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Troyer, Todd W. and Allison J. Doupe. An associational model of putational model demonstrating that simple associational
birdsong sensorimotor learning. |. Efference copy and the learning@iebbian) learning rules are sufficient to address important
song syllables] NeurophysioB4: 1204-1223, 2000. Birdsong learn-nroblems related to the sensorimotor learning of song. Our

ing provides an ideal model system for studying temporally complex ,je| focuses on the zebra finch, a species commonly used in
motor behavior. Guided by the well-characterized functional anatom siological investioations of ’On learning. Zebra finch
of the song system, we have constructed a computational model of lologl investigations song Ing. !

sensorimotor phase of song learning. Our model uses simple Hebb#g consists of a stereotyped sequence of vocal gestures or
and reinforcement learning rules and demonstrates the plausibility‘sy!lables.” In this paper, we focus on the learning of the

a detailed set of hypotheses concerning sensory-motor interactibh@ividual syllables. In the following companion paper (Troyer
during song learning. The model focuses on the motor nuclei HVc aacid Doupe 2000), we extend our model to include sequence
robust nucleus of the archistriatum (RA) of zebra finches and inCQé'arning.

porates the long-standing hypothesis that a series of song nuclei, thghe likely neural substrate for sensorimotor learning is the

Anterior Forebrain Pathway (AFP), plays an important role in coms, g system, a set of brain nuclei specialized for vocal learning
paring the bird’s own vocalizations with a previously memorize

“ » Thic ; o d production (Nottebohm et al. 1976) (Fig)1 The motor
song, or “template.” This “AFP comparison hypothesis” is challenge th\E)va for son( includes the direct r())'Eact%)n from nucleus
by the significant delay that would be experienced by presumpti%‘1 y g ] proj
auditory feedback signals processed in the AFP. We propose that fh¥éc (used as a proper name; Margoliash et al. 1994) to the
AFP does not directly evaluate auditory feedback, but instead, f@bust nucleus of the archistriatum (RA). Both nuclei display
ceives an internally generated prediction of the feedback signal coeural activity time-locked to song production (McCasland
responding to each vocal gesture, or song “syllable.” This predictiob987; Yu and Margoliash 1996), and lesions in either nucleus
or “efference copy,” is learned in HVc by associating premotatisrupt normal song production at all stages of development
activity in RA_-prOjectln_g !—ch neurons Wlth the resulting aUd'tOW(Nottebohm et al. 1976; Simpson and Vicario 1990). HVc and
feedback registered within AFP-projecting HVc neurons. We algga are also connected by an indirect pathway, Argerior

demonstrate how negative feedback “adaptation” can be used . . S ot

separate sensory and motor signals within HVc. The model prediGt Isb.raln P:_;\t?v;/ay(AFP).l LeS|_on séudl(_as indicate that thfe
that motor signals recorded in the AFP during singing carry sensor IS crucial tor song learning, Ut_ IS not neces.sary or
information and that the primary role for auditory feedback duringormal song production in adults (Bottjer et al. 1984; Scharff

song learning is to maintain an accurate efference copy. The simp@d Nottebohm 1991; Sohrabji et al. 1990). These and other
ity of the model suggests that associational efference copy learnihgta (seéiologically supported assumptionsave led to the
may be a common strategy for overcoming feedback delay duritgFP comparison hypothesis,” in which the AFP guides sen-
sensorimotor learning. sorimotor learning by transmitting a comparison between
auditory feedback from the bird’'s own vocalizations and
the memorized template (Bottjer and Arnold 1986; Doupe
INTRODUCTION 1993; Mooney 1992; Nordeen and Nordeen 1988; Saito

The combination of a well-characterized, stereotyped beh@d Maekawa 1993). These comparison signals are used to
ior and specialized anatomy makes birdsong an ideal systen@ifide learning in the motor pathway at the level of RA (Fig. 1,
which to study the neural basis of motor learning. Moreovef, andD). _ o
song learning shares important similarities with human speechlhe AFP comparison hypothesis is challenged by a funda-
learning (Doupe and Kuhl 1999). In birds, vocal learning ig1eéntal problem in motor learning, the problem of feedback
accomplished in two phases. During an initsénsoryphase, delay (Lashley 1951; Miall and Wolpert 1996; Miles and
birds listen to and memorize a tutor song, often called thevarts 1979). In zebra finches, the 100-ms estimated latency
“template” (Konishi 1965; Marler 1964). In a latesensori- (see Fig. 2) for presumptive AFP comparison signals to arrive
motor phase, birds gradually match their vocalizations to the the motor pathway after a motor command is nearly as long
memorized song, using auditory feedback from their owas a typical song syllable. This delay would cause comparison
vocalizations (Fig. 1A andB). We have constructed a com-signals for one syllable to have greatest overlap with the neural
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A . guide song learning. Therefore, we predict that the signals
Sensory sel'_'s°"'.“°t°' Stable recorded in the AFP during singing (Hessler and Doupe
Learning <10 5| Song 1999a,b) arenotorsignals that also carry sensory information.
Bird listens: BL’:/ s’gg’f giﬁ;ﬁfs Much less Furthermore, our model suggests a functional reason for why

memonzes utor tomplats - aucltory :,fﬁzzzi’;' the AFP is located downstream of the motor nucleus HVc (Fig.
' feedback essential. 1, C andD): use of an efference copy requires that brain areas

Hatch Crystaliization involved in template comparison receive motor efferents.
Preliminary versions of this work have been presented in

B conference proceedings (Troyer et al. 1996a,b).
Motor Template
Pathway < Comparison Model and approach

\ A Over the past 25 years, anatomical, lesion, and in vivo
_ )® ﬂ _! Auditory physiology studies have yielded a wealth of data concerning
Feedback the functional anatomy of the song system. However, current
Vocalization hypotheses regarding the sensory-motor interactions during

song learning lack detail. To explore these issues, we set out to
build a computational model of the sensorimotor phase of song
learning. Our goal was to determine if basic theoretical prob-
lems in sensorimotor learning could be solved using simple
rules of associational plasticity, constrained by the known
anatomy of the song circuit. We hoped to direct future exper-
iments by identifying important gaps in our knowledge, as well
as to evaluate previous experimental results from a computa-
tional point of view.

Our efforts resulted in two closely related models, address-
Motor (O  Anterior Auditory Q ing the problem of song learning at different levels of abstrac-
Pathway Forebrain Input tion. The first model is a purely “conceptual model,” i.e., a

Pathway (AFP) self-consistent set of functional hypotheses conforming to a
wide range of experimental results. The functional hypotheses

D Ck “““ ! contained in this model constitute the core contribution of our

: research. The second model is a true “computational model”

AEP ! Auditory that i.ncorporates these hypo_thgses into a working computer
(Template | algorithm. Due to the very limited knowledge of the song
Comparison) | | Feedback system at the level of local circuits, implementing this algo-

I rithm required a number of specific assumptions that reach

RA beyond current experimental knowledge. As a result, several

B "@ ﬂ aspects of the computational model are not well-constrained by
Vocalization biology. Moreover, we made a number of simplifying assump-

Fie. 1. The song system: developmental time course. Durimgnsory tions to ensure that simulations could be run in a reasonable
learning, birds memorize a song from their tutor. Our model assumes that fount of time. However, the computational model played an
process has already been completed. Dusegsorimotorearning, birds use important role in exploring our initial functional ideas and
auditory feedback from their own vocalizations to match their song to thgarves to illustrate our core conceptual hypotheses. Perhaps

memorized template. These stages of learning may overlap. After learnipgs e jmportantly, the construction of a working computational
song “crystallizes,” becoming more stable and less dependent on auditor !

feedbackB: behavioral schematic of sensorimotor learning (cf. Konishi 19655’."60rithm demonStrat.e_s the mutual .ConSiStenCy of .Our hypoth-
C: song system anatomy: Anterior Forebrain Pathway (AFP) (gray); mot6Ses, as well as providing a theoretical demonstration that they
pathway (white). Field L (black) receives input from auditory thalamus andre sufficient to account for important aspects of song learning.
provides direct and/or indirect auditory input to HVc (Fortune and Margoliasfthis dual approach not only highlights general problems of
1995; Janata and Margoliash 1999; Vates et al. 1996)schematic of the . . -

“AFP comparison hypothesis.” Note that the 100-ms estimated latency ( %nsprlmotor Iee.lmmg and _generates testable predICtlons at a
Model and approachfor motor signals to leave robust nucleus of the archi_fU”C'“O”al |eV_e_|: It alSO_ provides a _framework for _UnderStand_'
striatum (RA), return as auditory feedback via L, and then be processed in thg) how specific biological mechanisms may contribute to their
AFP is nearly as long a typical song syllable. Thus, the evaluation of auditogp|ution. These models are only a first step, and, of necessity,
feedback from one syllable would arrive in RA during the motor activity f%ontain many simplifications. However, taken together, they
the subsequent syllable. . . :

o ~__ constitute the most detailed set of hypotheses to date regarding
activity for the subsequent syllable and poses a significak interaction of sensory and motor signals during the senso-
challenge to the notion that AFP comparison signals guidienotor phase of song learning.
learning in RA (see Bottjer and Arnold 1986). In our model, we In this section, we present the justification for our working
retain the hypothesis that the AFP plays an important role fiological assumptions. We then describe the main problems
template comparison but propose that instead of waiting for taddressed by our model and outline the key elements of our
actual auditory feedback, an internal prediction or “efferenggoposed solution. Finally, we present our conceptual model,
copy” of the auditory feedback is generated within HVc tavhich describes our functional hypotheses in greater detail. In
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the meTHoDS section, we outline the theoretical assumptions A
incorporated into our working computational model, including

a description of the network architecture and the simple en-

coding scheme used to represent song. InrtieRLTS Section,

we present quantitative results generated by our computational

model. Details of the computer algorithm are confined to an

Estimated Latencies

appendix. 15 ms
; ; ; Auditory
Biologically supported assumptions Feedback
Although the nature of template memorization is largely
unknown, various lines of evidence suggest that the AFP may
transmit a comparison between the bird’'s own vocalizations @ n
and the memorized tutor song. We call such signals “template Vocalization
comparison signals.” Initial evidence suggesting a role for the i
AFP in template comparison came from lesion experiments: B Syllable Time Course

AFP lesions in juvenile zebra finches disrupt song learning,
whereas lesions in adult birds have little effect on normal song v
production (Bottjer et al. 1984; Nottebohm et al. 1976; Scharff “*‘L__—_]’
and Nottebohm 1991; Sohrabji et al. 1990). Further experi- —
ments have shown that the lateral portion of the magnocellular 80 ms 35ms
nucleus of the anterior neostriatum (LMAN), the output nu- .

cleus of the AFP, appears to be necessary any time the song C Detays to RA via AFP
changes, even in adulthood (Brainard and Doupe 2000; Mor-

Syllable Gap

rison and Nottebohm 1993; Williams and Mehta 1999). Other RA Activity W%.
experiments suggest that circuitry within the AFP may function 100 ms :
as a template: AFP neurons develop song selective auditory (45+15+40)
responses during song learning (Doupe 1997; Solis and Doupe Feed_ba:"‘::f RA
via

1997), and a subset of these neurons respond vigorously to the

tutor song (Solis and Doupe 1997, 1999). Using a more direct S : _

approach, Basham et al. (1996) showed that local blockade dfic- 2. Timing within the song systemA: numbers represent estimated
latencies between song nuclei (seesuLty; 40 ms represents the entire

