inputs seems
too ‘brittle’ since it requires case-by-case adjustment of the
parameters, depending on the activity level of the afferents.

Equally critical is the inability of the SUM mechanism to
achieve size invariance: suppose that the afferents to a ‘com-
plex’ cell (a cell in V4 or IT, for instance) showed some degree
of size and position invariance. If the ‘complex’ cell were now
stimulated with the same object but at subsequently increas-
ing sizes, more afferents would become excited by the stimu-
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Fig. 1. Invariance properties of one neuron (modified from
Logothetis et al.21). The figure shows the response of a single cell
found in anterior IT after training the monkey to recognize
paperclip-like objects. The cell responded selectively to one view
of a paperclip and showed limited invariance around the training
view to rotation in depth, along with significant invariance to
translation and size changes, even though the monkey had only
seen the stimulus at one position and scale during training. 
(a) Response of the cell to rotation in depth around the pre-
ferred view. (b) Cell’s response to the ten distractor objects
(other paperclips) that evoked the strongest responses. The
lower plots (c, d) show the cell’s response to changes in stimulus
size (asterisk shows the size of the training view) and position
(using the 1.9° size), respectively, relative to the mean of the ten
best distractors. Defining ‘invariance’ as yielding a higher
response to transformed views of the preferred stimulus than to
distractor objects, neurons showed an average rotation invari-
ance of 42° (during training, stimuli were actually rotated by ±15°
in depth to provide full 3D information to the monkey; there-
fore, the invariance obtained from a single view is probably
smaller), translation and scale invariance on the order of ±2° and
±1 octave around the training view, respectively (J. Pauls, per-
sonal communication).
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lus (unless the afferents showed no overlap in space
or scale); consequently, excitation of the ‘complex’
cell would increase along with the stimulus size,
even though the afferents show size invariance!
(This is borne out in simulations using a simplified
two-layer model25.) For the MAX mechanism, how-
ever, cell response would show little variation, even as stimulus
size increased, because the cell’s response would be determined
just by the best-matching afferent.

These considerations (supported by quantitative simulations
of the model, described below) suggest that a nonlinear MAX
function represents a sensible way of pooling responses to achieve
invariance. This would involve implicitly scanning (see Discus-
sion) over afferents of the same type differing in the parameter
of the transformation to which responses should be invariant
(for instance, feature size for scale invariance), and then select-
ing the best-matching afferent. Note that these considerations
apply where different afferent to a pooling cell (for instance, those
looking at different parts of space), are likely to respond to dif-
ferent objects (or different parts of the same object) in the visu-
al field. (This is the case with cells in lower visual areas with their
broad shape tuning.) Here, pooling by combining afferents would

mix up signals caused by different stimuli. However, if the affer-
ents are specific enough to respond only to one pattern, as one
expects in the final stages of the model, then it is advantageous
to pool them using a weighted sum, as in the RBF network15,
where VTUs tuned to different viewpoints were combined to
interpolate between the stored views.

MAX-like mechanisms at some stages of the circuitry seem
compatible with neurophysiological data. For instance, when two
stimuli are brought into the receptive field of an IT neuron, that
neuron’s response seems dominated by the stimulus that, when
presented in isolation to the cell, produces a higher firing rate24—
just as expected if a MAX-like operation is performed at the level
of this neuron or its afferents. Theoretical investigations into pos-
sible pooling mechanisms for V1 complex cells also support a
maximum-like pooling mechanism (K. Sakai and S. Tanaka, Soc.
Neurosci. Abstr. 23, 453, 1997).
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Fig. 2. Sketch of the model. The model was an extension of
classical models of complex cells built from simple cells4,
consisting of a hierarchy of layers with linear (‘S’ units in the
notation of Fukushima6, performing template matching, solid
lines) and non-linear operations (‘C’ pooling units6, perform-
ing a ‘MAX’ operation, dashed lines). The nonlinear MAX
operation—which selected the maximum of the cell’s inputs
and used it to drive the cell—was key to the model’s proper-
ties, and differed from the basically linear summation of
inputs usually assumed for complex cells. These two types of
operations provided pattern specificity and invariance to
translation, by pooling over afferents tuned to different posi-
tions, and to scale (not shown), by pooling over afferents
tuned to different scales.

