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Troyer, Todd W. and Allison J. Doupe. An associational model of
birdsong sensorimotor learning. I. Efference copy and the learning of
song syllables.J Neurophysiol84: 1204–1223, 2000. Birdsong learn-
ing provides an ideal model system for studying temporally complex
motor behavior. Guided by the well-characterized functional anatomy
of the song system, we have constructed a computational model of the
sensorimotor phase of song learning. Our model uses simple Hebbian
and reinforcement learning rules and demonstrates the plausibility of
a detailed set of hypotheses concerning sensory-motor interactions
during song learning. The model focuses on the motor nuclei HVc and
robust nucleus of the archistriatum (RA) of zebra finches and incor-
porates the long-standing hypothesis that a series of song nuclei, the
Anterior Forebrain Pathway (AFP), plays an important role in com-
paring the bird’s own vocalizations with a previously memorized
song, or “template.” This “AFP comparison hypothesis” is challenged
by the significant delay that would be experienced by presumptive
auditory feedback signals processed in the AFP. We propose that the
AFP does not directly evaluate auditory feedback, but instead, re-
ceives an internally generated prediction of the feedback signal cor-
responding to each vocal gesture, or song “syllable.” This prediction,
or “efference copy,” is learned in HVc by associating premotor
activity in RA-projecting HVc neurons with the resulting auditory
feedback registered within AFP-projecting HVc neurons. We also
demonstrate how negative feedback “adaptation” can be used to
separate sensory and motor signals within HVc. The model predicts
that motor signals recorded in the AFP during singing carry sensory
information and that the primary role for auditory feedback during
song learning is to maintain an accurate efference copy. The simplic-
ity of the model suggests that associational efference copy learning
may be a common strategy for overcoming feedback delay during
sensorimotor learning.

I N T R O D U C T I O N

The combination of a well-characterized, stereotyped behav-
ior and specialized anatomy makes birdsong an ideal system in
which to study the neural basis of motor learning. Moreover,
song learning shares important similarities with human speech
learning (Doupe and Kuhl 1999). In birds, vocal learning is
accomplished in two phases. During an initial,sensoryphase,
birds listen to and memorize a tutor song, often called the
“template” (Konishi 1965; Marler 1964). In a later,sensori-
motor phase, birds gradually match their vocalizations to the
memorized song, using auditory feedback from their own
vocalizations (Fig. 1,A andB). We have constructed a com-

putational model demonstrating that simple associational
(Hebbian) learning rules are sufficient to address important
problems related to the sensorimotor learning of song. Our
model focuses on the zebra finch, a species commonly used in
physiological investigations of song learning. Zebra finch
song consists of a stereotyped sequence of vocal gestures or
“syllables.” In this paper, we focus on the learning of the
individual syllables. In the following companion paper (Troyer
and Doupe 2000), we extend our model to include sequence
learning.

The likely neural substrate for sensorimotor learning is the
song system, a set of brain nuclei specialized for vocal learning
and production (Nottebohm et al. 1976) (Fig. 1C). Themotor
pathwayfor song includes the direct projection from nucleus
HVc (used as a proper name; Margoliash et al. 1994) to the
robust nucleus of the archistriatum (RA). Both nuclei display
neural activity time-locked to song production (McCasland
1987; Yu and Margoliash 1996), and lesions in either nucleus
disrupt normal song production at all stages of development
(Nottebohm et al. 1976; Simpson and Vicario 1990). HVc and
RA are also connected by an indirect pathway, theAnterior
Forebrain Pathway(AFP). Lesion studies indicate that the
AFP is crucial for song learning, but is not necessary for
normal song production in adults (Bottjer et al. 1984; Scharff
and Nottebohm 1991; Sohrabji et al. 1990). These and other
data (seeBiologically supported assumptions) have led to the
“AFP comparison hypothesis,” in which the AFP guides sen-
sorimotor learning by transmitting a comparison between
auditory feedback from the bird’s own vocalizations and
the memorized template (Bottjer and Arnold 1986; Doupe
1993; Mooney 1992; Nordeen and Nordeen 1988; Saito
and Maekawa 1993). These comparison signals are used to
guide learning in the motor pathway at the level of RA (Fig. 1,
C andD).

The AFP comparison hypothesis is challenged by a funda-
mental problem in motor learning, the problem of feedback
delay (Lashley 1951; Miall and Wolpert 1996; Miles and
Evarts 1979). In zebra finches, the 100-ms estimated latency
(see Fig. 2) for presumptive AFP comparison signals to arrive
in the motor pathway after a motor command is nearly as long
as a typical song syllable. This delay would cause comparison
signals for one syllable to have greatest overlap with the neural
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activity for the subsequent syllable and poses a significant
challenge to the notion that AFP comparison signals guide
learning in RA (see Bottjer and Arnold 1986). In our model, we
retain the hypothesis that the AFP plays an important role in
template comparison but propose that instead of waiting for the
actual auditory feedback, an internal prediction or “efference
copy” of the auditory feedback is generated within HVc to

guide song learning. Therefore, we predict that the signals
recorded in the AFP during singing (Hessler and Doupe
1999a,b) aremotorsignals that also carry sensory information.
Furthermore, our model suggests a functional reason for why
the AFP is located downstream of the motor nucleus HVc (Fig.
1, C andD): use of an efference copy requires that brain areas
involved in template comparison receive motor efferents.

Preliminary versions of this work have been presented in
conference proceedings (Troyer et al. 1996a,b).

Model and approach

Over the past 25 years, anatomical, lesion, and in vivo
physiology studies have yielded a wealth of data concerning
the functional anatomy of the song system. However, current
hypotheses regarding the sensory-motor interactions during
song learning lack detail. To explore these issues, we set out to
build a computational model of the sensorimotor phase of song
learning. Our goal was to determine if basic theoretical prob-
lems in sensorimotor learning could be solved using simple
rules of associational plasticity, constrained by the known
anatomy of the song circuit. We hoped to direct future exper-
iments by identifying important gaps in our knowledge, as well
as to evaluate previous experimental results from a computa-
tional point of view.

Our efforts resulted in two closely related models, address-
ing the problem of song learning at different levels of abstrac-
tion. The first model is a purely “conceptual model,” i.e., a
self-consistent set of functional hypotheses conforming to a
wide range of experimental results. The functional hypotheses
contained in this model constitute the core contribution of our
research. The second model is a true “computational model”
that incorporates these hypotheses into a working computer
algorithm. Due to the very limited knowledge of the song
system at the level of local circuits, implementing this algo-
rithm required a number of specific assumptions that reach
beyond current experimental knowledge. As a result, several
aspects of the computational model are not well-constrained by
biology. Moreover, we made a number of simplifying assump-
tions to ensure that simulations could be run in a reasonable
amount of time. However, the computational model played an
important role in exploring our initial functional ideas and
serves to illustrate our core conceptual hypotheses. Perhaps
more importantly, the construction of a working computational
algorithm demonstrates the mutual consistency of our hypoth-
eses, as well as providing a theoretical demonstration that they
are sufficient to account for important aspects of song learning.
This dual approach not only highlights general problems of
sensorimotor learning and generates testable predictions at a
functional level, it also provides a framework for understand-
ing how specific biological mechanisms may contribute to their
solution. These models are only a first step, and, of necessity,
contain many simplifications. However, taken together, they
constitute the most detailed set of hypotheses to date regarding
the interaction of sensory and motor signals during the senso-
rimotor phase of song learning.

In this section, we present the justification for our working
biological assumptions. We then describe the main problems
addressed by our model and outline the key elements of our
proposed solution. Finally, we present our conceptual model,
which describes our functional hypotheses in greater detail. In

FIG. 1. The song system.A: developmental time course. Duringsensory
learning, birds memorize a song from their tutor. Our model assumes that this
process has already been completed. Duringsensorimotorlearning, birds use
auditory feedback from their own vocalizations to match their song to the
memorized template. These stages of learning may overlap. After learning,
song “crystallizes,” becoming more stable and less dependent on auditory
feedback.B: behavioral schematic of sensorimotor learning (cf. Konishi 1965).
C: song system anatomy: Anterior Forebrain Pathway (AFP) (gray); motor
pathway (white). Field L (black) receives input from auditory thalamus and
provides direct and/or indirect auditory input to HVc (Fortune and Margoliash
1995; Janata and Margoliash 1999; Vates et al. 1996).D: schematic of the
“AFP comparison hypothesis.” Note that the 100-ms estimated latency (see
Model and approach) for motor signals to leave robust nucleus of the archi-
striatum (RA), return as auditory feedback via L, and then be processed in the
AFP is nearly as long a typical song syllable. Thus, the evaluation of auditory
feedback from one syllable would arrive in RA during the motor activity for
the subsequent syllable.
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the METHODS section, we outline the theoretical assumptions
incorporated into our working computational model, including
a description of the network architecture and the simple en-
coding scheme used to represent song. In theRESULTS section,
we present quantitative results generated by our computational
model. Details of the computer algorithm are confined to an
appendix.

Biologically supported assumptions

Although the nature of template memorization is largely
unknown, various lines of evidence suggest that the AFP may
transmit a comparison between the bird’s own vocalizations
and the memorized tutor song. We call such signals “template
comparison signals.” Initial evidence suggesting a role for the
AFP in template comparison came from lesion experiments:
AFP lesions in juvenile zebra finches disrupt song learning,
whereas lesions in adult birds have little effect on normal song
production (Bottjer et al. 1984; Nottebohm et al. 1976; Scharff
and Nottebohm 1991; Sohrabji et al. 1990). Further experi-
ments have shown that the lateral portion of the magnocellular
nucleus of the anterior neostriatum (LMAN), the output nu-
cleus of the AFP, appears to be necessary any time the song
changes, even in adulthood (Brainard and Doupe 2000; Mor-
rison and Nottebohm 1993; Williams and Mehta 1999). Other
experiments suggest that circuitry within the AFP may function
as a template: AFP neurons develop song selective auditory
responses during song learning (Doupe 1997; Solis and Doupe
1997), and a subset of these neurons respond vigorously to the
tutor song (Solis and Doupe 1997, 1999). Using a more direct
approach, Basham et al. (1996) showed that local blockade of
N-methyl-D-aspartate (NMDA) receptors in the AFP specifi-
cally during song memorization disrupts normal song learning.

Within the framework of our model, the simplest hypothesis
is that the AFP not onlytransmits a template comparison
signal, but that it alsocomputesthe match between the effer-
ence copy and the memorized template, i.e., the AFP is the
storage site for the tutor template. We did not attempt to model
the AFP circuitry that subserves template comparison but
rather viewed the AFP as a “black box” that performs the
necessary calculations. An alternative hypothesis that is still
consistent with the basic structure of our model is that the AFP
transmits a template comparison signal, but that memorized
template information is stored closer to the auditory periphery
than the AFP (seeDISCUSSION).