N-methylo-aspartate (NMDA) receptors in the AFP SpeCIfIE)rocessing time for signals passing through the ABRthe length of model

cally during song memorization disrupts normal song learningjaples (M. Brainard, personal communication; Scharff and Nottebohm
Within the framework of our model, the simplest hypothesigsgi; zann 1993)C: time delay (100 ms) for motor activity to return to RA
is that the AFP not onlytransmits a template comparison via auditory feedback (45 15 ms) and the AFP (40 ms). A signal transmitted
signal, but that it alsecomputesghe match between the effer-bY the AFP that carries the match between the syllable just sung and the
. . .~ .memorized template will arrive in RA during the motor activity for thext
ence copy and the memorized template, i.e., the AFP is able (dotted box).

storage site for the tutor template. We did not attempt to modél

the AFP circuitry that subserves template comparison byt/c AFP neurons is more closely tied to auditory input (Katz
rather viewed the AFP as a “black box” that performs thgnd Gurney 1981; Kimpo and Doupe 1997; Lewicki 1996;
necessary calculations. An alternative hypothesis that is s#llito and Maekawa 1993; but see Doupe and Konishi 1991;
consistent with the basic structure of our model is that the ARR-ario and Yohay 1993). Moreover, experiments in singing
transmits a template comparison signal, but that memorlzsﬁfds suggest that the motor pathway is arranged hierarchically,
template information is stored closer to the auditory periphefyiin rRA encoding the detailed motor program for each song
than the AFP (seeiscussion. sillable, and the central pattern generator for song sequence

Additional studies into the functional anatomy of the song; g upstream of RA, perhaps in HVc (Vu et al. 1994; Yu and
system have shown that the neurons that project to RA rgoliash 1996). ' ’

those that project to the AFP form distinct populations within The main biologically supported assumptions that are incor-
HVc (Nordeen and Nordeen 1988). We denote these tWgrated into the model are summarized in Table 1.
populations HVc_RA and HVc_AFP. While the evidence iS the final data included in the model were the estimated
indirect, these two populations are likely to be highly interconatencies between various song nuclei (Fig).2We included
nected (Fortune and Margoliash 1995; Vu and Lewicki 19943,y the pest studied neural pathways in the song system, as the
Various data suggest that activity within HVc_RA neurons ignciional significance of other signaling pathways remains
more closely tied to motor behavior, whereas activity withifjclear (see Foster and Bottjer 1998; Foster et al. 1997; Stried-
ter and Vu 1998; Vates et al. 1997). We used 50 ms for the
latency from HVc premotor activity to vocal output (McCas-
land 1987; McCasland and Konishi 1981), and 15 ms for

TABLE 1. Biologically supported assumptions

1. Anterior Forebrain Pathway transmits a template comparison signal

2. Separate populations of HVc neurons auditory latencies to HVc (Margoliash and Fortune 1992)
A. HVc_RA—more motor Estimating the processing time through the AFP during song
B. HVc_AFP—more sensory was more problematic, since activity in LMAN, the output

3. RA encodes detailed motor program of individual syllables nucleus of this pathway, is quite variable. We used 45 ms for
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the latency to LMAN (A. J. Doupe 1997; personal observdellowed bypostsynaptic activity to induce plasticity (Table 2,
tions). Subtracting 15 ms for the latency to HVc and adding Xumber 3).

ms for the delay between LMAN and RA, we obtained a The second problem we address is the nature of AFP-guided
processing time through the AFP of roughly 40 ms. Simulateyllable learning in RA. We make two functional hypotheses.
syllables were 80-ms long with a 35-ms gap between syllablesst, we hypothesize that syllable learning is guided by non-
(Fig. 2B), typical of mean values for zebra finch song (Mspecific reinforcement signals provided by the AFP that mod-
Brainard, personal communication; Scharff and Nottebohutate the degree of ongoing associational plasticity throughout
1991; Zann 1993). These timing data suggest that, on averag®, (Table 2, number 4; see Sutton and Barto 1998, for an
presumptive template comparison signals from the AFP widlerview of reinforcement learning). This hypothesis is moti-
have the greatest overlap with motor activity for the subsequessted by the fact that nonspecific reinforcement signals, while

syllable (Fig. Z, dotted box). generated by a match to a sensory template, do not have to be
directed toward specific patterns of RA motor neurons. As a
Problems addressed result, no sensory— motor mapping is required to guide

learning. Second, we hypothesize that synapses intrinsic to RA

. . an important role in storing syllable representations (Table
of motor representations corresponding to song syllables stofedy mper 5). This hypothesis was motivated by the need to
within a memorized template. For simplicity, we do not adg

\gjarn a number of discrete patterns of neural activity corre-

In this paper, we address the problem of learning a collecti

dress learning the detailed temporal structure within each Sysonging to the syllables in the tutor template and is consistent
lable, nor learning the length of syllables _and inter-syllablgiih estimates that up to 85% of synapses in RA come from
gaps. Our model rests on two key assumptidjsong learn- |54 collaterals of other RA neurons (Herrmann and Arnold

ing is accomplished using simple associational learning rulggg) Theoretical models have shown that recurrent activity is
and?2) the AFP guides song learning by transmitting a signdle,) for stabilizing such patterns (e.g., Hopfield 1984). More-
that carries information about the match between the bird:

er, if the representation for individual syllables is encoded in
pattern of intrinsic RA synapses, plasticity in the synapses

the key functional hypotheses that underlie our solutions (s&eo
Table 2). More detail regarding our hypothesized solutions
presented in the form of a conceptual model (Semceptual
mode) and a computational model (seesuLty. The presen-
tation of both models is structured according to the followin
outline.

The first problem we address is the important problem g]

auditory feedback delay: presumptive AFP comparison signglen ysing the short-latency efference copy signals to guide
would arrive in RA during the neural activity for theext gy iapie learning, the strong auditory inputs will interfere with

syllable (Fig. Z). We hypothesize that the AFP does noje efference copy signal. We address this problem by assum-
directly evaluate auditory feedback, but instead, receives @ ihat the auditory feedback signal is relatively weak and/or

@nternally generated prediction _of_ the sensory feedback resyliz; ihe response of HVc_AFP neurons is strongly adapting
ing from song-related motor activity (Table 2, number 1). Suckzple 2. number 6). -

an internal prediction requires a transformation from motor t

sensory coordinates and has been termed efference c%py

(Sperry 1950), “corollary discharge” (von Holst and MittelsConceptual model

taedt 1980), or the result of a “forward model” (reviewed in 5+ model focuses on four neural populations (Fig. 3):

Jordan 1995; Miall and Wolpert 1996). We will use the term,,je,5 RA in the motor pathway, separate populations of HVc
efference copy. Sensory signals resulting from motor behavi bjection neurons projecting to RA and the AFP (Nordeen and

have been termed sensory “reafference” (von Holst and Mo qeen 1988), and a single population representing the output
telstaedt 1980). We further hypothesize that the meter ) g'e pop P g P

duced, with only minor disruption to the representation for
&ch individual syllable (see Troyer and Doupe 2000).

The third problem we address results from the competing
requirements of both learning and using the efference copy
Signal. Learning an efference copy mapping by associating
otor activity with delayed auditory feedback implies that
ditory inputs induce significant levels of activity. However,

, activity in RA represents the motor output of the

LI o . Fhodel. In this paper, we explore the functional consequences
mapping, it is important that our associational plasticity rule | 5ssociational plasticity in three sets of connections:

“temporally asymmetric,” i.e., presynaptic activity must b‘F—iVC_RA — HVc_AFP, HVc_RA — RA, and intrinsic
RA — RA connections.
Our model does not address the learning of syllable timing.
1. An efference copy, rather than the bird’s own vocalizations, is compared/€ assume that timing is provided by rhythmically clocked
to the template bursts of premotor activity arriving in HVc_RA, with the
2. The efference copy map is encoded in the connections from HVe=RA duration of each burst controlling the duration of premotor

TABLE 2. Functional hypotheses for syllable learning

HVc_AFP o . ____activity and hence the length of song syllables (FB).2Vhile
3. Associational learning is temporally asymmetric (post-synaptic activity . : N
mustfollow pre-synaptic activity) the source of the premotor drive is not explicitly modeled,
. AFP transmits reinforcement signals to guide syllable learning the song nuclei nucleus uvaeformis (Uva) and/or nucleus in-

o Ol

. Intrinsic RA circuitry is important for storing syllable representations  terfacialis (NIf) are likely candidates (McCasland 1987; Stried-
. Weak auditory feedback and/or strong HVc_AFP “adaptation” is used tgar and VVu 1998: Williams and Vicario 1993). Input from the
separate sensory and motor signals in HVc forebrain nucleus medial MAN is also a possible source. Al-
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Network Architecture

Premotor
Drive .,
=N

| Syllable

N

: Auditory

Template
! Feedback
H
\ M 1
Vocalization

Plastic Connection Transmits AFP
Connection not Plastic Reinforcement
— s i IO

typed patterns of RA activity lead to vocal output matched to
the memorized template. Note that HVc_RA activity becomes
ordered when we address the problem of sequence learning
(Troyer and Doupe 2000).

PROBLEM 1: AUDITORY FEEDBACK DELAY. To address the problem
of feedback delay, we hypothesize that an efference ocogy-
ping is learned between the two populations of HVc projec-
tions neurons (Table 2, numbers 1 and 2). Since the connec-
tions in the motor pathway are initially unstructured, the
random patterns of HVc_RA activity lead to a random explo-
ration of motor space (cf. Bullock et al. 1993; Kuperstein 1988;
Salinas and Abbott 1995). Activity flows down the motor
pathway (McCasland 1987) and returns to HVc_AFP as audi-
tory feedback (Fig. A, dark lines). While the exact form of the
learning is not crucial for our model, it is important that
associational learning is temporally asymmetric (Table 2, num-

Fic. 3. Network architecture. Black arrows: plastic connections. Gray al'fler_ 3), i-?-_’ synaptic strengths incr_ease _Or_”y When presyn-
rows: nonplastic connections. AFP> RA connections transmit a reinforce- aptic activity precedes postsynaptic activity (Bi and Poo
ment signal that modulates plasticity in RA but does not affect RA activit§ 998: Debanne et al. 1998; Gustafsson et al. 1987; Hebb

patterns. Plastic connections from HVc_AFP HVc_RA and from AFP—
RA (not shown) are considered in the following companion paper (Troyer ai

Doupe 2000).

r}0949; Markram et al. 1997). By strengthening synapses onto

neurons that are likely to fire in the near future, temporally
asymmetric “Hebbian” learning strengthens synaptic inputs

though thetiming of this drive is fixed, we assume thatthat “anticipate” any postsynaptic activity that regularly
HVc_RA neurons receive varying magnitudes of drive, anfdllows presynaptic spiking (cf. Blum and Abbott 1996;
these magnitudes are generated independently for e&brstner and Abbott 1997). In our model, auditory feedback
HVc_RA neuron and each vocalization produced by the mod&d. HVc_AFP neurons encoding the sensory aspects of a
Thus, HVc_RA produces random patterns of premotor activiparticular vocal gesture will follow spiking in HVc_RA
that are independent from one syllable to the next. The modatisurons encoding motor aspects of that gesture. Associa-
task is to use template comparison signals generated by tiemal learning then strengthens the synapses from that (pre-
AFP to reorganize the connections in the motor pathway so tlsginaptic) HVc_RA neuron onto the corresponding (postsyn-
1) random HVc_RA activity is converted into a handful ofaptic) neurons in HVc_AFP (Fig.A white arrow). After
stereotyped patterns of RA motor activity, aPidthese stereo- this motor — sensory mapping is learned, activity within

A Efference Copy B Learning Syllable
Learning Representations
Motor Sensory Motor Sensory
Premotor Efference Premotor
Drive Copy 5ms Drive

5ms gy

Auditory 5ms
Feedback

45 ms

Vocalization

HVc_RA Activity

mt )%
&

(5+45+15)
Auditory Feedback to HVc

HVc input to RA

mE %8

40 ms

FIG. 4. Two-step solution to the problem of feedback de-

V;Auditory lay. A: step 1: efference copy learning. Each syllable is

§ Feedback initiated by a random premotor drive to HVc_RA. This signal
i travels through the motor and auditory feedback pathways
o g 1

P (black arrows) arriving in HVc_AFP with a delay of 65 ms.
1‘\;. ot Motor nuclei downstream of RA are not explicitly modeled.
V&;Iizatfgn Associational learning (white arrow) between premotor

HVc_RA activity and HVc_AFP activity driven by auditory
feedback results in an efference copy mappiBgstep 2:
learning syllable representations. The efference copy is
passed on to the AFP, and the match with the stored template
serves as a reinforcement signal (line with round end) that
modulates plasticity signals in RA. This modulation reorga-

M% nizes intrinsic connections within RA, as well as the projec-

tion from HVc (white arrows).