Fig. 3. Highly nonlinear shape-tuning properties of the MAX mechanism. (a) Experimentally observed responses of IT cells obtained using a ‘simplifi-
cation procedure’26 designed to determine ‘optimal’ features (responses normalized so that the response to the preferred stimulus is equal to 1). In
that experiment, the cell originally responded quite strongly to the image of a ‘water bottle’ (leftmost object). The stimulus was then ‘simplified’ to its
monochromatic outline, which increased the cell’s firing, and further, to a paddle-like object consisting of a bar supporting an ellipse. Whereas this
object evoked a strong response, the bar or the ellipse alone produced almost no response at all (figure used by permission). (b) Comparison of
experiment and model. White bars show the responses of the experimental neuron from (a). Black and gray bars show the response of a model neu-
ron tuned to the stem-ellipsoidal base transition of the preferred stimulus. The model neuron is at the top of a simplified version of the model shown
in Fig. 2, where there were only two types of S1 features at each position in the receptive field, each tuned to the left or right side of the transition
region, which fed into C1 units that pooled them using either a MAX function (black bars) or a SUM function (gray bars). The model neuron was con-
nected to these C1 units so that its response was maximal when the experimental neuron’s preferred stimulus was in its receptive field.
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Additional indirect support for a MAX mechanism comes
from studies using a ‘simplification procedure’26 or ‘complexity
reduction’27 to determine the preferred features of IT cells, that
is, the stimulus components that are responsible for driving the
cell. These studies commonly find a highly nonlinear tuning of
IT cells (Fig. 3a). Such tuning is compatible with the MAX
response function (Fig. 3b, black bars). Note that a linear model
(Fig. 3b, gray bars) could not reproduce this strong change in
response for small changes in the input image.

In our model of view-tuned units (Fig. 2), the two types of
operations, scanning and template matching, were combined in
a hierarchical fashion to build up complex, invariant feature
detectors from small, localized, simple cell-like receptive fields
in the bottom layer that received input from the model ‘retina’.
There need not be a strict alternation of these two operations:
connections can skip levels in the hierarchy, as in the direct
C1–C2 connections of the model in Fig. 2.

The question remained whether the proposed model could
indeed achieve response selectivity and invariance compatible
with the results from physiology. To investigate this question, we
looked at the invariance properties of 21 units in the model, each
tuned to a view of a different, randomly selected paperclip, as
used in the experiment21.

Figure 4 shows the response of one model view-tuned unit to
three-dimensional rotation, scaling and translation around its
preferred view (see Methods). The unit responded maximally to
the training view, with the response gradually falling off as the
stimulus was transformed away from the training view. As in the

experiment, we can determine the invariance range
of the VTU by comparing the response to the pre-
ferred stimulus with the responses to the 60 dis-
tractors. The invariance range is then defined as
the range over which the model unit’s response is
greater than to any of the distractor objects. Thus,
the model VTU showed rotation invariance of 24°,
scale invariance of 2.6 octaves and translation
invariance of 4.7° of visual angle (Fig. 4). Averaging
over all 21 units, we obtained average rotation
invariance over 30.9°, scale invariance over 2.1
octaves and translation invariance over 4.6°.

Around the training view, units showed invari-
ance with a range in good agreement with experi-
mentally observed values. Some units (5 of 21;
example in Fig. 4d) also showed tuning for pseu-
do-mirror views (due to the paperclips’ minimal
self-occlusion; obtained by rotating the preferred
paperclip by 180° in depth), as observed in some
experimental neurons21.

Although the simulation and experimental
data presented so far dealt with object recogni-
tion settings in which one object was presented
in isolation, this is rarely the case in normal object
recognition settings. More commonly, the object
to be recognized is situated in front of a back-
ground or appears together with other objects, all
of which must be ignored if the object is to be
recognized successfully. More precisely, in the case
of multiple objects in the receptive field, the
responses of the afferents feeding into a VTU
tuned to a certain object should be affected as lit-
tle as possible by the presence of other ‘clutter
objects’. The MAX response function posited
above as a pooling mechanism to achieve invari-

ance has the right computational properties to perform recog-
nition in clutter: if the VTU’s preferred object strongly activates
the VTU’s afferents, then it is unlikely that other objects will
interfere, as they tend to activate the afferents less and, hence,
will not usually influence responses mediated by the MAX
response function. In some cases (such as occlusions of the pre-
ferred feature, or elevated activation of a ‘wrong’ afferent), clut-
ter can affect the value provided by the MAX mechanism,
thereby reducing the quality of the match at the final stage and,
thus, the strength of the VTU response. It is clear that to achieve
the highest robustness to clutter, a VTU should receive input
only from cells that are strongly activated by its preferred stim-
ulus (that is, those that are relevant to the definition of the
object).