Additional studies into the functional anatomy of the song
system have shown that the neurons that project to RA and
those that project to the AFP form distinct populations within
HVc (Nordeen and Nordeen 1988). We denote these two
populations HVc_RA and HVc_AFP. While the evidence is
indirect, these two populations are likely to be highly intercon-
nected (Fortune and Margoliash 1995; Vu and Lewicki 1994).
Various data suggest that activity within HVc_RA neurons is
more closely tied to motor behavior, whereas activity within

HVc_AFP neurons is more closely tied to auditory input (Katz
and Gurney 1981; Kimpo and Doupe 1997; Lewicki 1996;
Saito and Maekawa 1993; but see Doupe and Konishi 1991;
Vicario and Yohay 1993). Moreover, experiments in singing
birds suggest that the motor pathway is arranged hierarchically,
with RA encoding the detailed motor program for each song
syllable, and the central pattern generator for song sequence
lying upstream of RA, perhaps in HVc (Vu et al. 1994; Yu and
Margoliash 1996).

The main biologically supported assumptions that are incor-
porated into the model are summarized in Table 1.

The final data included in the model were the estimated
latencies between various song nuclei (Fig. 2A). We included
only the best studied neural pathways in the song system, as the
functional significance of other signaling pathways remains
unclear (see Foster and Bottjer 1998; Foster et al. 1997; Stried-
ter and Vu 1998; Vates et al. 1997). We used 50 ms for the
latency from HVc premotor activity to vocal output (McCas-
land 1987; McCasland and Konishi 1981), and 15 ms for
auditory latencies to HVc (Margoliash and Fortune 1992).
Estimating the processing time through the AFP during song
was more problematic, since activity in LMAN, the output
nucleus of this pathway, is quite variable. We used 45 ms for

TABLE 1. Biologically supported assumptions

1. Anterior Forebrain Pathway transmits a template comparison signal
2. Separate populations of HVc neurons

A. HVc_RA—more motor
B. HVc_AFP—more sensory

3. RA encodes detailed motor program of individual syllables

FIG. 2. Timing within the song system.A: numbers represent estimated
latencies between song nuclei (seeRESULTS); 40 ms represents the entire
processing time for signals passing through the AFP.B: the length of model
syllables (M. Brainard, personal communication; Scharff and Nottebohm
1991; Zann 1993).C: time delay (100 ms) for motor activity to return to RA
via auditory feedback (451 15 ms) and the AFP (40 ms). A signal transmitted
by the AFP that carries the match between the syllable just sung and the
memorized template will arrive in RA during the motor activity for thenext
syllable (dotted box).
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the latency to LMAN (A. J. Doupe 1997; personal observa-
tions). Subtracting 15 ms for the latency to HVc and adding 10
ms for the delay between LMAN and RA, we obtained a
processing time through the AFP of roughly 40 ms. Simulated
syllables were 80-ms long with a 35-ms gap between syllables
(Fig. 2B), typical of mean values for zebra finch song (M.
Brainard, personal communication; Scharff and Nottebohm
1991; Zann 1993). These timing data suggest that, on average,
presumptive template comparison signals from the AFP will
have the greatest overlap with motor activity for the subsequent
syllable (Fig. 2C, dotted box).

Problems addressed

In this paper, we address the problem of learning a collection
of motor representations corresponding to song syllables stored
within a memorized template. For simplicity, we do not ad-
dress learning the detailed temporal structure within each syl-
lable, nor learning the length of syllables and inter-syllable
gaps. Our model rests on two key assumptions:1) song learn-
ing is accomplished using simple associational learning rules
and2) the AFP guides song learning by transmitting a signal
that carries information about the match between the bird’s
auditory feedback and a stored template. Here, we present a
brief outline of the main problems addressed by our model and
the key functional hypotheses that underlie our solutions (see
Table 2). More detail regarding our hypothesized solutions is
presented in the form of a conceptual model (seeConceptual
model) and a computational model (seeRESULTS). The presen-
tation of both models is structured according to the following
outline.

The first problem we address is the important problem of
auditory feedback delay: presumptive AFP comparison signals
would arrive in RA during the neural activity for thenext
syllable (Fig. 2C). We hypothesize that the AFP does not
directly evaluate auditory feedback, but instead, receives an
internally generated prediction of the sensory feedback result-
ing from song-related motor activity (Table 2, number 1). Such
an internal prediction requires a transformation from motor to
sensory coordinates and has been termed efference copy
(Sperry 1950), “corollary discharge” (von Holst and Mittels-
taedt 1980), or the result of a “forward model” (reviewed in
Jordan 1995; Miall and Wolpert 1996). We will use the term
efference copy. Sensory signals resulting from motor behavior
have been termed sensory “reafference” (von Holst and Mit-
telstaedt 1980). We further hypothesize that the motor3
sensory efference copy develops between the two populations
of HVc projection neurons (Table 2, number 2). To learn this
mapping, it is important that our associational plasticity rule is
“temporally asymmetric,” i.e., presynaptic activity must be

followed bypostsynaptic activity to induce plasticity (Table 2,
number 3).

The second problem we address is the nature of AFP-guided
syllable learning in RA. We make two functional hypotheses.
First, we hypothesize that syllable learning is guided by non-
specific reinforcement signals provided by the AFP that mod-
ulate the degree of ongoing associational plasticity throughout
RA (Table 2, number 4; see Sutton and Barto 1998, for an
overview of reinforcement learning). This hypothesis is moti-
vated by the fact that nonspecific reinforcement signals, while
generated by a match to a sensory template, do not have to be
directed toward specific patterns of RA motor neurons. As a
result, no sensory3 motor mapping is required to guide
learning. Second, we hypothesize that synapses intrinsic to RA
play an important role in storing syllable representations (Table
2, number 5). This hypothesis was motivated by the need to
learn a number of discrete patterns of neural activity corre-
sponding to the syllables in the tutor template and is consistent
with estimates that up to 85% of synapses in RA come from
local collaterals of other RA neurons (Herrmann and Arnold
1991). Theoretical models have shown that recurrent activity is
ideal for stabilizing such patterns (e.g., Hopfield 1984). More-
over, if the representation for individual syllables is encoded in
the pattern of intrinsic RA synapses, plasticity in the synapses
connecting HVc and RA can alter the sequence of syllables
produced, with only minor disruption to the representation for
each individual syllable (see Troyer and Doupe 2000).

The third problem we address results from the competing
requirements of both learning and using the efference copy
signal. Learning an efference copy mapping by associating
motor activity with delayed auditory feedback implies that
auditory inputs induce significant levels of activity. However,
when using the short-latency efference copy signals to guide
syllable learning, the strong auditory inputs will interfere with
the efference copy signal. We address this problem by assum-
ing that the auditory feedback signal is relatively weak and/or
that the response of HVc_AFP neurons is strongly adapting
(Table 2, number 6).

Conceptual model

Our model focuses on four neural populations (Fig. 3):
nucleus RA in the motor pathway, separate populations of HVc
projection neurons projecting to RA and the AFP (Nordeen and
Nordeen 1988), and a single population representing the output
of the AFP. Because we do not explicitly model nuclei down-
stream of RA, activity in RA represents the motor output of the
model. In this paper, we explore the functional consequences
of associational plasticity in three sets of connections:
HVc_RA 3 HVc_AFP, HVc_RA 3 RA, and intrinsic
RA 3 RA connections.

Our model does not address the learning of syllable timing.
We assume that timing is provided by rhythmically clocked
bursts of premotor activity arriving in HVc_RA, with the
duration of each burst controlling the duration of premotor
activity and hence the length of song syllables (Fig. 2B). While
the source of the premotor drive is not explicitly modeled,
the song nuclei nucleus uvaeformis (Uva) and/or nucleus in-
terfacialis (NIf) are likely candidates (McCasland 1987; Stried-
ter and Vu 1998; Williams and Vicario 1993). Input from the
forebrain nucleus medial MAN is also a possible source. Al-

TABLE 2. Functional hypotheses for syllable learning

1. An efference copy, rather than the bird’s own vocalizations, is compared
to the template

2. The efference copy map is encoded in the connections from HVc_RA3
HVc_AFP

3. Associational learning is temporally asymmetric (post-synaptic activity
must follow pre-synaptic activity)

4. AFP transmits reinforcement signals to guide syllable learning
5. Intrinsic RA circuitry is important for storing syllable representations
6. Weak auditory feedback and/or strong HVc_AFP “adaptation” is used to

separate sensory and motor signals in HVc
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though the timing of this drive is fixed, we assume that
HVc_RA neurons receive varying magnitudes of drive, and
these magnitudes are generated independently for each
HVc_RA neuron and each vocalization produced by the model.
Thus, HVc_RA produces random patterns of premotor activity
that are independent from one syllable to the next. The model’s
task is to use template comparison signals generated by the
AFP to reorganize the connections in the motor pathway so that
1) random HVc_RA activity is converted into a handful of
stereotyped patterns of RA motor activity, and2) these stereo-

typed patterns of RA activity lead to vocal output matched to
the memorized template. Note that HVc_RA activity becomes
ordered when we address the problem of sequence learning
(Troyer and Doupe 2000).

PROBLEM 1: AUDITORY FEEDBACK DELAY. To address the problem
of feedback delay, we hypothesize that an efference copymap-
ping is learned between the two populations of HVc projec-
tions neurons (Table 2, numbers 1 and 2). Since the connec-
tions in the motor pathway are initially unstructured, the
random patterns of HVc_RA activity lead to a random explo-
ration of motor space (cf. Bullock et al. 1993; Kuperstein 1988;
Salinas and Abbott 1995). Activity flows down the motor
pathway (McCasland 1987) and returns to HVc_AFP as audi-
tory feedback (Fig. 4A, dark lines). While the exact form of the
learning is not crucial for our model, it is important that
associational learning is temporally asymmetric (Table 2, num-
ber 3), i.e., synaptic strengths increase only when presyn-
aptic activity precedes postsynaptic activity (Bi and Poo
1998; Debanne et al. 1998; Gustafsson et al. 1987; Hebb
1949; Markram et al. 1997). By strengthening synapses onto
neurons that are likely to fire in the near future, temporally
asymmetric “Hebbian” learning strengthens synaptic inputs
that “anticipate” any postsynaptic activity that regularly
follows presynaptic spiking (cf. Blum and Abbott 1996;
Gerstner and Abbott 1997). In our model, auditory feedback
to HVc_AFP neurons encoding the sensory aspects of a
particular vocal gesture will follow spiking in HVc_RA
neurons encoding motor aspects of that gesture. Associa-
tional learning then strengthens the synapses from that (pre-
synaptic) HVc_RA neuron onto the corresponding (postsyn-
aptic) neurons in HVc_AFP (Fig. 4A, white arrow). After
this motor3 sensory mapping is learned, activity within

FIG. 3. Network architecture. Black arrows: plastic connections. Gray ar-
rows: nonplastic connections. AFP3 RA connections transmit a reinforce-
ment signal that modulates plasticity in RA but does not affect RA activity
patterns. Plastic connections from HVc_AFP3 HVc_RA and from AFP3
RA (not shown) are considered in the following companion paper (Troyer and
Doupe 2000).