Efference Copy match

to RA via AFP
Functional Roles During Associational Learning
Plasticity Relevant Signals Relevant Signals Not
for Function to Association Relevant

—> — 5
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HVc_RA motor neurons will drive, with short latency, therasLe 3. Theoretical assumptions
HVc_AFP neurons encoding the corresponding sensory rep-_ _
resentation. This short-latency motor activity in HVc_AFP- :Imé);ihegggglrzg;c::cngges o feature
constitutes aensory predictiorof the auditory reafference. " Each tutor syllable has distinct features
This efference copy can then be passed on to the AFP antronic activity patterns over the time course of each syllable (except in
used to guide learning in RA. Note that efference copy Hvc_AFP)
learning occurs within HVc and proceeds without reference Plasticity rule roughly based on LTP
to the tutor template stored in the AFP. Using efferende Local circuit mechanisms

. . " A. Feedback connections in RA
copy in this way splits the total feedback delay for AFP g gjopal inhibition
comparison signals to return to RA into two shorter delays; Initial connectivity decorrelated
the auditory feedback delay of 65 ms to HVc (Figh)4and 6. Homeostatic mechanisms

the 40-ms processing delay from HVc through the AFP (Fig. A- Synaptic normalization
4B). B. Inhibitory plasticity

PROBLEM 2: SYLLABLE LEARNING IN RA.  To guide syllable learn-
ing, the AFP evaluates the efference copy and transmigsna

forcement signal to RA (Table 2, number 4). This nonspeci
reinforcement signal is assumed to modulate the degree )
ongoing associational plasticity throughout RA. An efferenc%

copy that is well-matched to the tutor song results in a lar urse of multiple syllables, a consistent association between

plas'gicity signal in RA neurons that are.significantly activategwc RA motor activity and the resulting weak sensory acti-
leading to a potentiation of recently activated synapses; a PRRion. The second strategy is based on the cancellation of

match evokes small potentiation or depression. Since a goQ fitory feedback signals in HVC_AFP by “adaptation.” Spe-
g'ni{gg etoatrs]ien g;r(;[otrutsgrngyﬁggluersa\?éhig-;ﬁivip\ rgien%(:ggnfggically, adaptation in the HVc_AFP circuitry results in a
! ative after-image” of any given pattern of HVc_AFP ac-
leads to the development of strong connections between gativ . . .=
X ty (Fig. 5), which has a decay time (100 ms) similar to the
neurons encoding the same tutor syllable (Table 2, number 5). X . i
Reinforcement also reorders the connections from HVc -RA gth of a typical song syllable (saerenoix for implemen

RA (seeresulty. These patterns of connectivity result in qtg:on). A variety of biological mechanisms could provide this
|

feedback signal is set significantly weaker than the efference
{2oPY signal. Hence, auditory feedback only weakly perturbs
{%? efference copy, which can remain sufficiently accurate to

ide syllable learning. However, weak auditory feedback is
le to guide efference copy learning by providing, over the

ind of adaptation, e.g., spike-triggered or voltage-dependent
strong tendency for RA to produce coherent patterns of motor .~ L )
activity matched to the template, i.e., the tutor syllables ha trinsic currents and/or slow feedback inhibition. Such mech

“ " : e isms have been shown to be present within HVc (Dutar et al.
gzco?;ita;gggt)ors for the neural dynamics within RA (se 998;_ Kubota and Saito 1991; Kubota and Taniguchi 1998;
R ' Schmidt and Perkel 1998). Because the efference copy arrives
PROBLEM 3: SEPARATING MOTOR AND SENSORY SIGNALS IN HvC. in HVc_AFP with a shorter delay than the auditory feedback,
In our model, HVc_AFP neurons receive two distinct inputghe after-image of the efference copy will counteract the cor-
auditory feedback, which drives efference copy learning, amesponding auditory reafference. That is, HVc_AFP neurons
motor input from HVc_RA, which carries the efference copgtrongly activated by efference copy input from HVc_RA will
used for AFP-driven song learning. While necessary for effdbe in an adapted state by the time that the corresponding
ence copy learning, the delayed auditory signal can interfguatterns of delayed auditory feedback arrive in HVc_AFP.
with the efference copy signal used to guide learning. Wiote that an inaccurate efference copy will lead to an incom-
propose two strategies for separating sensory and motor sigrméte cancellation of auditory feedback, and interference from
within HVc_AFP (Table 2, number 6). First, the auditonthis delayed feedback will create an inaccurate efference copy.
However, associations between the uncanceled feedback signal

Separation of Signals and the HVc_RA motor activity that gave rise to it will lead to

by Adaptation new plasticity that improves the quality of future efference
copy predictions. Details of how this cancellation mechanism
Efference Copy works in the context of our computer algorithm are presented

in the RESULTS
HVc_AFP
Adaptation b METHODS
HVc_AFP

@n A t=60ms The mgin assumptions that were necessary to construct our
Auditory computational algorithm are summarized in Table 3 and are dis-
Vocalization cussed below. Only the subsections explaining our method of

Feedback . . .

] ) _neural encoding (seBleural encoding Fig. 6) and the nature of
Fie. 5. Separating efference copy and delayed auditory feedback. Givgly/c AFP activity (se€Tonic activity patternsFig. 7) are neces-

our estimates (Fig.A, auditory feedback will reach HVc_AFP 60 ms after theg, v Fr ynderstanding the main computational results presented in

efference copy input from HVc_RA. Activity in HVc_AFP results from a . . .
mixture of these two signals (see Fig. 7 below). Adaptation mechanisms.trﬁe ResuLTs Other subsections describe issues of mainly theoret-

HVc_AFP produce a delayed, negative image of HVC_AFP activity, which {§@l interest. In the final subsection of thetHoos, we provide
subtracted from the auditory feedback. Accurate efference copy predictidR§mulas for our method for characterizing the developmental time
can cancel auditory feedback; inaccurate predictions yield a difference sige@urse in the model. Details of the computational algorithm are
that drives new efference copy learning. presented in thepreNDIX. The assumptions outlined in Table 3 are
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A Tutor Song B
1 A Neural Encoding and Template Storage
o 9y — HVc_AFP
2 B g Premotor i
8 - 3 Drive (Sensory Coordinates)
w c )
T 25 =
8 D& HVc_RA
> 33 ° 200
E Assemblies
Time (Syllable Number)
C Initial Motor Output

(RA activity)

(1-8) (9-16) (17-24) (25-32) (33-40)
o A AFP (Template Storage)
£ —| 00
= B ¢
2 —O0
E o ¢
) ol . Vocal Features
Do Motor Coord
= g ( Coordinates) (1,2,....40)
E
1 10 Plastic Connection Transmits AFP
Time (Syllable Number) Connection not Plastic Reinforcement

Activity level —_— o Y
[ max

FIc. 6. Encoding the problem of sensorimotor learnidg.epresentation of the tutor song. Ten consecutive syllables in the tutor
song( . ..ABCDE. . .). Forsimplicity, we assume that each tutor syllable contains a nonoverlapping set of vocal features. These
are numbered according to tutor syllable (features in syllable A numbered 1-8, features in B numbered 9—B5,netarjl
encoding and template storage. HVc_AFP and RA contain 40 assemblies, one for each of the 40 vocal features in the tutor song.
The auditory feedback pathway connects each RA assembly (motor representation) with its corresponding HVc_AFP assembly
(sensory representation). The AFP contains 5 assemblies, 1 for each tutor syllable. The connections from HVc_AFP to the AFP
determine how vocal features are matched to tutor syllables, i.e., these connections store the template information. Connections to
syllable B are shown as an examp.motor output of the model (RA activity) for the first 10 syllables produced. Each column
shows the pattern of RA activity for one particular syllable. Each row represents the activity of a particular RA assembly over the
10 syllables shown. Since connections in HVc and RA are unstructured, random patterns of premotor drive lead to RA activity that
is initially unstructured. Using reinforcement signals, the model must “transfer” template information stored in sensory coordinates
in the AFP to the motor pathway.

not crucial for the main predictions of our model; alternativéNeural encoding
algorithms that implement our functional hypotheses for song
learning are possible. Our particular algorithm should be seen as #ctivity in the model was represented by the output of a number of
first approximation, one that allows us to explore associationa¢ural “units.” Each of these units is meant to represent the activity
learning between patterns of sensory and motor activity on the timéthin a network of connected neurons or “cell assembly” (Hebb
scale of tens to hundreds of milliseconds. 1949). Hereafter, we will use the term “assemblies.” Given the lack of
Each simulation consisted of repeated iterations of a computata concerning the neural code for vocal gestures in the song system,
subroutine thatl) calculated activity patterns related to a singleve sought the simplest encoding scheme that could support associa-
syllable output by the model, 2) applied our synaptic plasticity ruléional learning (Table 3, number 1). Each vocal gesture produced by
and 3) updated the various homeostatic mechanisms in the model. Tieemodel is viewed as a combination of 40 abstract “vocal features,”
details of the algorithm and the specification of model parameters avgh each RA assembly representing motor-related aspects of one
given in theappENDIX. In most simulations, the subroutine was iteratefeature, and each HVc_AFP assembly representing sensory-related
for 25,000 syllables;~5,000 more than were typically needed foraspects of one feature. Because of this one-to-one mapping of auditory
model output to become stereotyped. When performance was ded motor features, motor activity in a given RA assembly leads to
graded by changing parameters (se@enpix), simulations were auditory feedback input to the unique corresponding assembly in
extended to 50,000 syllables, but output sometimes lacked stereotydyc_AFP. The tutor song consisted of five syllables, within the
Computer simulations were written using the MATLAB simulatiormormal range for zebra finch song (3-9; Price 1979). We denote these
environment (version 5.3; The Mathworks, Natick, MA). Typicabkyllables by the letters A-E and assumed that each tutor syllable was
simulations took~2 h when run using a 400-MHz Pentium Il pro-encoded by a distinct set of assemblies, allowing us to number vocal
cessor. features consecutively, i.e., tutor syllable A contains vocal features
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Calculating HVc_AFP Output receives only auditory input. During the epochs when efference copy
- and auditory feedback inputs overlap, the two sources of input were
simply summed. For computational and conceptual simplicity, we