In the version of the model described so far, the penultimate
layer contained only ten cells, corresponding to ten different fea-
tures, which turned out to be sufficient to achieve invariance
properties as found in the experiment. Each VTU in the top layer
was connected to all the afferents; therefore, robustness to clutter
was expected to be relatively low. Note that in order to connect
a VTU to only the subset of the intermediate feature detectors it
receives strong input from, the number of afferents should be
large enough to achieve the desired response specificity.

The straightforward solution is to increase the number of
features. Even with a fixed number of different features in S1,
the dictionary of S2 features could be expanded by increasing
the number and type of afferents to individual S2 cells (see
Methods). In this ‘many feature’ version of the model, the
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invariance ranges for a low number of afferents are already
comparable to the experimental ranges—if each VTU is con-
nected to the 40 (out of 256) C2 cells most strongly excited by
its preferred stimulus, model VTUs show an average scale
invariance over 1.9 octaves, rotation invariance over 36.2° and
translation invariance over 4.4°. For the maximum of 256
afferents to each cell, cells are rotation invariant over an aver-
age of 47°, scale invariant over 2.4 octaves and translation
invariant over 4.7°.

Simulations showed that this model is capable of performing
recognition in context28: using displays that contain the neurons’
preferred clip as well as another, distractor clip as inputs, the
model is able to correctly recognize the preferred clip in 90% of
the cases for 40 of 256 afferents to each neuron (compared to
40% in the original version of the model with 10 C2 units). That
is, addition of the second clip interfered so much with activation
by the first clip that, in 10% of the cases, the response to the two-
clip display containing the preferred clip fell below the response
to the distractor clip. This reduction of the response to the two-
stimulus display compared to the response to the stronger stim-
ulus alone is also found in experimental studies24,29.

The question of object recognition in the presence of a back-
ground object has been addressed experimentally by a study in
which a monkey was trained to discriminate (polygonal) fore-
ground objects irrespective of the (polygonal) background with
which they appear 23. Recordings of IT neurons show that for the
stimulus/background condition, neuronal responses are reduced
to a quarter, on average, of the response to the foreground object
alone, whereas the monkey’s behavioral performance drops much
less. This is compatible with simulations in the model that show
that even though a unit's firing rate is strongly affected by the
addition of the background pattern, it is still, in most cases, well
above the firing rate evoked by distractor objects, allowing the
foreground object to be recognized successfully.

Our model relied on decomposing images into features.
Should it then be fooled into confusing a scrambled image with
the unscrambled original? Superficially, one may be tempted
to guess that scrambling an image in pieces larger than the fea-
tures should indeed fool the model. Simulations (Fig. 5) show
that this is not the case. The reason lies in the large dictionary
of filters/features used that makes it practically impossible to
scramble the image in such a way that all features are preserved,
even for a low number of features. Responses of model units
drop precipitously as the image is scrambled into progressive-

ly finer pieces, as confirmed by a physiology experiment30 of
which we became aware after obtaining this prediction from
the model.

DISCUSSION
Here we briefly outline the computational roots of the hierar-
chical model we described, how the MAX operation could be
implemented by cortical circuits and remark on the role of fea-
tures and invariances in the model. A key operation in several
computer vision algorithms for the recognition and classifica-
tion of objects31,32 is to scan a window across an image, through
both position and scale, in order to analyze a subimage at each
step—for instance, by providing it to a classifier that decides if
the subimage represents the object of interest. Such algorithms
successfully achieve invariance to image-plane transformations
such as translation and scale. In addition, this brute-force scan-
ning strategy eliminates the need to segment the object of inter-
est before recognition: segmentation, even in complex and
cluttered images, is routinely achieved as a byproduct of recog-
nition. The computational assumption that originally motivated
the model described in this paper was indeed that a MAX-like
operation may represent the cortical equivalent of the machine-
vision ‘window of analysis’ through which to scan and select
input data. Unlike a centrally controlled sequential scanning
operation, a mechanism like the MAX operation that locally and
automatically selects a relevant subset of inputs seems biologi-
cally plausible. A basic and pervasive operation in many com-
putational algorithms—not only in computer vision—is the
search and selection of a subset of data. Thus it is natural to spec-
ulate that a MAX-like operation may be replicated throughout
the cortex.