FIG. 4. Two-step solution to the problem of feedback de-
lay. A: step 1: efference copy learning. Each syllable is
initiated by a random premotor drive to HVc_RA. This signal
travels through the motor and auditory feedback pathways
(black arrows) arriving in HVc_AFP with a delay of 65 ms.
Motor nuclei downstream of RA are not explicitly modeled.
Associational learning (white arrow) between premotor
HVc_RA activity and HVc_AFP activity driven by auditory
feedback results in an efference copy mapping.B: step 2:
learning syllable representations. The efference copy is
passed on to the AFP, and the match with the stored template
serves as a reinforcement signal (line with round end) that
modulates plasticity signals in RA. This modulation reorga-
nizes intrinsic connections within RA, as well as the projec-
tion from HVc (white arrows).
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HVc_RA motor neurons will drive, with short latency, the
HVc_AFP neurons encoding the corresponding sensory rep-
resentation. This short-latency motor activity in HVc_AFP
constitutes asensory predictionof the auditory reafference.
This efference copy can then be passed on to the AFP and
used to guide learning in RA. Note that efference copy
learning occurs within HVc and proceeds without reference
to the tutor template stored in the AFP. Using efference
copy in this way splits the total feedback delay for AFP
comparison signals to return to RA into two shorter delays:
the auditory feedback delay of 65 ms to HVc (Fig. 4A) and
the 40-ms processing delay from HVc through the AFP (Fig.
4B).

PROBLEM 2: SYLLABLE LEARNING IN RA. To guide syllable learn-
ing, the AFP evaluates the efference copy and transmits arein-
forcement signal to RA (Table 2, number 4). This nonspecific
reinforcement signal is assumed to modulate the degree of
ongoing associational plasticity throughout RA. An efference
copy that is well-matched to the tutor song results in a large
plasticity signal in RA neurons that are significantly activated,
leading to a potentiation of recently activated synapses; a poor
match evokes small potentiation or depression. Since a good
match to the tutor song occurs when the RA neurons that
encode a single tutor syllable are co-active, reinforcement
leads to the development of strong connections between RA
neurons encoding the same tutor syllable (Table 2, number 5).
Reinforcement also reorders the connections from HVc_RA3
RA (seeRESULTS). These patterns of connectivity result in a
strong tendency for RA to produce coherent patterns of motor
activity matched to the template, i.e., the tutor syllables have
become “attractors” for the neural dynamics within RA (see,
e.g., Amit 1989).

PROBLEM 3: SEPARATING MOTOR AND SENSORY SIGNALS IN HVC.

In our model, HVc_AFP neurons receive two distinct inputs:
auditory feedback, which drives efference copy learning, and
motor input from HVc_RA, which carries the efference copy
used for AFP-driven song learning. While necessary for effer-
ence copy learning, the delayed auditory signal can interfere
with the efference copy signal used to guide learning. We
propose two strategies for separating sensory and motor signals
within HVc_AFP (Table 2, number 6). First, the auditory

feedback signal is set significantly weaker than the efference
copy signal. Hence, auditory feedback only weakly perturbs
the efference copy, which can remain sufficiently accurate to
guide syllable learning. However, weak auditory feedback is
able to guide efference copy learning by providing, over the
course of multiple syllables, a consistent association between
HVc_RA motor activity and the resulting weak sensory acti-
vation. The second strategy is based on the cancellation of
auditory feedback signals in HVc_AFP by “adaptation.” Spe-
cifically, adaptation in the HVc_AFP circuitry results in a
“negative after-image” of any given pattern of HVc_AFP ac-
tivity (Fig. 5), which has a decay time (100 ms) similar to the
length of a typical song syllable (seeAPPENDIX for implemen-
tation). A variety of biological mechanisms could provide this
kind of adaptation, e.g., spike-triggered or voltage-dependent
intrinsic currents and/or slow feedback inhibition. Such mech-
anisms have been shown to be present within HVc (Dutar et al.
1998; Kubota and Saito 1991; Kubota and Taniguchi 1998;
Schmidt and Perkel 1998). Because the efference copy arrives
in HVc_AFP with a shorter delay than the auditory feedback,
the after-image of the efference copy will counteract the cor-
responding auditory reafference. That is, HVc_AFP neurons
strongly activated by efference copy input from HVc_RA will
be in an adapted state by the time that the corresponding
patterns of delayed auditory feedback arrive in HVc_AFP.
Note that an inaccurate efference copy will lead to an incom-
plete cancellation of auditory feedback, and interference from
this delayed feedback will create an inaccurate efference copy.
However, associations between the uncanceled feedback signal
and the HVc_RA motor activity that gave rise to it will lead to
new plasticity that improves the quality of future efference
copy predictions. Details of how this cancellation mechanism
works in the context of our computer algorithm are presented
in the RESULTS.

M E T H O D S

The main assumptions that were necessary to construct our
computational algorithm are summarized in Table 3 and are dis-
cussed below. Only the subsections explaining our method of
neural encoding (seeNeural encoding, Fig. 6) and the nature of
HVc_AFP activity (seeTonic activity patterns, Fig. 7) are neces-
sary for understanding the main computational results presented in
the RESULTS. Other subsections describe issues of mainly theoret-
ical interest. In the final subsection of theMETHODS, we provide
formulas for our method for characterizing the developmental time
course in the model. Details of the computational algorithm are
presented in theAPPENDIX. The assumptions outlined in Table 3 are

TABLE 3. Theoretical assumptions

1. Simple encoding scheme
A. Each assembly encodes one feature
B. Each tutor syllable has distinct features

2. Tonic activity patterns over the time course of each syllable (except in
HVc_AFP)

3. Plasticity rule roughly based on LTP
4. Local circuit mechanisms

A. Feedback connections in RA
B. Global inhibition

5. Initial connectivity decorrelated
6. Homeostatic mechanisms

A. Synaptic normalization
B. Inhibitory plasticity

FIG. 5. Separating efference copy and delayed auditory feedback. Given
our estimates (Fig. 2A), auditory feedback will reach HVc_AFP 60 ms after the
efference copy input from HVc_RA. Activity in HVc_AFP results from a
mixture of these two signals (see Fig. 7 below). Adaptation mechanisms in
HVc_AFP produce a delayed, negative image of HVc_AFP activity, which is
subtracted from the auditory feedback. Accurate efference copy predictions
can cancel auditory feedback; inaccurate predictions yield a difference signal
that drives new efference copy learning.
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not crucial for the main predictions of our model; alternative
algorithms that implement our functional hypotheses for song
learning are possible. Our particular algorithm should be seen as a
first approximation, one that allows us to explore associational
learning between patterns of sensory and motor activity on the time
scale of tens to hundreds of milliseconds.

Each simulation consisted of repeated iterations of a computer
subroutine that1) calculated activity patterns related to a single
syllable output by the model, 2) applied our synaptic plasticity rule,
and 3) updated the various homeostatic mechanisms in the model. The
details of the algorithm and the specification of model parameters are
given in theAPPENDIX. In most simulations, the subroutine was iterated
for 25,000 syllables,;5,000 more than were typically needed for
model output to become stereotyped. When performance was de-
graded by changing parameters (seeAPPENDIX), simulations were
extended to 50,000 syllables, but output sometimes lacked stereotypy.
Computer simulations were written using the MATLAB simulation
environment (version 5.3; The Mathworks, Natick, MA). Typical
simulations took;2 h when run using a 400-MHz Pentium II pro-
cessor.

Neural encoding

Activity in the model was represented by the output of a number of
neural “units.” Each of these units is meant to represent the activity
within a network of connected neurons or “cell assembly” (Hebb
1949). Hereafter, we will use the term “assemblies.” Given the lack of
data concerning the neural code for vocal gestures in the song system,
we sought the simplest encoding scheme that could support associa-
tional learning (Table 3, number 1). Each vocal gesture produced by
the model is viewed as a combination of 40 abstract “vocal features,”
with each RA assembly representing motor-related aspects of one
feature, and each HVc_AFP assembly representing sensory-related
aspects of one feature. Because of this one-to-one mapping of auditory
and motor features, motor activity in a given RA assembly leads to
auditory feedback input to the unique corresponding assembly in
HVc_AFP. The tutor song consisted of five syllables, within the
normal range for zebra finch song (3–9; Price 1979). We denote these
syllables by the letters A–E and assumed that each tutor syllable was
encoded by a distinct set of assemblies, allowing us to number vocal
features consecutively, i.e., tutor syllable A contains vocal features

FIG. 6. Encoding the problem of sensorimotor learning.A: representation of the tutor song. Ten consecutive syllables in the tutor
song( . . . ABCDE . . . ). Forsimplicity, we assume that each tutor syllable contains a nonoverlapping set of vocal features. These
are numbered according to tutor syllable (features in syllable A numbered 1–8, features in B numbered 9–16, etc.).B: neural
encoding and template storage. HVc_AFP and RA contain 40 assemblies, one for each of the 40 vocal features in the tutor song.
The auditory feedback pathway connects each RA assembly (motor representation) with its corresponding HVc_AFP assembly
(sensory representation). The AFP contains 5 assemblies, 1 for each tutor syllable. The connections from HVc_AFP to the AFP
determine how vocal features are matched to tutor syllables, i.e., these connections store the template information. Connections to
syllable B are shown as an example.C: motor output of the model (RA activity) for the first 10 syllables produced. Each column
shows the pattern of RA activity for one particular syllable. Each row represents the activity of a particular RA assembly over the
10 syllables shown. Since connections in HVc and RA are unstructured, random patterns of premotor drive lead to RA activity that
is initially unstructured. Using reinforcement signals, the model must “transfer” template information stored in sensory coordinates
in the AFP to the motor pathway.
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1–8, tutor syllable B contains features 9–16, etc. (Fig. 6A). The tutor
template is stored in the AFP, with tutor syllables encoded in the
connections from HVc_AFP: each AFP assembly corresponds to a
single tutor syllable and receives input from the HVc_AFP assemblies
representing the auditory features comprising that syllable (Fig. 6B).
Connections related to syllable B are shown as an example. Our
choice of this very simple representation was guided by the following
considerations:1) due to the complexity of the network and finite
computational resources, our model contains only a limited number of
assemblies;2) since learning correlated patterns with Hebbian learn-
ing rules is a largely unsolved theoretical problem, we chose an
encoding scheme in which uncorrelated patterns of motor activity
result in uncorrelated patterns of sensory feedback;3) our encoding
scheme ensures decorrelation in the motor3 sensory mapping even
for assemblies using nonlinear input-output functions.