HVc_RAInput m- chose not to propagate this subdivision of activity to the AFP. The
(Efference Copy) | 50 ms' | efference copy activity that was passed on to the AFP was calculated
. (6+45+15-5) from the average activity in HVc_AFP during the early and middle
Auditory %\ ‘ portion of the syllable. Late and gap portions were excluded for the
Feedback ‘ ”‘I,'”‘“’“ following reasons. RA activity generated during the current syllable
S P! contributes to the late and gap portion of HVc_AFP activity. In our
HVc_AFP — } ‘ sequence learning model (Troyer and Doupe 2000), the AFP not only
Activity [EM'LIG provides a reinforcement signal to RA, but also affects the pattern of
RA activity. Excluding the late and gap portions of HVc_AFP activity
Efference Copy from the efference copy prevents RA output from contributing to RA
passed on to AFP input during the same syllable via the RA HVc_AFP — AFP —

Fie. 7. Mixing of signals in HVc_AFP. Due to the 60-ms delay betweefRA feedback loop. It also prevents auditory feedback from the current
direct input from HVc_RA (5 ms) and auditory feedback+£545 + 15 ms), Syllable from contributing acutely to the AFP reinforcement signal.
separate calculations of HVc_AFP activity were made for the eB)lyngiddle  We will view the combined early and middle activity signal as the
(M), late (), and gap @) portions of the premotor activity corresponding toefference copy passed on to the AFP, although it may include auditory
each syllable. The efference copy output of HVc_AFP compared with tieedback from the previous syllable.
template in the AFP was calculated as the average value of HVc_AFP activity
over the early and middle portions of the syllable. This activity will reach RA L
before the onset of the next syllable. Plasticity rule

1-8, tutor syllable B contains features 916, etc. (FA). Ghe tutor W€ used a simple mode| of associational learning. Synaptic pro-
template is stored in the AFP, with tutor syllables encoded in tH ctions are in principle “all-to-all,” i.e., associational learning takes
connections from HVc_AFP: each AFP assembly corresponds td?'8C€ between all relevant combinations of pre- and postsynaptic
single tutor syllable and receives input from the HVc_AFP assembliggSemblies. Assemblies becoruactionally disconnected when as-
representing the auditory features comprising that syllable (FBj. 650(:|a_t|onal Ie_arnlng drives connection strengths to zero. While our
Connections related to syllable B are shown as an example. GgRning rule is meant to encompass the many potential mechanisms
choice of this very simple representation was guided by the followirfj @ssociational plasticity in the song system, fibren of our learning
considerations1) due to the complexity of the network and finite'U/€ is based on analogies with NMDA receptor-dependent long-term
computational resources, our model contains only a limited numberRgtentiation (LTP; Malenka ?nd N|COIL013993; Table 3, number 3). In
assemblies?) since learning correlated patterns with Hebbian learfil€ €quation below we usé™(t) and r**(t) to denote the activity

ing rules is a largely unsolved theoretical problem, we chose Hye! of the pre- angrpostsynaptlc assemblies at tingach presyn-
encoding scheme in which uncorrelated patterns of motor activffg’t'c spike (at ime™) was assumed to give rise to a postsynaptic

result in uncorrelated patterns of sensory feedb&rlqur encoding  Plasticity trace,” «, analogous to the amount of NMDA-receptor
scheme ensures decorrelation in the metesensory mapping even binding. The shape of the functiandetermines the time window for

for assemblies using nonlinear input-output functions. neural plasticity (seappenpix). This plasticity trace is multiplied by
Initially, all connections in the motor pathway are unstructured©Stsynaptic activity to yield a “plasticity signal(t — t9r*°=(¢),
Thus, random activity in HVc_RA leads to random motor activity ift1@l0gous to postsynaptic calcium concentration. Input from the AFP
RA (Fig. 6C). The model’s task is td) compare sensory signals withiS assumed to give a reinforcement sigrialthat modulates the
the stored template in the AFP to guide plasticity within the motdy'asticity signal in all RA assembliesk(s set to a constant value of
pathway, and?) use these signals to guide plasticity in the motot N HVc.) Plasticity signals above a threshold valireincrease

pathway so that random HVc_RA activity is converted to stereotyp&yNaPtic strength (LTP); signals beloy give rise to long-term
patterns of RA activity matched to the tutor song. depression (LTD; Cummings et al. 1996; Hansel et al. 1997; Lisman

1989). ¢ is a “sliding threshold” that depends on the average amount
of activity in the postsynaptic cell (Abraham and Bear 1996; Bienen-
Tonic activity patterns stock et al. 1982; Sejnowski 1977). Thus, the change in synaptic
o S strength resulting from postsynaptic activity at titnend presynaptic
For simplicity, we assume that song-related activity is encoded Btivity at time t°" is proportional to the following quantity (see
the neural firing rates averaged over the course of each song syllagteenpix)

Thus, the activity within each of the four neural populations is

modeled as a vector of firing rates, with one entry for each assemlilyinforcementx plasticity tracex post— threshold)x pre

in the population. For all populations except HVc_AFP, firing rates

are assumed to be constant during the period of premotor drive for = [Ra(t — t"rP*{t) — YJrP (™)

each syllable and zero during the gap between syllables. In HVc_AFP,

we divided each syllable into four time epochs depending on theycal circuit mechanisms

combination of efference copy (related to the current syllable) and

auditory feedback input received during that syllable (Fig. 7). During Activity within each neural population was based on very simple
the early part of each syllable (mark&g), HVc_AFP receives effer- local circuitry. The output of each excitatory cell assembly was
ence copy input from HVc_RA that relates to the current syllablepomputed as a linear function of its input after subtracting a threshold
while the sensory input is due to delayed auditory feedback from thelue. RA included intrinsic excitatory connections that were used to
previous syllable. The middle portion of each syllable (mark&d store syllable representations in a manner analogous to other associa-
corresponds to the period of silence in the delayed feedback. Duringe memory models or so-called attractor networks (Table 3, number
this period, HVc_AFP receives efference copy input only. During th@A; Amit 1989). To minimize computation, only RA includes such
late part of the syllable (marked), the efference copy and auditoryconnections. Each population also includes a single inhibitory assem-
inputs correspond to the same syllable. Finally, during the “galy that is connected to all assemblies within the corresponding
period between bursts of HVc_RA activity (mark&), HVc_AFP population (Table 3, number 4B). Inhibition is of two basic types.
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HVc_RA, HVc_AFP, and the AFP use “feedforward inhibition,” inHomeostatic mechanisms
which inhibitory activity is equal to the average afferent inpet

ceived by the population, minus a threshold. RA uses “feedback 'N addition to decorrelating initial connectivity patterns, we include
i two sources ohomeostatimegative feedback to counteract the pos-

inhibition,” in which inhibitory activity is driven by the average itive feedback inh i iational | ing (Table 3 ber 6
activity within the local population. Feedback inhibition allows tighte lve Teedback inherent In associationa earnlng'( able 5, number )-
he first is a normalization of synaptic strength: after applying asso-

control of the activity in the local network but is computationalchia,[iomle change for each simulated syllable, the strengths of all

more expe_nsi_ve. Within a g_ivg_n pop_ulation, all excitatory assemblig napses onto (or from) a given assembly are multiplied by a single
receive aS|m|Iar level of inhibition. Slpce the only assemblies that g Umber so that the total amount of postsynaptic (or presynaptic)
strongly activated are those that receive enough input to overcome &ig\ngth for any one assembly remains nearly constanaésespix).
inhibition, inhibition mediates a form of “competition” among exci-This kind of multiplicative normalization controls total synaptic
tatory assemblies. strength without altering the relative magnitude of the individual
connections. Presynaptic normalization was applied before postsyn-
S . aptic normalization (seeppenpix). The strengths to which synaptic
Decorrelating initial connectivity connections were normalized were chosen by hand sdjhatrinsic
. . . . .. RA circuitry contributed a large component (50%) of the input to RA
Our simulations were designed to determine whether assouatlogaemb”e& and) auditory feedback contributed a modest portion
learning, guided by template matching signals from the AFP, CO“@O%) of the input to HVc_AFP. The mechanisms underlying ho-
organize initially unstructured connections in the motor pathway igeostasis are just now beginning to receive focused attention. Mul-
produce the stored tutor song. The dominant computational problgRjicative normalization of synaptic strength has been shown by
encountered in building the model was the positive feedback inher@mirrigiano et al. (1998) and was hypothesized to depend on mean
in associational learning rules: correlated activity increases synafitigels of activity. An approximation to our postsynaptic normalization
strength, which tends to further strengthen the correlation. Left unde follows if mean levels of activity (calculated on long time scales)
checked, this learning will continually amplify initially weak associ-are related to total excitatory strength synapsing on that neuron.
ations, even spurious associations resulting from chance events. Oleghanisms such as conservation of transmitter released and/or ret-
of the most important factors contributing to spurious correlations weggrade trophic factors could underlie presynaptic normalization.
the limited size of our network simulations. The strength of random The second source of negative feedback is inhibitory plasticity that
correlations is highly dependent on network size, roughly decreas%ome%taﬁcf i.e., if an excitatory assembly becomes too active, the
with the square root of the number of network units. Because of tHthibitory connection onto that assembly is strengthened (Rutherford
computational expense of simulating intrinsic feedback dynami€$ @l- 1997; seappenpix). We note that controlling feedback in the
within RA, we limited the number of RA assemblies to 40 (Fig).6 model was not always straightforward, since oscillatory instability

Independently choosing each connection within such a network wiiSults if negative and positive feedback mechanisms operate on

result in correlations that are an order of magnitude stronger thSifilar time scales.
those expected in a more realistically sized network containing 4000
assemblies. The calculation of HVc_RA activity was computationaluantifying learning time course
less expensive, and a larger numberX540 = 200) of HVc_RA ) . .
assemblies was included. While reducing correlations to some degred,© guantify the learning time course, we divided tthe model output
these numbers still do not approach physiologically realistic numbeff&f0 250 syllable epochs and computed the malui” of co-fluctu
We note here that the greater storage capacity of larger netwoAtONS in activity between each pair of RA assemblies over each
resulting from a reduction in random correlations (Amit 1989) ma§Poch. During themth epoch
relate to reports of a relationship between the size of various song
nuclei and the number of song syllables learned (reviewed in Bre- act _ _
nowitz 1997; Nordeen and Nordeen 1997). Mi™= 250 2 Inm = T = )]

To address the problem of correlated connections, we chose ini- noirasamL)
tial patterns of connectivity specifically aimed at minimizing thes@herer,(n) is the activity level in théth RA assembly, ant(n) is the
correlations (Table 3, number 5). Initial connection strengths wesgerage activity across assemblies during syllabl&Ve compared
chosen according to two basic strategies. For HVc_RARA and  M?2“'to an ideal syllable matrixys¥', characterizing the groupings of
HVc_RA — HVc_AFP connections, we used a “single-projectionassemblies that characterize syllables in the tutor song. Following Fig.
strategy, in which each presynaptic assembly connects with a singlehe 40 vocal features were grouped into five syllables, indexed as
postsynaptic assembly. This ensures that the levels of input receivebws: syllable A, 1-8; B, 9-16; C, 17-24; D, 25-32; E, 33-40.
by any two assemblies in the postsynaptic population are independwnfp" = 4, if i andj belong to the same syllablmﬁy' = —1,ifiand
However, the single-projection strategy does not prevent correlatigriselong to different syllables. This is the matrix of co-fluctuations that
arising from polysynaptic pathways within the recurrent circuitry ifvould be obtained from tutor song depicted in Fig\, 6f each
RA. For these intrinsic RA connections, we used a “uniform” strateggssembly had an average activity level of 1. Comparison between
in which each presynaptic assembly connects with all postsynapii@trices was done by taking the correlation coefficient (CC) between
assemblies with equal strength. This ensures that all correlations regigt entries in two matrices. The CC between any tWox M
from a global signal shared by all assemblies. While such a signal wdlimensional matriced andB was defined as follows. First the mean
increase overall synaptic strengths, it will not lead to spurfaterns  value is subtracted from each element in the mathix:= A; —
of correlations within the network. To ensure that our model wgs/Nm) = Aj; B; = B; — (1/NM) = B;. Then
robust to some degree of correlation, zero-mean Gaussian perturba-
tions were added to all plastic connections during the initialization
process. The standard deviation of the perturbations was set to 10% of
the strength of the nonzero synapses. After the perturbation, negative
strengths were set to zero. Noise was not added to the three proei@gonal entries were excluded, i.e., all summations were taken over
tions that did not undergo plasticity (the premotor drive, auditoriypdices wherd # j.
feedback, and template storage connections from HVc_AFP to theThe CC was also used to monitor the connectivity appropriate for
AFP). the efference copy mapping and for the intrinsic RA connectivity that

250m

ij
3 AB;

CC(A B) = — -0 021
[(=; AD(Z; BDTH
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underlies syllable encoding. For the efference copy, we measured the Efference Copy Learning

CC between the matrix of mote# sensory connection strengths from

HVc_RA — HVc_AFP and the HVc_RA— RA connections in the

motor pathway. To quantify the development of syllable-based con- Vocal Efference Copy (EC)
nectivity, we calculated the CC betwed™' and the matrix of Output (V) (Predicts Vocal Output)
intrinsic RA connection strengths, again excluding diagonal entries.