Simulations of a simplified two-layer version of the model25

using soft-maximum approximations to the MAX operation
(see Methods), where the strength of the nonlinearity could be
adjusted by a parameter, showed that basic properties were pre-
served and were structurally robust. But how is an approxima-
tion of the MAX operation realized by neurons? It seems that
it could be implemented by several different, biologically plau-
sible circuits33–37. The most likely hypothesis is that the MAX
operation arises from cortical microcircuits of lateral, possibly
recurrent, inhibition between neurons in a cortical layer. An
example is provided by the circuit based on feedforward (or
recurrent) shunting presynaptic (or postsynaptic) inhibition
by ‘pool’ cells proposed for the gain-control and relative-motion
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Fig. 5. Average neu-
ronal responses of
neurons to scram-
bled stimuli in the
many-feature version
of the model. 
(a) Example of a
scrambled stimulus.
The images
(128 × 128 pixels)
were created by sub-
dividing the pre-
ferred stimulus of
each neuron into 4,
16, 64 or 256 ‘tiles’,
respectively, and ran-
domly shuffling the tiles to create a scrambled image. (b) Average response of the 21 model neurons (with 40 of 256 afferents, as above) to the scram-
bled stimuli (solid curve), compared with the reported average normalized responses of IT neurons to scrambled pictures of trees30 (dashed curve).
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detection in the fly visual system38. One of its key elements, in
addition to shunting inhibition (an equivalent operation may
be provided by linear inhibition deactivating NMDA receptors),
is a nonlinear transformation of the individual signals due to
synaptic nonlinearities or to active membrane properties. The
circuit performs a gain control operation and—for certain val-
ues of the parameters—a MAX-like operation. In several stud-
ies, ‘softmax’ circuits were proposed to account for similar
cortical functions39–41. Together with adaptation mechanisms
(underlying very short-term depression34), the circuit may be
capable of pseudo-sequential search in addition to selection.

Here we claim that a MAX-like operation is a key mechanism
for object recognition in the cortex. The model described in this
paper—including the stage from view-tuned to view-invariant
units15—is a purely feedforward hierarchical model. Backpro-
jections—well known to exist abundantly in cortex and to play
a key role in other models of cortical function42,43—are not need-
ed for its basic performance, but probably are essential for the
learning stage and for known top-down effects on visual recog-
nition (including attentional biases44), which can be naturally
grafted into the inhibitory softmax circuits41 described earlier.

In our model, recognition of a specific object is invariant for
a range of scales (and positions) after training with a single view
at one scale, because its representation is based on features invari-
ant to these transformations. View invariance, on the other hand,
requires training with several views15, because individual features
sharing the same two-dimensional appearance can transform
very differently under three-dimensional rotation, depending on
the three-dimensional structure of the specific object. Simula-
tions show that the model’s performance is not specific to the
class of paperclip object: recognition results were similar for com-
puter-rendered images of other objects, such as cars 
(http://neurosci.nature.com/web_specials/).

From a computational point of view, the class of models we
have described can be regarded as a hierarchy of conjunctions
and disjunctions. The key aspect of our model is to identify the
disjunction stage with the build-up of invariances through a
MAX-like operation. At each conjunction stage, the complexity of
the features increases; at each disjunction stage their invariance
increases. At the last level— in this paper, the C2 layer—only the
presence and strength of individual features, and not their relative
geometry in the image, matters. The dictionary of features at that
stage is overcomplete, so that the activities of the units measuring
each feature strength, regardless of their precise location, could
still yield a unique signature for each visual pattern (the
SEEMORE system45).

The architecture we have describe shows that this approach
is consistent with experimental data and places it in a class of
models that naturally extend hierarchical models first proposed
by Hubel and Wiesel.