Initially, all connections in the motor pathway are unstructured.
Thus, random activity in HVc_RA leads to random motor activity in
RA (Fig. 6C). The model’s task is to1) compare sensory signals with
the stored template in the AFP to guide plasticity within the motor
pathway, and2) use these signals to guide plasticity in the motor
pathway so that random HVc_RA activity is converted to stereotyped
patterns of RA activity matched to the tutor song.

Tonic activity patterns

For simplicity, we assume that song-related activity is encoded by
the neural firing rates averaged over the course of each song syllable.
Thus, the activity within each of the four neural populations is
modeled as a vector of firing rates, with one entry for each assembly
in the population. For all populations except HVc_AFP, firing rates
are assumed to be constant during the period of premotor drive for
each syllable and zero during the gap between syllables. In HVc_AFP,
we divided each syllable into four time epochs depending on the
combination of efference copy (related to the current syllable) and
auditory feedback input received during that syllable (Fig. 7). During
the early part of each syllable (markedE), HVc_AFP receives effer-
ence copy input from HVc_RA that relates to the current syllable,
while the sensory input is due to delayed auditory feedback from the
previous syllable. The middle portion of each syllable (markedM)
corresponds to the period of silence in the delayed feedback. During
this period, HVc_AFP receives efference copy input only. During the
late part of the syllable (markedL), the efference copy and auditory
inputs correspond to the same syllable. Finally, during the “gap”
period between bursts of HVc_RA activity (markedG), HVc_AFP

receives only auditory input. During the epochs when efference copy
and auditory feedback inputs overlap, the two sources of input were
simply summed. For computational and conceptual simplicity, we
chose not to propagate this subdivision of activity to the AFP. The
efference copy activity that was passed on to the AFP was calculated
from the average activity in HVc_AFP during the early and middle
portion of the syllable. Late and gap portions were excluded for the
following reasons. RA activity generated during the current syllable
contributes to the late and gap portion of HVc_AFP activity. In our
sequence learning model (Troyer and Doupe 2000), the AFP not only
provides a reinforcement signal to RA, but also affects the pattern of
RA activity. Excluding the late and gap portions of HVc_AFP activity
from the efference copy prevents RA output from contributing to RA
input during the same syllable via the RA3 HVc_AFP3 AFP3
RA feedback loop. It also prevents auditory feedback from the current
syllable from contributing acutely to the AFP reinforcement signal.
We will view the combined early and middle activity signal as the
efference copy passed on to the AFP, although it may include auditory
feedback from the previous syllable.

Plasticity rule

We used a simple model of associational learning. Synaptic pro-
jections are in principle “all-to-all,” i.e., associational learning takes
place between all relevant combinations of pre- and postsynaptic
assemblies. Assemblies becomefunctionally disconnected when as-
sociational learning drives connection strengths to zero. While our
learning rule is meant to encompass the many potential mechanisms
of associational plasticity in the song system, theform of our learning
rule is based on analogies with NMDA receptor-dependent long-term
potentiation (LTP; Malenka and Nicoll 1993; Table 3, number 3). In
the equation below we userpre(t) and rpost(t) to denote the activity
level of the pre- and postsynaptic assemblies at timet. Each presyn-
aptic spike (at timetpre) was assumed to give rise to a postsynaptic
“plasticity trace,” a, analogous to the amount of NMDA-receptor
binding. The shape of the functiona determines the time window for
neural plasticity (seeAPPENDIX). This plasticity trace is multiplied by
postsynaptic activity to yield a “plasticity signal,”a(t 2 tpre)rpost(t),
analogous to postsynaptic calcium concentration. Input from the AFP
is assumed to give a reinforcement signalR that modulates the
plasticity signal in all RA assemblies. (R is set to a constant value of
1 in HVc.) Plasticity signals above a threshold valuec increase
synaptic strength (LTP); signals belowc give rise to long-term
depression (LTD; Cummings et al. 1996; Hansel et al. 1997; Lisman
1989).c is a “sliding threshold” that depends on the average amount
of activity in the postsynaptic cell (Abraham and Bear 1996; Bienen-
stock et al. 1982; Sejnowski 1977). Thus, the change in synaptic
strength resulting from postsynaptic activity at timet and presynaptic
activity at time tpre is proportional to the following quantity (see
APPENDIX)

(reinforcement3 plasticity trace3 post2 threshold)3 pre

5 @Ra(t 2 t pre)r post(t) 2 c]r pre(t pre)

Local circuit mechanisms

Activity within each neural population was based on very simple
local circuitry. The output of each excitatory cell assembly was
computed as a linear function of its input after subtracting a threshold
value. RA included intrinsic excitatory connections that were used to
store syllable representations in a manner analogous to other associa-
tive memory models or so-called attractor networks (Table 3, number
4A; Amit 1989). To minimize computation, only RA includes such
connections. Each population also includes a single inhibitory assem-
bly that is connected to all assemblies within the corresponding
population (Table 3, number 4B). Inhibition is of two basic types.

FIG. 7. Mixing of signals in HVc_AFP. Due to the 60-ms delay between
direct input from HVc_RA (5 ms) and auditory feedback (51 45 1 15 ms),
separate calculations of HVc_AFP activity were made for the early (E), middle
(M), late (L), and gap (G) portions of the premotor activity corresponding to
each syllable. The efference copy output of HVc_AFP compared with the
template in the AFP was calculated as the average value of HVc_AFP activity
over the early and middle portions of the syllable. This activity will reach RA
before the onset of the next syllable.
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HVc_RA, HVc_AFP, and the AFP use “feedforward inhibition,” in
which inhibitory activity is equal to the average afferent inputre-
ceived by the population, minus a threshold. RA uses “feedback
inhibition,” in which inhibitory activity is driven by the average
activity within the local population. Feedback inhibition allows tighter
control of the activity in the local network but is computationally
more expensive. Within a given population, all excitatory assemblies
receive a similar level of inhibition. Since the only assemblies that get
strongly activated are those that receive enough input to overcome this
inhibition, inhibition mediates a form of “competition” among exci-
tatory assemblies.

Decorrelating initial connectivity

Our simulations were designed to determine whether associational
learning, guided by template matching signals from the AFP, could
organize initially unstructured connections in the motor pathway to
produce the stored tutor song. The dominant computational problem
encountered in building the model was the positive feedback inherent
in associational learning rules: correlated activity increases synaptic
strength, which tends to further strengthen the correlation. Left un-
checked, this learning will continually amplify initially weak associ-
ations, even spurious associations resulting from chance events. One
of the most important factors contributing to spurious correlations was
the limited size of our network simulations. The strength of random
correlations is highly dependent on network size, roughly decreasing
with the square root of the number of network units. Because of the
computational expense of simulating intrinsic feedback dynamics
within RA, we limited the number of RA assemblies to 40 (Fig. 6B).
Independently choosing each connection within such a network will
result in correlations that are an order of magnitude stronger than
those expected in a more realistically sized network containing 4000
assemblies. The calculation of HVc_RA activity was computationally
less expensive, and a larger number (53 40 5 200) of HVc_RA
assemblies was included. While reducing correlations to some degree,
these numbers still do not approach physiologically realistic numbers.
We note here that the greater storage capacity of larger networks
resulting from a reduction in random correlations (Amit 1989) may
relate to reports of a relationship between the size of various song
nuclei and the number of song syllables learned (reviewed in Bre-
nowitz 1997; Nordeen and Nordeen 1997).

To address the problem of correlated connections, we chose ini-
tial patterns of connectivity specifically aimed at minimizing these
correlations (Table 3, number 5). Initial connection strengths were
chosen according to two basic strategies. For HVc_RA3 RA and
HVc_RA 3 HVc_AFP connections, we used a “single-projection”
strategy, in which each presynaptic assembly connects with a single
postsynaptic assembly. This ensures that the levels of input received
by any two assemblies in the postsynaptic population are independent.
However, the single-projection strategy does not prevent correlations
arising from polysynaptic pathways within the recurrent circuitry in
RA. For these intrinsic RA connections, we used a “uniform” strategy,
in which each presynaptic assembly connects with all postsynaptic
assemblies with equal strength. This ensures that all correlations result
from a global signal shared by all assemblies. While such a signal will
increase overall synaptic strengths, it will not lead to spuriouspatterns
of correlations within the network. To ensure that our model was
robust to some degree of correlation, zero-mean Gaussian perturba-
tions were added to all plastic connections during the initialization
process. The standard deviation of the perturbations was set to 10% of
the strength of the nonzero synapses. After the perturbation, negative
strengths were set to zero. Noise was not added to the three projec-
tions that did not undergo plasticity (the premotor drive, auditory
feedback, and template storage connections from HVc_AFP to the
AFP).

Homeostatic mechanisms

In addition to decorrelating initial connectivity patterns, we include
two sources ofhomeostaticnegative feedback to counteract the pos-
itive feedback inherent in associational learning (Table 3, number 6).
The first is a normalization of synaptic strength: after applying asso-
ciational change for each simulated syllable, the strengths of all
synapses onto (or from) a given assembly are multiplied by a single
number so that the total amount of postsynaptic (or presynaptic)
strength for any one assembly remains nearly constant (seeAPPENDIX).
This kind of multiplicative normalization controls total synaptic
strength without altering the relative magnitude of the individual
connections. Presynaptic normalization was applied before postsyn-
aptic normalization (seeAPPENDIX). The strengths to which synaptic
connections were normalized were chosen by hand so that1) intrinsic
RA circuitry contributed a large component (50%) of the input to RA
assemblies, and2) auditory feedback contributed a modest portion
(20%) of the input to HVc_AFP. The mechanisms underlying ho-
meostasis are just now beginning to receive focused attention. Mul-
tiplicative normalization of synaptic strength has been shown by
Turrigiano et al. (1998) and was hypothesized to depend on mean
levels of activity. An approximation to our postsynaptic normalization
rule follows if mean levels of activity (calculated on long time scales)
are related to total excitatory strength synapsing on that neuron.
Mechanisms such as conservation of transmitter released and/or ret-
rograde trophic factors could underlie presynaptic normalization.

The second source of negative feedback is inhibitory plasticity that
is homeostatic, i.e., if an excitatory assembly becomes too active, the
inhibitory connection onto that assembly is strengthened (Rutherford
et al. 1997; seeAPPENDIX). We note that controlling feedback in the
model was not always straightforward, since oscillatory instability
results if negative and positive feedback mechanisms operate on
similar time scales.