VEC VEC V EC V EC V EC

RESULTS

In presenting the results of our computational model, we
focus on the quantitative data produced by a single represen-
tative simulation. This allows a step-by-step illustration of
song development and demonstrates the mutual consistency of
the functional hypotheses described above. After presenting
these results, we show how the model reacts to changes in
important parameters.

Problem 1: Auditory feedback delay

The first step in our proposed solution to the problem of
feedback delay is the learning of an efference copy mapping.
At the beginning of each simulation, connections in the motor
pathway are unstructured and random HVc_RA activity leads
to random patterns of RA output (FigCh Efference copy 1 50 501 1001 2001

learning results from associations between the random patterns g

of HVc_RA activity and HVc_AFP activity induced by audi- 17
tory reafference (Fig.4). We examined the development of an SE
efference copy map in two ways (Fig. 8). First, an accurate ﬁ-g
map should cause efference copy activity to match the auditory DE
reafference. FigureBshows the pattern of vocal outpuéft 58
column of each painnarked V) and HVc_AFP efference copy 0o
activity (right column of each pairmarked EC) for five syl-

500 1000 1500 2000

OO

lables spanning the period of initial efference copy learning.
Note that, because of our simple encoding scheme, vocal
output, RA motor activity, and auditory feedback have equiv- Sy"able Number

alent representations (seetHops). Initially, both patterns of  ric. 8. Efference copy learningd: vocal output (V, equivalent to RA
activity are highly distributed and unrelated (FigA,8left activity) and efference copy activity (EC) for syllables 1, 251, 501, 1001, and

irs). A fferen learnin roar h ivi 01 Efference copy activi_ty is detgrmined as the average of HV_c__AFP
pa S) S €ellerence copy lea g progresses, the act anty over the early and middle portions of each syllable (Fig. 7). Initially,

remains distributed (5|gn|f|cant sy_llabl_e Ie_ammg has not tak@@cal output and efference copy activity are uncorrelated. By syllable 2000,
place), but the effe_rence_COpy QCthlty is highly correlated withxiivity is still not organized according to tutor syllable (syllable learning has
the vocal output (Fig. 8, right pair). Note that a perfect match not taken place), but efference copy activity and vocal output are sirBiar.

is not required (Jordan and Rumelhart 1992); the efferenggvelopment of efference copy connectivity. Correlation coefficient between
: ' the matrix of HVc_RA projections onto motor features in RA and onto sensory
copy estimate only.has. to be accurate enOUgh .SO that’ ures in HVc_AFP (seeeTHoDps, Quantifying learning time courseor
average, the AFP will reinforce the proper correlations in Rfefinition).
(see Fig. 9pottom). An accurate efference copy mapping can . o o
also be measured by determining the similarity between tA!tual inhibition in the AFP ensures that significant activation
mapping of HVc_RA onto motor features in RA and th&f the AFP occurs only if HVc_AFP activity is mostly confined
efference copy mapping of HVc_RA onto sensory features i @ssemblies corresponding to one (or a few) tutor syllables.
METHODS) between the connection strengths from HVc_RA €ach AFP assembly’s output and summing these thresholded
RA and those from HVc_RA- HVc_AFP. By syllable 500, Outputs (se@rpenpix for details). o _
efference copy correlation has reached 0.81, 84% of the max- he outcome of this procedure is shown in Fig. 9. Figuke 9

imum value (0.96) reached during the simulation. shows the vocal output (mark&gl and efference copy (marked
EC) for 11 consecutive syllables sung during the period of

syllable learning. The black bars show the reinforcement sig-
nal. This reinforcement is obtained from evaluating the

CALCULATION OF THE REINFORCEMENT SIGNAL. The AFP HVc_AFP efference copy activity on the right of each column

guides syllable learning by transmitting a nonspecific reiiput is used to modulate associational learning for the RA motor
forcement signal that uniformly modulates plasticity in all RAactivity generating the vocal output shown on the left. Large
assemblies. To calculate the match to the template, each Aleihforcement is obtained when efference copy activity is con-
assembly sums the input from HVc_AFP assemblies encodiogntrated within assemblies encoding a single tutor syllable
a distinct tutor syllable (Fig.B). The competition mediated by (e.g., syllable 11,006 and 11,009). Smaller reinforcement sig-

Problem 2: Syllable learning in RA
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semblies encoding the most strongly driven syllable, and in-
hibitory competition suppresses other responses segops
VECVEC VECVEC VECVECVECY ECV ECY EC V EC and ArpPeENDIX). As a result, the model produced motor output

A Vocal Output (V) Efference Copy (EC)

A e s 5 perfectly matched to the syllables in the tutor so@gright).
: : Because HVc_RA continues to be driven by the random pre-
motor drive, syllables are produced in a random sequence.
B Sequence learning will be addressed in our companion paper
C W (Troyer and Doupe 2000).
D Input from HVc RA > RA RA Activity
El* A "lptiflC nnectivit

3>~A
2 |
J
5 EC
£ £
S €D
S g
s CElzpva=l J¥ L
@ 1 5 10 A B é D E
11000 11005 11010 B

Syllable Number

>
FIc. 9. Reinforcement signah: vocal output (V) and efference copy (EC) %
for syllables 11,000—-11,018: reinforcement signal calculated from efference g
copy shown irA. EC activity concentrated within assemblies encoding a single:
tutor syllable led to large reinforcement signals (syllable 11,006, D; syllablé;
11,009, B). Activity shared by two tutor syllables led to smaller reinforcement§.
(11,000, D/C; 11,003, B/A). During syllable 11,007, the model produced &g,
reasonably good rendition of tutor syllable D, but minimal reinforcement wasz

. . e . O
given because the efference copy prediction was inaccurate. o

A

E

12801 12505 12?10%A B C D E 12501 12505 12510

nals are computed when HVc_AFP activity is distribute
) . Syllable 24500

among assemblies encoding two syllables (e.g., syllables —

11,000, and 11,003). Note that the 11,007th syllable producezi®| -

by the model was dominated by the motor assemblies encodirg, |

D, but the AFP signaled minimal reinforcement because of aﬁ

inaccurate efference copy representation. ZC| H ' l
SYNAPTIC REORGANIZATION. Reinforcement-guided syllable §D . H I I g“
learning is shown in Fig. 10. Initially, RA-~ RA connection 3. i
strengths were set to be nearly equal fhiddlg, minimizing = ; ! H l

the presence of randomly correlated connections that would24501 24505 24510 A B C D [E 24501 24505 24510
have to be “unlearned” (se&tHops). Note that self-connec- Syllable Number Presynaptic RA Assembly ~ Syllable Number

tions are not included in our model (diagonal entries are zero), 0
since strong self-correlations would tend to dominate associa-

. 2 . Fic. 10. Syllable learningLeft column strength of synaptic input coming
tional learning. Unstructured input from HVc_RAA(left) from HVc_RA for 10 consecutive syllablebliddle columnintrinsic connec-

resulted in random patterns of RA activiti, (right). Because tions within RA. The darkness of each square represents the connection
AFP-mediated reinforcemertf) is greatest when assembliestrength from one presynaptic RA assembly (horizontal axis) to one postsyn-
corresponding to a common tutor syllable are Co-active,Z)ndaP“C RA assembly (vertical axis). Self-connections (diagonal entries) are set to

; : : : : 0 to prevent domination of self-correlatiorRight column RA activity
results in large increases in synaptic strength onto active %?\_/{el for same syllables shown on left: at the start of the simulation, initial

a_lssemplies, RA assemb"es_ began to develop strong CoNN&Cconnectivity was nearly uniform, and HVc input and RA output were

tions with other RA assemblies encoding the same sylldtle ¢andom.B: as development proceeded, assemblies encoding a single tutor
middlg. Reinforcement also guided learning within the prosyllable began to have similar patterns of connectivity. Because assemblies
jection from HVc— RA, causing RA assemblies encoding th ncoding the same tutor syllable are arranged next to each other, the pattern of

tut llable t - ] tf imil t A — RA connections began to show “blocks” of strong connections along
same tutor syllable 10 receive input from similar sets q e diagonalhiddlg. These assemblies also began to receive similar patterns

HVc_RA assemblies and thus to receive correlated patternsopiput from Hvc (eft). C: after learning, HVc input was a random mixture
HVc input (B, left). Both the recurrent circuitry and HVc_RA of syllable representations, and RA assemblies were connected only with other
input led to RA activity partially matched to the tutor syIIabIe§A assemblies encoding the same tutor syllable. This pattern of intrinsic RA

; ; ; onnectivity, combined with global inhibition (see&THoDS), resulted in the
(B, right). After learning was complete, HVc_RA input was a‘Eproduu:tion of patterns of RA activity matched to the tutor templaight).

mixture of tutor syllable representation€, (left). Strong in- | earming to produce these syllables in the proper sequence is addressed in the
trinsic circuitry (C, middle amplifies the activity within as- following companion paper (Troyer and Doupe 2000).

max
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TIME COURSE OF LEARNING. The developmental time course of A , .
song learning in our model is shown in Fig. 11. To quantify Adaptation Cancels Auditory
convergence toward the tutor song, we first computed an Feedback in HVc_AFP
“ideal” syllable covariance matrixM®. This is a 40X 40 Auditory
matrix containing the covariance in the level of activity be- Della_*Feedback ’_‘—‘
tween each pairing of the 40 RA assemblies (sampled over a Premotor | (Detaved X
number of consecutive syllables), where it is assumed that the Activity
model is producing a perfect rendition of the tutor sokig?' Efference '
has strong positive entries for pairs of assemblies belonging to Copy Input |-+ oot T
the same tutor syllable and negative entries for pairs belonging + |
to different syllables. We then divided the model output into HVc. AFP |
250 syllable epochs and computed the matrix of co-fluctuations Activity J X
in activity between each pair of RA assemblies over each Delay |
epoch. Convergence toward the tutor song was quantified by * ﬂj_,l—'—’
computing the correlation coefficient between the entries in Adaptation
M and those in the co-fluctuation matrix (Fig. 11, solid line). [ETw [Tc[e[w e
For detailed definitions of these calculations, s@sHoDS, Syllable39  Syllable 40
Quantifying learning time courséVe also computed the cor- HVe_AFP Assembly #11
relation coefficient between the pattern of RA connectivity and B
MY (Fig. 11, dashed line). The development of intrinsic RA 1
connectivity is mirrored by the appearance of the correspond- e T
ing correlations in RA activity. St -7