METHODS
Basic model parameters. Patterns on the model ‘retina’ (160 × 160 pixels,
corresponding to a 5° receptive field size for 32 pixels = 1°; 4.4° is the
average V4 receptive field size46) are first filtered through a layer (S1) of
simple cell-like receptive fields (first derivative of Gaussians, zero-sum,
square-normalized to 1, oriented at 0°, 45°, 90°, 135° with s.d. of
1.75–7.25 pixels, in steps of 0.5 pixels; S1 filter responses were rectified
dot products with the image patch falling into their receptive field, that is,
the output s1

j of an S1 cell with preferred stimulus wj whose receptive
field covered an image patch Ij is s1

j = |wj·Ij|). Receptive field (RF) cen-
ters densely sampled the input retina. Cells in the next layer (C1) each
pooled S1 cells (using the MAX response function, that is, the output ci

1

of a C1 cell with afferents s1
j is c1

i = max j s1
j) of the same orientation over

eight pixels of the visual field in each dimension and all scales. This pool-
ing range was chosen for simplicity—invariance properties of cells were
robust for different choices of pooling ranges (see below). Different C1
cells were then combined in higher layers, either by combining C1 cells
tuned to different features to yield S2 cells that responded to co-activation
of C1 cells tuned to different orientations, or to yield C2 cells responding
to the same feature as the C1 cells, but with bigger receptive fields. In the
simple version illustrated here, the S2 layer contained six features (all
pairs of orientations of C1 cells looking at the same part of space) with
Gaussian transfer function (σ = 1, centered at 1; that is, the response s2

k
of an S2 cell receiving input from C1 cells c1

m, c1
n with receptive fields

in the same location but responding to different orientations is 
s2

k = exp{–[(c1
m – 1)2 + (c1

n – 1)2]/2}, yielding a total of ten cells in the C2
layer. Here, C2 units feed into the view-tuned units, but in principle,
more layers of S and C units are possible.

In the version of the model we simulated, object-specific learning
occurred only at the level of synapses on view-tuned cells at the top. More
complete simulations will have to account for the effect of visual expe-
rience on the exact tuning properties of other cells in the hierarchy.

Testing the invariance of model units. To generate view-tuned units in the
model, we first recorded the activity of C2-layer units feeding into the
VTUs in response to each of the 21 paperclip views. We then set the con-
necting weights of each VTU (the center of the Gaussian associated with
each unit) to the corresponding activation. For rotation, 50°–130° view-
points were tested in steps of 4° (training view set to 90°). For scale, we
used stimuli of 16–160 pixels in half-octave steps except for the last step
from 128 to 160 pixels; for translation, we used independent translations
of ±112 pixels along each axis in steps of 16 pixels (exploring a plane of
±112 × 112 pixels).

‘Many feature’ version. To increase robustness to clutter of model
units, the number of features in S2 was increased: Instead of the pre-
vious maximum of two afferents of different orientation looking at
the same patch of space as in the version described above, each S2 cell
now received input from four neighboring C1 units of arbitrary ori-
entation (in a 2 × 2 arrangement), yielding a total of 44 = 256 different
S2 types and, therefore, 256 C2 cells as potential inputs to each view-
tuned cell (in simulations, top level units were sparsely connected to a
subset of C2 layer units to gain robustness to clutter, see Results). As S2
cells now combined C1 afferents with receptive fields at different loca-
tions, and distance between features changes as the scale changes, pool-
ing at the C1 level was now done in several scale bands, each of roughly
a half-octave width in scale space (filter s.d. ranges: 1.75–2.25,
2.75–3.75, 4.25–5.25 and 5.75–7.25 pixels) and the spatial pooling
range in each scale band chosen accordingly (over neighborhoods of
4 × 4, 6 × 6, 9 × 9 and 12 × 12, respectively) to improve scale-invariance
of composite feature detectors in the C2 layer. Note that system per-
formance was robust with respect to the pooling ranges simulations
with neighborhoods of twice the linear size produced comparable
results, with a slight drop in the recognition of overlapping stimuli, as
expected. Also, centers of C1 cells were chosen so that RFs overlapped
by half the RF size in each dimension. A more principled way would
be to learn the invariant feature detectors, for instance, by using the
trace rule47. The straightforward connection patterns used here, how-
ever, demonstrate that even a simple model shows tuning properties
comparable to those observed experimentally.

Softmax approximation. In a simplified two-layer version of the model25

we investigated the effects of approximations to the MAX operations on
recognition performance. The model contained only one pooling stage,
C1, where the strength of the pooling nonlinearity could be controlled
by a parameter, p. There, the output ci

1 of a C1 cell with afferent sj was

which performs a linear summation (scaled by the number of afferents)
for p = 0 and the MAX operation for p → ∞.

exp(p . |sj|)

exp(p . |sk|)Σk

sj,Σci  =
1

j
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