Quantifying learning time course

To quantify the learning time course, we divided the model output
into 250 syllable epochs and computed the matrixMact of co-fluctu-
ations in activity between each pair of RA assemblies over each
epoch. During themth epoch

Mij
act 5

1

250 O
n511250~m21!

250m

@r i~n! 2 r#~n!#@r j~n! 2 r#~n!#

whereri(n) is the activity level in theith RA assembly, andr#(n) is the
average activity across assemblies during syllablen. We compared
Mact to an ideal syllable matrix,Msyl, characterizing the groupings of
assemblies that characterize syllables in the tutor song. Following Fig.
6, the 40 vocal features were grouped into five syllables, indexed as
follows: syllable A, 1–8; B, 9–16; C, 17–24; D, 25–32; E, 33–40.
Mij

syl 5 4, if i and j belong to the same syllable;Mij
syl 5 21, if i and

j belong to different syllables. This is the matrix of co-fluctuations that
would be obtained from tutor song depicted in Fig. 6A, if each
assembly had an average activity level of 1. Comparison between
matrices was done by taking the correlation coefficient (CC) between
the entries in two matrices. The CC between any twoN 3 M
dimensional matricesA andB was defined as follows. First the mean
value is subtracted from each element in the matrix:Âij 5 Aij 2
(1/NM) ( Aij ; B̂ij 5 Bij 2 (1/NM) ( Bij . Then

CC~A, B! 5
¥ ij Âij B̂ij

@~¥ ij Âij
2!~¥ ij B̂ij
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Diagonal entries were excluded, i.e., all summations were taken over
indices wherei Þ j.

The CC was also used to monitor the connectivity appropriate for
the efference copy mapping and for the intrinsic RA connectivity that
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underlies syllable encoding. For the efference copy, we measured the
CC between the matrix of motor3 sensory connection strengths from
HVc_RA3 HVc_AFP and the HVc_RA3 RA connections in the
motor pathway. To quantify the development of syllable-based con-
nectivity, we calculated the CC betweenMsyl and the matrix of
intrinsic RA connection strengths, again excluding diagonal entries.

R E S U L T S

In presenting the results of our computational model, we
focus on the quantitative data produced by a single represen-
tative simulation. This allows a step-by-step illustration of
song development and demonstrates the mutual consistency of
the functional hypotheses described above. After presenting
these results, we show how the model reacts to changes in
important parameters.

Problem 1: Auditory feedback delay

The first step in our proposed solution to the problem of
feedback delay is the learning of an efference copy mapping.
At the beginning of each simulation, connections in the motor
pathway are unstructured and random HVc_RA activity leads
to random patterns of RA output (Fig. 6C). Efference copy
learning results from associations between the random patterns
of HVc_RA activity and HVc_AFP activity induced by audi-
tory reafference (Fig. 4A). We examined the development of an
efference copy map in two ways (Fig. 8). First, an accurate
map should cause efference copy activity to match the auditory
reafference. Figure 8A shows the pattern of vocal output (left
column of each pair,marked V) and HVc_AFP efference copy
activity (right column of each pair,marked EC) for five syl-
lables spanning the period of initial efference copy learning.
Note that, because of our simple encoding scheme, vocal
output, RA motor activity, and auditory feedback have equiv-
alent representations (seeMETHODS). Initially, both patterns of
activity are highly distributed and unrelated (Fig. 8A, left
pairs). As efference copy learning progresses, the activity
remains distributed (significant syllable learning has not taken
place), but the efference copy activity is highly correlated with
the vocal output (Fig. 8A, right pair). Note that a perfect match
is not required (Jordan and Rumelhart 1992); the efference
copy estimate only has to be accurate enough so that, on
average, the AFP will reinforce the proper correlations in RA
(see Fig. 9,bottom). An accurate efference copy mapping can
also be measured by determining the similarity between the
mapping of HVc_RA onto motor features in RA and the
efference copy mapping of HVc_RA onto sensory features in
HVc_AFP. Figure 8B shows the correlation coefficient (see
METHODS) between the connection strengths from HVc_RA3
RA and those from HVc_RA3 HVc_AFP. By syllable 500,
efference copy correlation has reached 0.81, 84% of the max-
imum value (0.96) reached during the simulation.

Problem 2: Syllable learning in RA

CALCULATION OF THE REINFORCEMENT SIGNAL. The AFP
guides syllable learning by transmitting a nonspecific rein-
forcement signal that uniformly modulates plasticity in all RA
assemblies. To calculate the match to the template, each AFP
assembly sums the input from HVc_AFP assemblies encoding
a distinct tutor syllable (Fig. 6B). The competition mediated by

mutual inhibition in the AFP ensures that significant activation
of the AFP occurs only if HVc_AFP activity is mostly confined
to assemblies corresponding to one (or a few) tutor syllables.
The final reinforcement value was obtained by thresholding
each AFP assembly’s output and summing these thresholded
outputs (seeAPPENDIX for details).

The outcome of this procedure is shown in Fig. 9. Figure 9A
shows the vocal output (markedV) and efference copy (marked
EC) for 11 consecutive syllables sung during the period of
syllable learning. The black bars show the reinforcement sig-
nal. This reinforcement is obtained from evaluating the
HVc_AFP efference copy activity on the right of each column
but is used to modulate associational learning for the RA motor
activity generating the vocal output shown on the left. Large
reinforcement is obtained when efference copy activity is con-
centrated within assemblies encoding a single tutor syllable
(e.g., syllable 11,006 and 11,009). Smaller reinforcement sig-

FIG. 8. Efference copy learning.A: vocal output (V, equivalent to RA
activity) and efference copy activity (EC) for syllables 1, 251, 501, 1001, and
2001. Efference copy activity is determined as the average of HVc_AFP
activity over the early and middle portions of each syllable (Fig. 7). Initially,
vocal output and efference copy activity are uncorrelated. By syllable 2000,
activity is still not organized according to tutor syllable (syllable learning has
not taken place), but efference copy activity and vocal output are similar.B:
development of efference copy connectivity. Correlation coefficient between
the matrix of HVc_RA projections onto motor features in RA and onto sensory
features in HVc_AFP (seeMETHODS, Quantifying learning time course, for
definition).
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nals are computed when HVc_AFP activity is distributed
among assemblies encoding two syllables (e.g., syllables
11,000, and 11,003). Note that the 11,007th syllable produced
by the model was dominated by the motor assemblies encoding
D, but the AFP signaled minimal reinforcement because of an
inaccurate efference copy representation.

SYNAPTIC REORGANIZATION. Reinforcement-guided syllable
learning is shown in Fig. 10. Initially, RA3 RA connection
strengths were set to be nearly equal (A, middle), minimizing
the presence of randomly correlated connections that would
have to be “unlearned” (seeMETHODS). Note that self-connec-
tions are not included in our model (diagonal entries are zero),
since strong self-correlations would tend to dominate associa-
tional learning. Unstructured input from HVc_RA (A, left)
resulted in random patterns of RA activity (A, right). Because
AFP-mediated reinforcement1) is greatest when assemblies
corresponding to a common tutor syllable are co-active, and2)
results in large increases in synaptic strength onto active RA
assemblies, RA assemblies began to develop strong connec-
tions with other RA assemblies encoding the same syllable (B,
middle). Reinforcement also guided learning within the pro-
jection from HVc3 RA, causing RA assemblies encoding the
same tutor syllable to receive input from similar sets of
HVc_RA assemblies and thus to receive correlated patterns of
HVc input (B, left). Both the recurrent circuitry and HVc_RA
input led to RA activity partially matched to the tutor syllables
(B, right). After learning was complete, HVc_RA input was a
mixture of tutor syllable representations (C, left). Strong in-
trinsic circuitry (C, middle) amplifies the activity within as-

semblies encoding the most strongly driven syllable, and in-
hibitory competition suppresses other responses (seeMETHODS

and APPENDIX). As a result, the model produced motor output
perfectly matched to the syllables in the tutor song (C, right).
Because HVc_RA continues to be driven by the random pre-
motor drive, syllables are produced in a random sequence.
Sequence learning will be addressed in our companion paper
(Troyer and Doupe 2000).

FIG. 9. Reinforcement signal.A: vocal output (V) and efference copy (EC)
for syllables 11,000–11,010.B: reinforcement signal calculated from efference
copy shown inA. EC activity concentrated within assemblies encoding a single
tutor syllable led to large reinforcement signals (syllable 11,006, D; syllable
11,009, B). Activity shared by two tutor syllables led to smaller reinforcement
(11,000, D/C; 11,003, B/A). During syllable 11,007, the model produced a
reasonably good rendition of tutor syllable D, but minimal reinforcement was
given because the efference copy prediction was inaccurate.

FIG. 10. Syllable learning.Left column: strength of synaptic input coming
from HVc_RA for 10 consecutive syllables.Middle column: intrinsic connec-
tions within RA. The darkness of each square represents the connection
strength from one presynaptic RA assembly (horizontal axis) to one postsyn-
aptic RA assembly (vertical axis). Self-connections (diagonal entries) are set to
zero to prevent domination of self-correlations.Right column: RA activity
level for same syllables shown on left.A: at the start of the simulation, initial
RA connectivity was nearly uniform, and HVc input and RA output were
random.B: as development proceeded, assemblies encoding a single tutor
syllable began to have similar patterns of connectivity. Because assemblies
encoding the same tutor syllable are arranged next to each other, the pattern of
RA 3 RA connections began to show “blocks” of strong connections along
the diagonal (middle). These assemblies also began to receive similar patterns
of input from HVc (left). C: after learning, HVc input was a random mixture
of syllable representations, and RA assemblies were connected only with other
RA assemblies encoding the same tutor syllable. This pattern of intrinsic RA
connectivity, combined with global inhibition (seeMETHODS), resulted in the
production of patterns of RA activity matched to the tutor template (right).
Learning to produce these syllables in the proper sequence is addressed in the
following companion paper (Troyer and Doupe 2000).
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TIME COURSE OF LEARNING. The developmental time course of
song learning in our model is shown in Fig. 11. To quantify
convergence toward the tutor song, we first computed an
“ideal” syllable covariance matrix,Msyl. This is a 403 40
matrix containing the covariance in the level of activity be-
tween each pairing of the 40 RA assemblies (sampled over a
number of consecutive syllables), where it is assumed that the
model is producing a perfect rendition of the tutor song.Msyl

has strong positive entries for pairs of assemblies belonging to
the same tutor syllable and negative entries for pairs belonging
to different syllables. We then divided the model output into
250 syllable epochs and computed the matrix of co-fluctuations
in activity between each pair of RA assemblies over each
epoch. Convergence toward the tutor song was quantified by
computing the correlation coefficient between the entries in
Msyl and those in the co-fluctuation matrix (Fig. 11, solid line).
For detailed definitions of these calculations, seeMETHODS,
Quantifying learning time course. We also computed the cor-
relation coefficient between the pattern of RA connectivity and
Msyl (Fig. 11, dashed line). The development of intrinsic RA
connectivity is mirrored by the appearance of the correspond-
ing correlations in RA activity.