Syllable learning is complete by the time the model has R /’ — — - Efference Co

: ; DE Py

produced 20,000 syllables. Since each syllable is assumed to be o Interference from
115-ms long, this represents 2,300 s<at0 min of continuous 88 Auditory Feedback
singing. Although quantitative data are not available, this is
likely to be up to several orders of magnitude less than the OF - N
guantity of song produced by young zebra finches during the X , .
period of sensorimotor learning. Of course, the model is solv- 0 500 1000 1500 2000
ing a highly simplified task. Syllable Number

Probl 3-S ti t d . Is in HV. FIG. 12. Cancellation of auditory feedback by adaptation in HVc_A&P.
roblem 3. Separating motor and sensory signals In c Example of accurate cancellation (assembly #11, syllables 39E4M).L, G

; ; ot ; mark the early, middle, late, and gap portions of each syllable (see Fig. 7).
HVc_AFP receives two functionally distinct sets of InputsPremotor activity in HVc_RA during syllable 39 results in two separate inputs

efference copy inputs from HVc_RA and auditory feedback Hyc AFP: short-latency efference copy input that anticipates the delayed

(Fig. 7). The unmixing of signals is addressed in our model kyiditory feedbackt¢p plotg. Strong efference copy input leads to activity in

1) using weak feedback, and) including “adaptation” in HVC_AFP. Activity is seen throughout the syllable and is particularly strong

HVc AFP (Fig. 5)_ The action of the HVc AFP adaptatio uring the late portion of the syllable when the efference copy and auditory
. . . . T eedback overlap. This activity then recruits adaptation that decays exponen-

mechanism is shown in Fig. 12. Excitation within HVc_AF tially (bottom). During the early portion of syllable 40, the adaptation (open

assemblies recruits a negative current that decays exponentigiyiv) is still sufficiently strong to cancel the auditory feedback from syllable
39 (black arrow) and to prevent HVc_AFP activity).(During syllable 40,

1t HVc_AFP assembly #11 receives only a background level of efference copy
"""""""""" Yo input which accurately predicts the lack of auditory feedback to assembly # 11
for this syllable. Dotted line: mean level of efference copy input for all
8 € assemblies over the first 250 syllables produced by the mB8debrrelation
= Y Eff c coefficient between the pattern of HVc_AFP activity during the early portion
% O | - - 'R e&ence pr of each syllable and the pattern of auditory feedback from the previous syllable
25 | + RA Connectivity (solid line; average taken in 250 syllable bins), and the quality of the efference
QO | — RA Activity copy mapping from HVc_RA- HVc_AFP (dashed line; see FigBB As the
oo efference copy develops, cancellation by adaptation results in correlation
coefficients between HVc_AFP activity and auditory feedback from the pre-
vious syllable that are near zero.
0 (Fig. 12A, bottom). When the efference copy input from
0 5 10 15 20 25 HVc_RA correctly predicts the pattern of auditory feedback,
Syllable Number (x1000) adaptation (open arrow) counteracts the delayed auditory feed-

FIG. 11. Summary of learning time course. Solid line: correlation coefflk—)aCk (bIaCk arrow) and prevents inappropriate activity durlng

cient between entries of covariance matrix calculated from 250 syllable epodf€ €arly portion of the next syllablex)( Adaptation also

of model output and the “ideal” syllable covariance matNgY, correspond ~ prevents auditory inputs from driving HVc_AFP activity dur-
ing to the tutor song (semeTHoDs, Quantifying learning time coursdor  ing the gap portion between syllables (McCasland and Konishi
definition). Dashed line: correlation coefficient between pattern of RA con-981). If the efference copy does not predict the level of

nectivity andMsY". Dotted line: time course of efference copy learning (Fig . . .
8B). Syllable learning begins soon after the development of an accur;ﬁgdltory feedback, the feedback will not be canceled and this

efference copy at around syllable 1500 and is largely completed by syllaMédll result in an inaccurate efference copy dwir_‘g the SUb_Se'
10,000. guent syllable (not shown). However, associational learning
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triggered by such an “error response” in HVc_AFP wil(seevetHops). When syllable learning did break down, two
strengthen the connections from the HVc_RA assemblies tlygneral types of errors were most common. First, spurious
drove the strong auditory feedback, thereby improving therrelations caused errors during learning. For example, faster
accuracy of future efference copy predictions. We quantifiéelarning rates led to more rapid synaptic change, making
the efficacy of the cancellation mechanism by calculating tlspurious correlations more prominent. These spurious correla-
correlation coefficient between the pattern of HVc_AFP activions were then amplified by associational learning. Alterna-
ity during the early portion of each syllable and the auditorijvely, increased correlations within the initial pattern of syn-
feedback from the previous syllable. Initially, this quantity igptic connectivity could also be amplified, leading to degraded
small and positive, since auditory feedback is weak relative learning (seevetHobs and AppPENDIX). The parameter depen-
the input from HVc_RA (Fig. 1B, solid line). As the efference dence of these effects is shown in Fig.Al4ncreasing the
copy map is learned (dashed line), the adaptation cancellatioitial level of correlation resulted in gradual loss of learning.
mechanism reduces the correlation with the auditory feedbdckreasing learning rates led to highly variable results, with one

signal to values approximately equal to zero. simulation showing perfect learning, even when learning rates
were increased by a factor of 10. FigureBlghows spurious
Range of model behavior correlations in a different simulation in which learning rates

were increased by a factor of 10 (Fig.A4rrow). While many

Our results demonstrate the plausibility of our hypothesigsemblies are co-active with others in the same tutor syllable
that an efference copy mapping is used to guide the sensegpresentation, other assemblies are “incorrectly” co-active
motor learning of birdsong. A detailed assessment of how owith assemblies from different syllables (Fig.B.4eft pane).
model reacts to changes in its multiple parameters is beyonlese incorrect associations can be seen in the pattern of
the scope of this paper. Here, we briefly demonstrate therinsic RA connections, where strong connections are con-
model's robustness using default parameter values and dentrated in blocks along the diagonal, but scattered inappro-
scribe the most common types of breakdown in model behgyiate connections are seen as well (FigB1dght panel cf.
ior. Results are shown for alterations in four parametBrthe  Fig. 10).
learning rate;2) the level of correlation within the initial A second type of common error was caused by a misadjust-
pattern of synaptic connectivit) LTP/LTD threshold in RA; ment of competitive mechanisms in the network. The most
and4) the strength of connections onto RA assemblies.  important parameter contributing to competition between dif-

To test the robustness of the model, we ran the algorithm fidtent representations was the LTP/LTD threshold (geme-
times with parameters fixed at their default values. Simulatiopss). Competition could also be increased by increasing inhi-
differed in the random seeds used to determine the initigition. We increased inhibition indirectly, by first scaling the
synaptic connection strengths and the sequence of rand@mal excitatorysynaptic strength in RA which then triggered a
premotor drives. The time course of learning in these simulaemeostatic increase in inhibition. The parameter dependence
tions is shown in Fig. 13. Syllable learning followed a similaof these effects is shown in Fig. C4Figure 14 shows the
time course in all simulations, eventually resulting in accuratsffects of increased competition due to increasing the LTP/
reproductions of the template syllables. LTD threshold in RA by a factor of 2 in RA (Fig. 12 arrow).

The most difficult problem encountered in constructing Because of the increased competition, syllable representations
working algorithm was the instability of learning due to théxave been split into subsyllables, in which RA assemblies are
positive feedback inherent in associational plasticity, i.e., catrongly connected to and co-active with a subset of the as-
related activity leads to stronger connections, which in tugemblies encoding the same tutor syllable.
lead to more strongly correlated activity. This is a general and
largely unresolved theoretical problem; in our model we ad-
dressed it using a variety of negative feedback mechanisfhis®> ©YSSION

Principal findings and predictions

Range of learning time course

By constructing a computational model, we have provided a
theoretical demonstration that associational plasticity, guided
by template comparison signals transmitted by the AFP, can
account for the sensorimotor learning of birdsong syllables.
The model incorporates a wide range of experimental data
related to song learning and addresses the crucial problem of
feedback delay during motor learning: the delay for reafferent
auditory signals returning to RA via the AFP is estimated to be
nearly as long as a typical song syllable. Our model suggests
that the bird solves this problem by generating an internal
) ) ) L prediction, or efference copy, of the expected auditory reaffer-
0 5 10 15 20 25 ence within the song nucleus HVc. This efference copy is then

Syllable Number (x1000) compared with the stored template to guide song learning.
Thus, we predict that activity recorded in the AFP during

FIG. 13. Variability of learning time course. Development of syllable. . : - _
related activity for 10 repeated simulations using default parameters. Simu? nging (HeSSIer and Doupe 1999a'b) Is a motor Slgnal encod

tions used different seeds to determine random components of initial connbtd Sensory information. _ o o
tivity and the sequence of premotor drives. Output quantified as in Fig. 11. Experiments designed to test this prediction face two signif-

—

Correlation
Coefficient
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FIG. 14. Errors in syllable learningiop amplification of random correlationg: disruption of syllable-related activity from
increased learning rates (circles) and increased correlation in the initial pattern of connectivity (ridrk2elgree of syllable
learning after 25,000 simulated syllables (quantified using correlation coefficients as in FiB: RB.activity (left) and RA—
RA connectivity (ight, compare Fig. 10) when learning rates were increased by a factor of 10 (ariwlircorrect associations
are made, with some RA assemblies co-active with and connected to assemblies encoding a different tutor syllable. Three “new
syllables” have been created; one includes a single assembly from syllables B, C, and D (black arrows), another a single assembly
from C and E (open arrows), and a third includes 2 assemblies from syllable A and 1 from syllable D (gray arrow). Inappropriate
connections appear as dark entries outside of diagonal bloigty)( Bottom increased competition in RAC: disruption of
syllable-related activity from increased long-term potentiation/long-term depression (LTP/LTP) threshold in RA (circles) and
increased synaptic strengths in RA (marked Degree of syllable learning after 50,000 simulated syllalides TP/LTD threshold
increased by a factor of 2 (arrow @). Increased competition causes RA assemblies encoding a single tutor syllable to divide into
“subclusters” of assemblies that are co-active and are strongly connected. For example, syllable A has been cleanly split into 2
subclusters, whereas within syllable E, connectivity is still rather diffuse.

icant challenges. First, the nature of both sensory and motaturally accounted for by “error-based” learning hypotheses,
representations within the song system is poorly understosthce deafening results in a large change in the sensory signal.
Direct tests will require substantial progress in this area. SeBy retaining the key elements of the AFP comparison hypoth-
ond, separating the sensory and motor aspects of neural actigiys, our model is consistent with the finding that AFP lesions
during sensorimotor behaviors is notoriously difficult. For exyrevent the disruption of song due to deafening (Brainard and
ample, the auditory processing of a bird’s own feedback durishupe 2000).

singing, and the processing of the same auditory signal whenp aqgition to being consistent with the behavioral data, our
not singing, may be quite different. One approach to thigogel makes the specific prediction that a mismatch between
problem is to alter auditory feedback pathways and monitgey | and expected auditory feedback should elicit a detect-

neudr_al act:]vity ahnd/or motor outpudt during ?inging. rC])ur mg.d ble change in the song-related activity of HVc_AFP neurons.
predicts that changes in song due to altering the auditopy. I . —
feedback pathway should be indirect effects of perturbing fﬂ‘ns change may also be indirectly registered in AFP neurons

efference copy mapping, which then causes errors in the mo %? W?” as HV.C—RA neurons, see Troyer anq .Doupe 2000). l.f
output. Since we assume that auditory feedback does not p'i mismaich is sustamgd, increasingly S|gn|f|cant changes in
an active role during vocal production, we expect that remo g-relateq heural aCt'V'ty. should be seenin H\_/C and the AFP
of auditory feedback by deafening should result in no imm&Ver time. Since a change in AFP output is required to alter the
diate change in vocal output, consistent with data from maff§nnectivity in RA in the model, these changes should be
avian species (Konishi 1965; Nottebohm 1968; Price 1979 cordedbeforesignificant cha_m_ges are able to be recorded in
Use of an efference copy is also consistent with the sl patterns of RA motor activity or song output.

degradation of song after complete removal of auditory feed-At the level of song circuitry, the model predicts that the
back by deafening (Nordeen and Nordeen 1992) and the métetor-to-sensory transformation necessary for an efference
rapid degradation seen after perturbation of auditory feedbagpy is learned within the connections between the two pop-
by consistent playback of auditory signals any time the birdations of HVc projection neurons. Consistent with earlier
sings (Leonardo and Konishi 1999). Altered feedback is estiggestions based on physiological evidence, the model makes
pected to result in an active and hence more rapid alterationtloé¢ further anatomical hypothesis that auditory afferents to
the efference copy mapping, whereas removal of feedbddk/'c should preferentially (although not necessarily exclu-
could allow a passive drift in the efference copy map, resultirgijvely) synapse onto AFP-projecting neurons while premotor
in a slow degradation of song. Note that these data are mffierents should preferentially synapse onto RA-projecting
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HVc neurons (Katz and Gurney 1981; Kimpo and Doupe 1993egregating motor and sensory signals is also shared by song
Lewicki 1996; Saito and Maekawa 1993). learning models in which HVc both generates premotor com-
In addition to the problem of feedback delay, our modehands and passes auditory feedback information on to the
solves a second problem posed by the AFP comparison BW~P. For example, Doya and Sejnowski (1998) have proposed
pothesis: if the AFP were to directly evaluate auditory feed model that is similar to ours in adopting the AFP comparison
back signals, these signals would have to bypass strong, bgpothesis and using reinforcement learning to guide song
going premotor activity within HVc (Fig. 1,C and D; learning in RA (see also Fry 1996). However, Doya and
McCasland 1987; McCasland and Konishi 1981; Yu and MaBejnowski (1998) do not address the problems of feedback
goliash 1996; but see Foster and Bottjer 1998). By proposidglay and sensory/motor mixing in HVc that lie at the core of
that the AFP evaluates an efference copy, our model circuour model.
vents this problem and suggests a functional reason for why the
AFP lies downstream of HVc: use of an efference copy r¢yeaknesses of the model
quires that template comparison take place downstream of the
motor pattern generator. Because auditory inputs are necessaf®ur model has a number of weaknesses. The most important
for efference copy learning, however, our solution does not these is our strong simplifying assumptions regarding the
eliminate the problems raised by the mixing of motor aneincoding of sensory and motor information related to song.
sensory signals within HVc. We predict that these signals af@ese simplifications were chosen for two main reasons. First,
kept separate in HVc both by the greater strength of tlxtremely little is known about the manner in which song is
efference copy signal, and by the cancellation of auditogncoded in the patterns of neural activity distributed across the
reafference (McCasland and Konishi 1981) by strong adapt&rious song nuclei. Second, our theoretical understanding of
tion mechanisms (synaptic or neuronal) within HVc_AFP. Alebbian learning rules is limited. In particular, the tendency
slow after-spike hyperpolarization recently found in AFP-prdor these rules to amplify “spurious” correlations has only been
jecting HVc neurons (Dutar et al. 1998) may contribute to theddressed in networks of limited complexity.
cancellation. Because the cancellation depends on an accura#snother weakness of the model is that the auditory feedback
efference copy, our model predicts that auditory signals reroblem has only been partially addressed. Using our esti-
corded in HVc or the AFP should be stronger in very youngnates, AFP comparison signals will arrive in RA with a delay
birds than in juveniles or adults. of roughly 40 ms. While this does prevent significant overlap
Finally, we propose that circuits intrinsic to RA play arwith the motor activity related to the next syllable, 40 ms may
important role in encoding the motor programs for individuadtill represent a significant delay given that RA motor activity
song syllables (cf. Spiro et al. 1999). This proposal is consis-time-locked to the motor output with a precision of less than
tent with anatomical data (Herrmann and Arnold 1991) as wélms (Yu and Margoliash 1996). One possibility for addressing
as the hypothesis that the precision of RA activity (Yu antis problem would be to use internal regularities in the motor
Margoliash 1996) emerges as a result of neural circuitry iprogram and temporally asymmetric learning rules to antici-
trinsic to RA, rather than being driven by (temporally lespate thefuture state of the motor program. Efference copies of
precise) inputs from HVc. this predictedmotor command could be processed in the AFP
and arrive in RA time locked to the arrival of tlaetualmotor
command from HVc. Overall, the model points to the need for
better data concerning the temporal relationships between ac-
Our model constitutes sufficiencyargument, i.e., the model tivity patterns in the various song nuclei during singing. Our
demonstrates that the proposed hypothesessafficientto estimate of AFP processing time is based on variable auditory
solve important problems related to song learning. Howevéafencies recorded in anesthetized birds, and hence, is only
experimental data related to song learning are simply tpoorly constrained. Better timing estimates obtained by micro-
sparse to disallow a wide range of possibilities. In particulagtimulation and/or correlation analyses in singing birds could
there are several alternatives to our proposal that efferenteld important information regarding the functional interac-
copy is used to mitigate the problem of feedback delay. Ftions between various nuclei during song production.
example, it is possible that some song learning is done “off- Related to the issue of processing delays is the fact that
line,” i.e., aspects of motor activity and sensory reafferentemporal aspects of song change with development. Generally,
may be stored in medium- or long-term memory and used syllables are longer and produced at a slower tempo in young
readjust the motor circuit when the bird is not singing, perhapgrds (Immelmann 1969). Thus, one possible solution to the
during sleep (Dave et al. 1999). A more likely alternative is theroblem of feedback delay is that it may simply be a smaller
use of short-term or “working” memory mechanisms. At thproblem in juveniles. However, this solution depends on the
synaptic level, “memory traces” (Houk et al. 1995) could “tagtnotor commands for the slow juvenile syllables being nearly
(Frey and Morris 1998) a synaptic site, making it receptive identical to those for the more rapid syllables sung in adult-
delayed signals related to template comparison. At the netwdvod. Furthermore, even though syllables are longer, neural
level, activity related to the motor command could be maimprocessing may also be slower in young birds, thereby increas-
tained within a feedback circuit and then compared with theg feedback delay.
auditory feedback when it arrives. These proposals raise a
number.of que_st.ions that'hav.e yet to be ipvestigated. MQScation of the template
notable is the difficulty of directing memory signals toward the
appropriate connections in a manner that is not disturbed by theOur model is built on the working assumption that the
presence of strong ongoing motor activity. The problem afiemorized template is stored in the AFP. While the data

Alternative models and mechanisms
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pointing to the AFP as a candidate site are suggestive (Bashaized into a small number (40) of motor assemblies. Thus,
et al. 1996; Bottjer et al. 1984; Scharff and Nottebohm 199dandom activity in the model is actually confined to a relatively
Sohrabji et al. 1990), direct physiological tests have be@arrow range of possible vocal productions, allowing success-
equivocal (Doupe and Solis 1997; Solis and Doupe 1991 reinforcement-based learning after a relatively brief period
1999). Consequently, we have begun to generalize our modélocal development. In this way, our model can be seen as
to consider the possibility that template information is stored nelying on an “innate template” (reviewed in Marler 1997) to
auditory areas closer to the periphery (for candidate sites, seduce the dimensionality of motor space.

Bolhuis et al. 2000; Foster and Bottjer 1998; Mello et al. 1998;

Vates et al. 1996). Initial simulations suggest that song learni .

can be guided by auditory feedback that reaches the Soﬁr?éerence copy may be common in many systems
system onlyafter it has been filtered through neurons selective The close parallels between vocal learning in birds and
for th.e-t.utor Song. ThIS “template_filter hyp_otheSiS” raises thﬂjmans (Doupe and Kuh| 1999) Suggest that efference Copy
possibility that sensorimotor learning may involve trensfer may also play a role during speech development. For example,
Of template |nf0rmat|0n Into the Song System. The faCt that tl“&%eech iS SlOWIy degraded in humans deafened as adu'ts
transfer would rely on the bird’s own vocalization serving as @owie and Douglas-Cowie 1992; Waldstein 1989), but can be
carrier signal is consistent with experimental data showing thatered within an hour by systematic alterations of auditory
AFP neurons develop selective auditory responses to both {8gdback (Houde and Jordan 1998). Moreover, mismatches
bird’s own songand the tutor song (Doupe 1997; Solis anthetween expected and received auditory feedback cause in-
Doupe 1997, 1999) during the sensorimotor phase of soggased activation in auditory language areas in temporal cor-
learning. Note that efference copy may still play an importagéx (Hirano et al. 1997; McGuire et al. 1996). These results are
role, since a different template storage site does little to altgftirely consistent with the efference copy hypothesis: passive
the basic problem of feedback delay. Further investigations &gt after deafening and a more active aiteration of the effer-

required to fully explore these possibilities. ence copy with altered feedback, perhaps via an association of
motor commands with the mismatch signal registered in tem-
Role of efference copy poral cortex.

At a general level, our model focuses on the interaction

~We have used the term efference copy to refer to a moig&tween reciprocally connected populations of neurons, where
signal that has bee_n convert_ed_ to sensory cqordlnates. Our yise population has been assigned a primarily motor and the
of efference copy is most similar to the notion of a forwar@ther a primarily sensory role. This dichotomy parallels tradi-
model used for motor learning and control (Jordan 1995; Miglbna| views of motor/sensory circuits subserving language
and Wolpert 1996; Miall et al. 1993): an internal predictioyernicke 1908) and within frontal/parietal circuits underlying
that is compared with a target reference, in our case, the tu émory-guided reaching and saccade behaviors (Chafee and
song. Our model differs from standard motor control models §g|dman-Rakic 1998). Efference copy learning may be a nat-
that the efference copy is primarily used to modulate plasticifya| consequence of Hebbian learning within such a circuit.
rather than to control ongoing vocalization. Moreover, tenpyyr model suggests that this learning is expected to occur
plate comparison in our model does not result in an “error” gjhenevert) a projection exists from neurons displaying motor
“mismatch” signal, i.e., the difference between the tutor teMictivity to neurons that receive sensory inputs, 2nthe time
plate and the bird’s own song is never computed. Instead, fygdow for associative learning is roughly matched to the
model relies on “matching” signals that could be easily compnsory feedback delay. The simplicity of these conditions
puted by neurons receiving input from a population of cellggues that use of an efference copy may be a common strategy

broadly tuned to the tutor song. o _ for overcoming feedback delay in a wide variety of circuits
Our model also uses efference copy in its classic role agghserving sensorimotor learning.