Syllable learning is complete by the time the model has
produced 20,000 syllables. Since each syllable is assumed to be
115-ms long, this represents 2,300 s or,40 min of continuous
singing. Although quantitative data are not available, this is
likely to be up to several orders of magnitude less than the
quantity of song produced by young zebra finches during the
period of sensorimotor learning. Of course, the model is solv-
ing a highly simplified task.

Problem 3: Separating motor and sensory signals in HVc

HVc_AFP receives two functionally distinct sets of inputs:
efference copy inputs from HVc_RA and auditory feedback
(Fig. 7). The unmixing of signals is addressed in our model by
1) using weak feedback, and2) including “adaptation” in
HVc_AFP (Fig. 5). The action of the HVc_AFP adaptation
mechanism is shown in Fig. 12. Excitation within HVc_AFP
assemblies recruits a negative current that decays exponentially

(Fig. 12A, bottom). When the efference copy input from
HVc_RA correctly predicts the pattern of auditory feedback,
adaptation (open arrow) counteracts the delayed auditory feed-
back (black arrow) and prevents inappropriate activity during
the early portion of the next syllable (x). Adaptation also
prevents auditory inputs from driving HVc_AFP activity dur-
ing the gap portion between syllables (McCasland and Konishi
1981). If the efference copy does not predict the level of
auditory feedback, the feedback will not be canceled and this
will result in an inaccurate efference copy during the subse-
quent syllable (not shown). However, associational learning

FIG. 11. Summary of learning time course. Solid line: correlation coeffi-
cient between entries of covariance matrix calculated from 250 syllable epochs
of model output and the “ideal” syllable covariance matrix,Msyl, correspond-
ing to the tutor song (seeMETHODS, Quantifying learning time course, for
definition). Dashed line: correlation coefficient between pattern of RA con-
nectivity andMsyl. Dotted line: time course of efference copy learning (Fig.
8B). Syllable learning begins soon after the development of an accurate
efference copy at around syllable 1500 and is largely completed by syllable
10,000.

FIG. 12. Cancellation of auditory feedback by adaptation in HVc_AFP.A:
Example of accurate cancellation (assembly #11, syllables 39–40).E, M, L, G
mark the early, middle, late, and gap portions of each syllable (see Fig. 7).
Premotor activity in HVc_RA during syllable 39 results in two separate inputs
to HVc_AFP: short-latency efference copy input that anticipates the delayed
auditory feedback (top plots). Strong efference copy input leads to activity in
HVc_AFP. Activity is seen throughout the syllable and is particularly strong
during the late portion of the syllable when the efference copy and auditory
feedback overlap. This activity then recruits adaptation that decays exponen-
tially (bottom). During the early portion of syllable 40, the adaptation (open
arrow) is still sufficiently strong to cancel the auditory feedback from syllable
39 (black arrow) and to prevent HVc_AFP activity (x). During syllable 40,
HVc_AFP assembly #11 receives only a background level of efference copy
input which accurately predicts the lack of auditory feedback to assembly # 11
for this syllable. Dotted line: mean level of efference copy input for all
assemblies over the first 250 syllables produced by the model.B: correlation
coefficient between the pattern of HVc_AFP activity during the early portion
of each syllable and the pattern of auditory feedback from the previous syllable
(solid line; average taken in 250 syllable bins), and the quality of the efference
copy mapping from HVc_RA3 HVc_AFP (dashed line; see Fig. 8B). As the
efference copy develops, cancellation by adaptation results in correlation
coefficients between HVc_AFP activity and auditory feedback from the pre-
vious syllable that are near zero.
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triggered by such an “error response” in HVc_AFP will
strengthen the connections from the HVc_RA assemblies that
drove the strong auditory feedback, thereby improving the
accuracy of future efference copy predictions. We quantified
the efficacy of the cancellation mechanism by calculating the
correlation coefficient between the pattern of HVc_AFP activ-
ity during the early portion of each syllable and the auditory
feedback from the previous syllable. Initially, this quantity is
small and positive, since auditory feedback is weak relative to
the input from HVc_RA (Fig. 12B, solid line). As the efference
copy map is learned (dashed line), the adaptation cancellation
mechanism reduces the correlation with the auditory feedback
signal to values approximately equal to zero.

Range of model behavior

Our results demonstrate the plausibility of our hypothesis
that an efference copy mapping is used to guide the sensori-
motor learning of birdsong. A detailed assessment of how our
model reacts to changes in its multiple parameters is beyond
the scope of this paper. Here, we briefly demonstrate the
model’s robustness using default parameter values and de-
scribe the most common types of breakdown in model behav-
ior. Results are shown for alterations in four parameters:1) the
learning rate;2) the level of correlation within the initial
pattern of synaptic connectivity;3) LTP/LTD threshold in RA;
and4) the strength of connections onto RA assemblies.

To test the robustness of the model, we ran the algorithm 10
times with parameters fixed at their default values. Simulations
differed in the random seeds used to determine the initial
synaptic connection strengths and the sequence of random
premotor drives. The time course of learning in these simula-
tions is shown in Fig. 13. Syllable learning followed a similar
time course in all simulations, eventually resulting in accurate
reproductions of the template syllables.

The most difficult problem encountered in constructing a
working algorithm was the instability of learning due to the
positive feedback inherent in associational plasticity, i.e., cor-
related activity leads to stronger connections, which in turn
lead to more strongly correlated activity. This is a general and
largely unresolved theoretical problem; in our model we ad-
dressed it using a variety of negative feedback mechanisms

(seeMETHODS). When syllable learning did break down, two
general types of errors were most common. First, spurious
correlations caused errors during learning. For example, faster
learning rates led to more rapid synaptic change, making
spurious correlations more prominent. These spurious correla-
tions were then amplified by associational learning. Alterna-
tively, increased correlations within the initial pattern of syn-
aptic connectivity could also be amplified, leading to degraded
learning (seeMETHODS and APPENDIX). The parameter depen-
dence of these effects is shown in Fig. 14A. Increasing the
initial level of correlation resulted in gradual loss of learning.
Increasing learning rates led to highly variable results, with one
simulation showing perfect learning, even when learning rates
were increased by a factor of 10. Figure 14B shows spurious
correlations in a different simulation in which learning rates
were increased by a factor of 10 (Fig. 14A, arrow). While many
assemblies are co-active with others in the same tutor syllable
representation, other assemblies are “incorrectly” co-active
with assemblies from different syllables (Fig. 14B, left panel).
These incorrect associations can be seen in the pattern of
intrinsic RA connections, where strong connections are con-
centrated in blocks along the diagonal, but scattered inappro-
priate connections are seen as well (Fig. 14B, right panel; cf.
Fig. 10).

A second type of common error was caused by a misadjust-
ment of competitive mechanisms in the network. The most
important parameter contributing to competition between dif-
ferent representations was the LTP/LTD threshold (seeMETH-
ODS). Competition could also be increased by increasing inhi-
bition. We increased inhibition indirectly, by first scaling the
total excitatorysynaptic strength in RA which then triggered a
homeostatic increase in inhibition. The parameter dependence
of these effects is shown in Fig. 14C. Figure 14D shows the
effects of increased competition due to increasing the LTP/
LTD threshold in RA by a factor of 2 in RA (Fig. 14C, arrow).
Because of the increased competition, syllable representations
have been split into subsyllables, in which RA assemblies are
strongly connected to and co-active with a subset of the as-
semblies encoding the same tutor syllable.

D I S C U S S I O N

Principal findings and predictions

By constructing a computational model, we have provided a
theoretical demonstration that associational plasticity, guided
by template comparison signals transmitted by the AFP, can
account for the sensorimotor learning of birdsong syllables.
The model incorporates a wide range of experimental data
related to song learning and addresses the crucial problem of
feedback delay during motor learning: the delay for reafferent
auditory signals returning to RA via the AFP is estimated to be
nearly as long as a typical song syllable. Our model suggests
that the bird solves this problem by generating an internal
prediction, or efference copy, of the expected auditory reaffer-
ence within the song nucleus HVc. This efference copy is then
compared with the stored template to guide song learning.
Thus, we predict that activity recorded in the AFP during
singing (Hessler and Doupe 1999a,b) is a motor signal encod-
ing sensory information.

Experiments designed to test this prediction face two signif-

FIG. 13. Variability of learning time course. Development of syllable-
related activity for 10 repeated simulations using default parameters. Simula-
tions used different seeds to determine random components of initial connec-
tivity and the sequence of premotor drives. Output quantified as in Fig. 11.
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icant challenges. First, the nature of both sensory and motor
representations within the song system is poorly understood.
Direct tests will require substantial progress in this area. Sec-
ond, separating the sensory and motor aspects of neural activity
during sensorimotor behaviors is notoriously difficult. For ex-
ample, the auditory processing of a bird’s own feedback during
singing, and the processing of the same auditory signal when
not singing, may be quite different. One approach to this
problem is to alter auditory feedback pathways and monitor
neural activity and/or motor output during singing. Our model
predicts that changes in song due to altering the auditory
feedback pathway should be indirect effects of perturbing the
efference copy mapping, which then causes errors in the motor
output. Since we assume that auditory feedback does not play
an active role during vocal production, we expect that removal
of auditory feedback by deafening should result in no imme-
diate change in vocal output, consistent with data from many
avian species (Konishi 1965; Nottebohm 1968; Price 1979).
Use of an efference copy is also consistent with the slow
degradation of song after complete removal of auditory feed-
back by deafening (Nordeen and Nordeen 1992) and the more
rapid degradation seen after perturbation of auditory feedback
by consistent playback of auditory signals any time the bird
sings (Leonardo and Konishi 1999). Altered feedback is ex-
pected to result in an active and hence more rapid alteration of
the efference copy mapping, whereas removal of feedback
could allow a passive drift in the efference copy map, resulting
in a slow degradation of song. Note that these data are not

naturally accounted for by “error-based” learning hypotheses,
since deafening results in a large change in the sensory signal.
By retaining the key elements of the AFP comparison hypoth-
esis, our model is consistent with the finding that AFP lesions
prevent the disruption of song due to deafening (Brainard and
Doupe 2000).