negative image used to “subtract off” sensory reafference (Bell
et al. 1997; Sperry 1950; von Holst and Mittelstaedt 1980).
However, the purpose of the cancellation is to prevent intex? PENDIX

fﬁrence with t.he Olngcr)]ing motor program, .nOtI,tO diﬁerenr:iat.e This appendix contains details of the implementation of our com-
the sensory signals that are du.e to an animal’s own behay Qtational algorithm. We abbreviate HVc_RA as HR, HVc_AFP as
from those caused by events in the external world. Furth and AFP as AFrHR [RA [HAE [HAM™ HAL (HA'G gnq AF
more, this negative image is a secondary effect in our moc’@ﬁnote firing rates, wherg, M, L, G refer to the early, middle, late,
resulting from adaptation mechanisms within  HVc_AFRnd gap portions of HVc_AFP activity (see Fig. 75C denotes the
(Fig. 5). HVc_AFP efference copy activity passed to the AFP and is calcu-
lated as the average HVc_AFP activity during the early (25-ms long)
and middle (35-ms long) portions of the current syllablg® =
(25rHAE + 35HAMY /(25 + 35). [HA, HR], [RA, HR, and RA, RA

Our model uses reinforcement learning to refine initiall enote the three sets of excitatory synaptic connections that undergo

S - rning, wheregost, pré denotes a matrix of synaptic strengths. For
random activity into motor commands matched to an |ntern§fample, HA, HR, is the connection strength from titia HVC_RA

template. A major drawback of reinforcement learning is tha%sembly to thith HVC_AFP assembly. We use'| = max &, 0) to
“‘curse of dimensionality,” i.e., if motor space contains t0@enote rectification, andx) = (LN) SN, x to denote averaging.
many degrees of freedom, the chance of randomly activatigiues of most parameters are expressed in arbitrary units calibrated
an appropriate combination of motor neurons is exceedingly that the homeostatically controlled average firing rate, and the
low. In our model, RA premotor neurons have been preorgaput/output gain (output= gain X |net input — threshold"), are

Random motor behavior and innate templates
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equal to 1. For HVC_AFP, average firing rate was the weighted affft(n) = E [HA, HR];rR(n) + FyrfAn)
average of firing over all four portions of the syllable.

The calculation of neural activity was based on the following rule:
r, = |input — adaptation— inhibition — 6|, wheref = 1 is spike aff'™e(n) = > FyrfA(n)
threshold. Only HVc_AFP includes adaptation. Inhibition is calcu- i
lated asG;l, wherel represents the activity in a single local inhibitory . i ) ) .
assembly, an@, is the inhibitory strength onto excitatory assembly whereF is the (nonplastic) matrix that determines the transformation
In HVc RA, HVc AFP, and the AFP, inhibition is “feedforward”: from. RA activity into auditory feedback and is equal to the |de_nt|ty
inhibitory activity I is set equal to the average afferent (feedforwardatrix times a constant4) that sets the overall strength of auditory

J

input received by the population, minus a threshold, l.e, [aff — feedback. _ N A
0. 6, was set to 20% of the target level of input for these populations QUtput firing rates are determined frarft(n) = [aff™*(n) — & —
(see step 8a belowp!'™® = 9" = 4, and9F = 3. RA included Ci |~ 0", 1 = |aff?*(n) — 6;'*|". The level of adaptatiors,, was

feedback dynamics (described below, step 3). RA inhibition is algtpdated after calculating activity for each of the syllable subdivisions

“feedback,” i.e.] is set equal to the mean level of activity within RA,(S€€ Step 8c). Ny i .
minus a thresholdt = [r*A — §RA|* with 6RA = 0.20. 5. Calculate AFP activity. aff (n) = 2 T,;V/ r;ES(n), whereT is
the connection matrix from HVc_AFP to the AFP that encodes tutor
syllables (Fig. ). T,; = 1.875 if assembly belongs to tutor syllable
Simulations k; T,; = 0 otherwise. A sublinear (square root) function is included so
that a better match is obtained when efference copy activity is dis-
For each syllablen, we performed the following nine steps. Theséributed equally among the assemblies encoding a given tutor syllable,
were repeated for a fixed number of syllables (usually 25,000). rather than the having strong activity within just a few assemblies.
1. Generate premotor drivp,(n), onto each HVc_RA assembly, Output firing rates were calculated g8 (n) = |affe™(n) — GETI —
First we generate random variabfes= |n|*, wheren was generated 6|*, | = |aff*F(n) — 07F|". A
from a Gaussian distribution with mean equal to 3 and variance equab. Calculate reinforcemen®¥(n) = [R¥r 27 (n) — ¢ is the
to 1. pi(N) = ParivePi/P- Parive = 20 is a constant that determines thecontribution to the reinforcement from the match to tkib tutor
magnitude of the drive. syllable, wherep, represents a threshold that is adjusted homeestati
2. Calculate HVc_RA activityThe input afferent to HVc_RA is cally (see below, 7c)R®' = 5 is a constant that determines how large
equal to the premotor drive: @f¥(n) = p,(n). Output firing rates are ¢, must be to keelRyY' controlled. LargeR®' requires a large value for
determined front7'R(n) = |affi'R(n) — GI'R — 0], | = |aff"R(n) — ¢, and hence vyields significant reinforcement for only the best matches.
0% " The total reinforcement sign&(n) = ¢%(0.15+ 0.8R>{(n)). c} = 20
3. Calculate RA activity The afferent input is calculated asdetermines the overall magnitude of the reinforcement signal. Note that
afffA(n) = 2 [RA HR]ier-HR(n). To calculate the output firing rates, 15% of the reinforcement signal is independent of the template match.
the following dynamics were simulated This is included to be consistent with our model of sequence learning (see
Troyer and Doupe 2000).
7. Update synaptic strengthSynaptic plasticity was based on the
following rule

(1) = —u(t) + (aff”(n) + > [RA RAJ At
i
A[post pre];(n)
— GRA(rRA(L) — OFAI*) J
— kpost,preJ’ end dtprej max dt(a(t _ tpre)p‘post(t) _ l'Diposl)r.pre(tpre)
A = [u(t) — o]

kPestPreis a constant determining the rate of synaptic plasticity in that
pathway kKHRHA = 5 x 1075 ms 2 kKH"RHA = 1 X 1072 ms 2, and
KRN = 2 X 1077 ms ?). tgaq and teng delimit the arrival of

whereu; should be thought of as the typical membrane potential f . L I .
neurons in assembly The dynamics were simulated on the intervaPresynaptic activity related to syllabhewhere this is calculated using

[0, 2] using the MATLAB command “ode23”. To monitor conver-sy”able lengths and.latencies as in FigA2andB. .The gap between
gence, every 250 syllables the dynamic simulations were contimﬁ#lables was considered part of the preceding syllable (but see

u,(0) = afff*(n) — (afff®) + 0

i bost; i f
over the interval [0, 10] and the root-mean-square (RMS) differen liams and Staples 1992pP°'is the postsynaptic activity relevant

initve HA — (HA RA _ RA
between RA activity at the end of short and long intervals waS" plasticity: p”" = ™ and p™ = Rr™™. The threshold) was
calculated. RMS= (L/40){, [rRA(2) — rRA(10)3 2. During most proportlor;ilitto thgoglirggéng averagSAof postsynaRgtlc activifPyt see
of the learning, simulations over the short interval resulted in neSiEp 9):yPo% = bP°%pPs(n — 1). b™* = 0.08;b™" = 1.
convergence of the dynamics (RMS 0.1). Convergence was not To implement our plasticity rule, we divided time into intervals of
. . - 1 N t pOSl OS! pre

complete during the final period of syllable learning (R¢0.1 for “;,?Qita:p‘, prfh atnd postst)r/]n?iptlc actll\n:;f;‘(f, t | + Tp t] ,2”_d t[,tmg
syllables 10,500-16,250). Incomplete convergence will favor affereny,, = Tp:s]g a2 were ?'t ? ) comp tla ely OVGLiPEgPegjtpcgs W’
over recurrent contributions to the final RA activity pattern, but shou - t or2) corlnp etely nonoverlapping - e
not noticeably alter our results. This was born out in a few (comp 1en rewrote our rule as
Ejalflr(i)r:gﬂg/(larr]:/egjll\;%)leSImmatlons in which long intervals were used A[post, pre]; (n) = kPoStPCPrePosh ppre( ppostg, — yposy

4. Calculate HVc_AFP activitySeparate calculations were madevherea is the average value @f(s”°st — "9 whensP°Stands™™® lie

for the four syllable subdivisions&( M, L, G; Fig. 7) in the appropriate intervals witf°'> s, C is the proportion of the
time thats*°' > & C = 1/2 for condition1), and C = 1 for
afff™E(n) = > [HA, HR;rl'®(n) + FyrfA(n — 1) condition?2). In settingt, ., we assumed that the time course of RA

i plasticity was sufficiently rapid so that only within-syllable associa-
tions need be considered and we need only specify the average value
aff™M(n) = > [HA, HR];rR(n) of @, @ = 1. In HVc_AFP, only associations within a syllable and
j from one syllable to the next were considered. The time course of the



BIRDSONG SYLLABLE LEARNING 1221

neural plasticity tracex(r), was modeled as a difference of exponenhitializing variables
tials: a(7) = (€ "™ — e "™"Y/a, 7., = 1 ms,7,, = 40 ms, and » , , L
ais a normalizing constant that ensures thé} has a maximum value ~ INitial excitatory synaptic strengths were set as describedtirn-
of 1. obs. To equilibrate homeostatically adjusted variables, 500 syllables
To reduce spurious correlations, we included a “momentum” terere slmulated in which no associational Iearn!ng took pllace. When
in our update rule (e.g., Rumelhart et al. 1986). The total synapfPorting our results, these syllables were not included, i.e., syllable
change at each time stef[post, prd;(n), was computed by taking Number 1 starts after this period.
the running average of past associations
Simulations with altered parameters

A[post pre];(n) = (1 = y)A[post pre;(n) + A[post pre];(n) - . ) : .
In arriving at our results, many simulations were run in which
[post pre];(n) = [post pre];(n — 1) + A[post pre];(n) parameters were varied in a nonsystematic manner (results not re-
i ) ported). To more systematically explore the range of model behavior,
With momentum, the change in strength for the current syllable resudigulations were run when various parameters were increased by a
from associations occurring over the previous/y syllables. We use constant factoc. Figure 14 (circles) shows increased excitatory and
y = 1/1000. Although it is added for computational reasons, momejibitory learning rateskP°stPe— ¢ x kPeStPreandk™ — ¢ x K",

tum may have some relation to mechanisms of memory consolidatipigure 14\ (plus signs) shows increased correlation in initial connec-

acting on the time scale of hours (Karni et al. 1998). tions, Gaussian noise added when setting initial synaptic strergths
8. Update and apply homeostatic mechanisms. ¢ X 10% of strength of nonzero synapses (8eg+ops). Figure 14
8a. Normalize synaptic strengtHrst, we normalized total synap- (circles) shows increased LTP threshold in R&R* — ¢ x bRA.

tic strength for each presynaptic neuron Figure 14\ (plus signs) shows increased synaptic strengths in RA,

[RA RA — ¢ X [RA RA and RA HR] — ¢ X [RA HR].
[post pre]; = [post pre]([pOSt prelNPt/ " [post pre],)

1 We thank B. Baird, D. Buonomano, C. Linster, A. Krukowski, K. Miller,

and members of the Doupe lab for many helpful comments. Special thanks to

Then, we normalized for each postsynaptic neuron K. Miller for input and support throughout the project.
This work was supported by the McDonnell-Pew Program in Cognitive
Neuroscience (T. W. Troyer), and National Institutes of Health Grants MH-
[post pre]; = [post pre]( [post pre];N""® Z [post, pre]ij> 12372 (T. W. Troyer) and MH-55987 and NS-34835 (A. J. Doupe).
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