In addition to being consistent with the behavioral data, our
model makes the specific prediction that a mismatch between
actual and expected auditory feedback should elicit a detect-
able change in the song-related activity of HVc_AFP neurons.
This change may also be indirectly registered in AFP neurons
(as well as HVc_RA neurons, see Troyer and Doupe 2000). If
the mismatch is sustained, increasingly significant changes in
song-related neural activity should be seen in HVc and the AFP
over time. Since a change in AFP output is required to alter the
connectivity in RA in the model, these changes should be
recordedbeforesignificant changes are able to be recorded in
the patterns of RA motor activity or song output.

At the level of song circuitry, the model predicts that the
motor-to-sensory transformation necessary for an efference
copy is learned within the connections between the two pop-
ulations of HVc projection neurons. Consistent with earlier
suggestions based on physiological evidence, the model makes
the further anatomical hypothesis that auditory afferents to
HVc should preferentially (although not necessarily exclu-
sively) synapse onto AFP-projecting neurons while premotor
afferents should preferentially synapse onto RA-projecting

FIG. 14. Errors in syllable learning.Top: amplification of random correlations.A: disruption of syllable-related activity from
increased learning rates (circles) and increased correlation in the initial pattern of connectivity (marked1). Degree of syllable
learning after 25,000 simulated syllables (quantified using correlation coefficients as in Fig. 11).B: RA activity (left) and RA3
RA connectivity (right, compare Fig. 10) when learning rates were increased by a factor of 10 (arrow inA). Incorrect associations
are made, with some RA assemblies co-active with and connected to assemblies encoding a different tutor syllable. Three “new
syllables” have been created; one includes a single assembly from syllables B, C, and D (black arrows), another a single assembly
from C and E (open arrows), and a third includes 2 assemblies from syllable A and 1 from syllable D (gray arrow). Inappropriate
connections appear as dark entries outside of diagonal blocks (right). Bottom: increased competition in RA.C: disruption of
syllable-related activity from increased long-term potentiation/long-term depression (LTP/LTP) threshold in RA (circles) and
increased synaptic strengths in RA (marked1). Degree of syllable learning after 50,000 simulated syllables.D: LTP/LTD threshold
increased by a factor of 2 (arrow inC). Increased competition causes RA assemblies encoding a single tutor syllable to divide into
“subclusters” of assemblies that are co-active and are strongly connected. For example, syllable A has been cleanly split into 2
subclusters, whereas within syllable E, connectivity is still rather diffuse.
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HVc neurons (Katz and Gurney 1981; Kimpo and Doupe 1997;
Lewicki 1996; Saito and Maekawa 1993).

In addition to the problem of feedback delay, our model
solves a second problem posed by the AFP comparison hy-
pothesis: if the AFP were to directly evaluate auditory feed-
back signals, these signals would have to bypass strong, on-
going premotor activity within HVc (Fig. 1,C and D;
McCasland 1987; McCasland and Konishi 1981; Yu and Mar-
goliash 1996; but see Foster and Bottjer 1998). By proposing
that the AFP evaluates an efference copy, our model circum-
vents this problem and suggests a functional reason for why the
AFP lies downstream of HVc: use of an efference copy re-
quires that template comparison take place downstream of the
motor pattern generator. Because auditory inputs are necessary
for efference copy learning, however, our solution does not
eliminate the problems raised by the mixing of motor and
sensory signals within HVc. We predict that these signals are
kept separate in HVc both by the greater strength of the
efference copy signal, and by the cancellation of auditory
reafference (McCasland and Konishi 1981) by strong adapta-
tion mechanisms (synaptic or neuronal) within HVc_AFP. A
slow after-spike hyperpolarization recently found in AFP-pro-
jecting HVc neurons (Dutar et al. 1998) may contribute to this
cancellation. Because the cancellation depends on an accurate
efference copy, our model predicts that auditory signals re-
corded in HVc or the AFP should be stronger in very young
birds than in juveniles or adults.

Finally, we propose that circuits intrinsic to RA play an
important role in encoding the motor programs for individual
song syllables (cf. Spiro et al. 1999). This proposal is consis-
tent with anatomical data (Herrmann and Arnold 1991) as well
as the hypothesis that the precision of RA activity (Yu and
Margoliash 1996) emerges as a result of neural circuitry in-
trinsic to RA, rather than being driven by (temporally less
precise) inputs from HVc.

Alternative models and mechanisms

Our model constitutes asufficiencyargument, i.e., the model
demonstrates that the proposed hypotheses aresufficient to
solve important problems related to song learning. However,
experimental data related to song learning are simply too
sparse to disallow a wide range of possibilities. In particular,
there are several alternatives to our proposal that efference
copy is used to mitigate the problem of feedback delay. For
example, it is possible that some song learning is done “off-
line,” i.e., aspects of motor activity and sensory reafference
may be stored in medium- or long-term memory and used to
readjust the motor circuit when the bird is not singing, perhaps
during sleep (Dave et al. 1999). A more likely alternative is the
use of short-term or “working” memory mechanisms. At the
synaptic level, “memory traces” (Houk et al. 1995) could “tag”
(Frey and Morris 1998) a synaptic site, making it receptive to
delayed signals related to template comparison. At the network
level, activity related to the motor command could be main-
tained within a feedback circuit and then compared with the
auditory feedback when it arrives. These proposals raise a
number of questions that have yet to be investigated. Most
notable is the difficulty of directing memory signals toward the
appropriate connections in a manner that is not disturbed by the
presence of strong ongoing motor activity. The problem of

segregating motor and sensory signals is also shared by song
learning models in which HVc both generates premotor com-
mands and passes auditory feedback information on to the
AFP. For example, Doya and Sejnowski (1998) have proposed
a model that is similar to ours in adopting the AFP comparison
hypothesis and using reinforcement learning to guide song
learning in RA (see also Fry 1996). However, Doya and
Sejnowski (1998) do not address the problems of feedback
delay and sensory/motor mixing in HVc that lie at the core of
our model.

Weaknesses of the model

Our model has a number of weaknesses. The most important
of these is our strong simplifying assumptions regarding the
encoding of sensory and motor information related to song.
These simplifications were chosen for two main reasons. First,
extremely little is known about the manner in which song is
encoded in the patterns of neural activity distributed across the
various song nuclei. Second, our theoretical understanding of
Hebbian learning rules is limited. In particular, the tendency
for these rules to amplify “spurious” correlations has only been
addressed in networks of limited complexity.

Another weakness of the model is that the auditory feedback
problem has only been partially addressed. Using our esti-
mates, AFP comparison signals will arrive in RA with a delay
of roughly 40 ms. While this does prevent significant overlap
with the motor activity related to the next syllable, 40 ms may
still represent a significant delay given that RA motor activity
is time-locked to the motor output with a precision of less than
5 ms (Yu and Margoliash 1996). One possibility for addressing
this problem would be to use internal regularities in the motor
program and temporally asymmetric learning rules to antici-
pate thefuturestate of the motor program. Efference copies of
this predictedmotor command could be processed in the AFP
and arrive in RA time locked to the arrival of theactualmotor
command from HVc. Overall, the model points to the need for
better data concerning the temporal relationships between ac-
tivity patterns in the various song nuclei during singing. Our
estimate of AFP processing time is based on variable auditory
latencies recorded in anesthetized birds, and hence, is only
poorly constrained. Better timing estimates obtained by micro-
stimulation and/or correlation analyses in singing birds could
yield important information regarding the functional interac-
tions between various nuclei during song production.

Related to the issue of processing delays is the fact that
temporal aspects of song change with development. Generally,
syllables are longer and produced at a slower tempo in young
birds (Immelmann 1969). Thus, one possible solution to the
problem of feedback delay is that it may simply be a smaller
problem in juveniles. However, this solution depends on the
motor commands for the slow juvenile syllables being nearly
identical to those for the more rapid syllables sung in adult-
hood. Furthermore, even though syllables are longer, neural
processing may also be slower in young birds, thereby increas-
ing feedback delay.

Location of the template

Our model is built on the working assumption that the
memorized template is stored in the AFP. While the data
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pointing to the AFP as a candidate site are suggestive (Basham
et al. 1996; Bottjer et al. 1984; Scharff and Nottebohm 1991;
Sohrabji et al. 1990), direct physiological tests have been
equivocal (Doupe and Solis 1997; Solis and Doupe 1997,
1999). Consequently, we have begun to generalize our model
to consider the possibility that template information is stored in
auditory areas closer to the periphery (for candidate sites, see
Bolhuis et al. 2000; Foster and Bottjer 1998; Mello et al. 1998;
Vates et al. 1996). Initial simulations suggest that song learning
can be guided by auditory feedback that reaches the song
system onlyafter it has been filtered through neurons selective
for the tutor song. This “template filter hypothesis” raises the
possibility that sensorimotor learning may involve thetransfer
of template information into the song system. The fact that this
transfer would rely on the bird’s own vocalization serving as a
carrier signal is consistent with experimental data showing that
AFP neurons develop selective auditory responses to both the
bird’s own songand the tutor song (Doupe 1997; Solis and
Doupe 1997, 1999) during the sensorimotor phase of song
learning. Note that efference copy may still play an important
role, since a different template storage site does little to alter
the basic problem of feedback delay. Further investigations are
required to fully explore these possibilities.

Role of efference copy

We have used the term efference copy to refer to a motor
signal that has been converted to sensory coordinates. Our use
of efference copy is most similar to the notion of a forward
model used for motor learning and control (Jordan 1995; Miall
and Wolpert 1996; Miall et al. 1993): an internal prediction
that is compared with a target reference, in our case, the tutor
song. Our model differs from standard motor control models in
that the efference copy is primarily used to modulate plasticity
rather than to control ongoing vocalization. Moreover, tem-
plate comparison in our model does not result in an “error” or
“mismatch” signal, i.e., the difference between the tutor tem-
plate and the bird’s own song is never computed. Instead, the
model relies on “matching” signals that could be easily com-
puted by neurons receiving input from a population of cells
broadly tuned to the tutor song.

Our model also uses efference copy in its classic role as a
negative image used to “subtract off” sensory reafference (Bell
et al. 1997; Sperry 1950; von Holst and Mittelstaedt 1980).
However, the purpose of the cancellation is to prevent inter-
ference with the ongoing motor program, not to differentiate
the sensory signals that are due to an animal’s own behavior
from those caused by events in the external world. Further-
more, this negative image is a secondary effect in our model,
resulting from adaptation mechanisms within HVc_AFP
(Fig. 5).

Random motor behavior and innate templates

Our model uses reinforcement learning to refine initially
random activity into motor commands matched to an internal
template. A major drawback of reinforcement learning is the
“curse of dimensionality,” i.e., if motor space contains too
many degrees of freedom, the chance of randomly activating
an appropriate combination of motor neurons is exceedingly
low. In our model, RA premotor neurons have been preorga-

nized into a small number (40) of motor assemblies. Thus,
random activity in the model is actually confined to a relatively
narrow range of possible vocal productions, allowing success-
ful reinforcement-based learning after a relatively brief period
of vocal development. In this way, our model can be seen as
relying on an “innate template” (reviewed in Marler 1997) to
reduce the dimensionality of motor space.

Efference copy may be common in many systems

The close parallels between vocal learning in birds and
humans (Doupe and Kuhl 1999) suggest that efference copy
may also play a role during speech development. For example,
speech is slowly degraded in humans deafened as adults
(Cowie and Douglas-Cowie 1992; Waldstein 1989), but can be
altered within an hour by systematic alterations of auditory
feedback (Houde and Jordan 1998). Moreover, mismatches
between expected and received auditory feedback cause in-
creased activation in auditory language areas in temporal cor-
tex (Hirano et al. 1997; McGuire et al. 1996). These results are
entirely consistent with the efference copy hypothesis: passive
drift after deafening and a more active alteration of the effer-
ence copy with altered feedback, perhaps via an association of
motor commands with the mismatch signal registered in tem-
poral cortex.

At a general level, our model focuses on the interaction
between reciprocally connected populations of neurons, where
one population has been assigned a primarily motor and the
other a primarily sensory role. This dichotomy parallels tradi-
tional views of motor/sensory circuits subserving language
(Wernicke 1908) and within frontal/parietal circuits underlying
memory-guided reaching and saccade behaviors (Chafee and
Goldman-Rakic 1998). Efference copy learning may be a nat-
ural consequence of Hebbian learning within such a circuit.
Our model suggests that this learning is expected to occur
whenever1) a projection exists from neurons displaying motor
activity to neurons that receive sensory inputs, and2) the time
window for associative learning is roughly matched to the
sensory feedback delay. The simplicity of these conditions
argues that use of an efference copy may be a common strategy
for overcoming feedback delay in a wide variety of circuits
subserving sensorimotor learning.

A P P E N D I X

This appendix contains details of the implementation of our com-
putational algorithm. We abbreviate HVc_RA as HR, HVc_AFP as
HA, and AFP as AF.rHR, rRA, rHA-E, rHA-M, rHA-L, rHA-G, andrAF

denote firing rates, whereE, M, L, G refer to the early, middle, late,
and gap portions of HVc_AFP activity (see Fig. 7).rEC denotes the
HVc_AFP efference copy activity passed to the AFP and is calcu-
lated as the average HVc_AFP activity during the early (25-ms long)
and middle (35-ms long) portions of the current syllable:rEC 5
(25rHA-E 1 35rHA-M)/(25 1 35). [HA, HR], [RA, HR], and [RA, RA]
denote the three sets of excitatory synaptic connections that undergo
learning, where [post, pre] denotes a matrix of synaptic strengths. For
example, [HA, HR] ij is the connection strength from thejth HVc_RA
assembly to theith HVc_AFP assembly. We useux1u 5 max (x, 0) to
denote rectification, and̂x& 5 (1/N) ( i51

N xi to denote averaging.
Values of most parameters are expressed in arbitrary units calibrated
so that the homeostatically controlled average firing rate, and the
input/output gain (output5 gain 3 unet input 2 thresholdu1), are
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equal to 1. For HVc_AFP, average firing rate was the weighted
average of firing over all four portions of the syllable.

The calculation of neural activity was based on the following rule:
ri 5 uinput 2 adaptation2 inhibition 2 uu1, whereu 5 1 is spike
threshold. Only HVc_AFP includes adaptation. Inhibition is calcu-
lated asGiI, whereI represents the activity in a single local inhibitory
assembly, andGi is the inhibitory strength onto excitatory assemblyi.
In HVc_RA, HVc_AFP, and the AFP, inhibition is “feedforward”:
inhibitory activity I is set equal to the average afferent (feedforward)
input received by the population, minus a threshold, i.e.,I 5 uaff 2
uIu

1. ui was set to 20% of the target level of input for these populations
(see step 8a below):u I

HR 5 u I
HA 5 4, andu I

AF 5 3. RA included
feedback dynamics (described below, step 3). RA inhibition is also
“feedback,” i.e.,I is set equal to the mean level of activity within RA,
minus a threshold:I 5 urRA 2 u I

RAu1 with u I
RA 5 0.20.

Simulations

For each syllable,n, we performed the following nine steps. These
were repeated for a fixed number of syllables (usually 25,000).

1. Generate premotor drive,pi(n), onto each HVc_RA assembly,i.
First we generate random variablesp̂i 5 uhu1, whereh was generated
from a Gaussian distribution with mean equal to 3 and variance equal
to 1. pi(n) 5 pdrivep̂i/p̂. pdrive 5 20 is a constant that determines the
magnitude of the drive.

2. Calculate HVc_RA activity. The input afferent to HVc_RA is
equal to the premotor drive: affi

HR(n) 5 pi(n). Output firing rates are
determined fromr i

HR(n) 5 uaff i
HR(n) 2 Gi

HR 2 uu1, I 5 uaffHR(n) 2
uI

HRu1.
3. Calculate RA activity. The afferent input is calculated as

affi
RA(n) 5 (j [RA, HR] ij r j

HR(n). To calculate the output firing rates,
the following dynamics were simulated

u̇i~t! 5 2ui~t! 1 S aff i
RA~n! 1 O

j

@RA, RA# ij r j
RA~t!

2 Gi
RAu^rRA~t!& 2 uI

RAu1D
r i

RA~t! 5 uui~t! 2 uu1

ui~0! 5 aff i
RA~n! 2 ^affRA& 1 u

whereui should be thought of as the typical membrane potential for
neurons in assemblyi. The dynamics were simulated on the interval
[0, 2] using the MATLAB command “ode23”. To monitor conver-
gence, every 250 syllables the dynamic simulations were continued
over the interval [0, 10] and the root-mean-square (RMS) difference
between RA activity at the end of short and long intervals was
calculated. RMS5 (1/40){(i [r i

RA(2) 2 r i
RA(10)]2} 1/2. During most

of the learning, simulations over the short interval resulted in near
convergence of the dynamics (RMS, 0.1). Convergence was not
complete during the final period of syllable learning (RMS. 0.1 for
syllables 10,500–16,250). Incomplete convergence will favor afferent
over recurrent contributions to the final RA activity pattern, but should
not noticeably alter our results. This was born out in a few (compu-
tationally intensive) simulations in which long intervals were used
during every syllable.

4. Calculate HVc_AFP activity. Separate calculations were made
for the four syllable subdivisions (E, M, L, G; Fig. 7)

aff i
HA-E~n! 5 O

j

@HA, HR# ij r j
HR~n! 1 Fij r j

RA~n 2 1!

aff i
HA-M~n! 5 O

j

@HA, HR# ij r j
HR~n!

aff i
HA-L~n! 5 O

j

@HA, HR# ij r j
HR~n! 1 Fij r j

RA~n!

affHA-G~n! 5 O
j

Fij r j
RA~n!

whereF is the (nonplastic) matrix that determines the transformation
from RA activity into auditory feedback and is equal to the identity
matrix times a constant (54) that sets the overall strength of auditory
feedback.

Output firing rates are determined fromr i
HA(n) 5 uaff i

HA(n) 2 ai 2
Gi

HAI 2 uu1, I 5 uaffHA(n) 2 u I
HAu1. The level of adaptation,ai, was

updated after calculating activity for each of the syllable subdivisions
(see step 8c).

5. Calculate AFP activity. affk
AF(n) 5 (j Tkj

= rj
EC(n), whereT is

the connection matrix from HVc_AFP to the AFP that encodes tutor
syllables (Fig. 6B). Tkj 5 1.875 if assemblyj belongs to tutor syllable
k; Tkj 5 0 otherwise. A sublinear (square root) function is included so
that a better match is obtained when efference copy activity is dis-
tributed equally among the assemblies encoding a given tutor syllable,
rather than the having strong activity within just a few assemblies.
Output firing rates were calculated asr k

AF(n) 5 uaffk
AF(n) 2 Gk

AFI 2
uu1, I 5 uaffAF(n) 2 u I

AFu1.
6. Calculate reinforcement. Rk

syl(n) 5 uR̂sylr k
AF(n) 2 fku

1 is the
contribution to the reinforcement from the match to thekth tutor
syllable, wherefk represents a threshold that is adjusted homeostati-
cally (see below, 7c).R̂syl 5 5 is a constant that determines how large
fk must be to keepRk

syl controlled. LargeR̂syl requires a large value for
fk and hence yields significant reinforcement for only the best matches.
The total reinforcement signalR(n) 5 cR(0.151 0.85Rsyl(n)). cR 5 20
determines the overall magnitude of the reinforcement signal. Note that
15% of the reinforcement signal is independent of the template match.
This is included to be consistent with our model of sequence learning (see
Troyer and Doupe 2000).

7. Update synaptic strengths. Synaptic plasticity was based on the
following rule

D@post, pre# ij~n!

5 kpost,preE
tstart

tend

dtpreE
tstart

tmax

dt~a~t 2 tpre!r i
post~t! 2 c i

post!r pre~tpre!

kpost,preis a constant determining the rate of synaptic plasticity in that
pathway (kHR,HA 5 5 3 1025 ms22, kHR,HA 5 1 3 10212 ms22, and
kRA,RA 5 2 3 10213 ms22). tstart and tend delimit the arrival of
presynaptic activity related to syllablen, where this is calculated using
syllable lengths and latencies as in Fig. 2,A andB. The gap between
syllables was considered part of the preceding syllable (but see
Williams and Staples 1992).rpost is the postsynaptic activity relevant
for plasticity: rHA 5 rHA and rRA 5 RrRA. The thresholdc was
proportional to the running average of postsynaptic activity (r# i

post, see
step 9):c i

post 5 bpostr# i
post(n 2 1). bHA 5 0.08;bRA 5 1.

To implement our plasticity rule, we divided time into intervals of
constant pre- and postsynaptic activity ([tpost, tpost 1 tpost] and [tpre,
tpre 1 tpre]) that were either1) completely overlapping (tpre 5 tpost,
tpre5 tpost), or 2) completely nonoverlapping (tpre1 tpre, tpost). We
then rewrote our rule as

D@post, pre# ij~n! 5 kpost,pre~Ctpretpost!r pre~r i
posta# 2 cpost!

wherea# is the average value ofa(spost2 spre) whenspostandspre lie
in the appropriate intervals withspost. spre. C is the proportion of the
time that spost . spre: C 5 1/2 for condition1), and C 5 1 for
condition2). In settingtmax, we assumed that the time course of RA
plasticity was sufficiently rapid so that only within-syllable associa-
tions need be considered and we need only specify the average value
of a, a# 5 1. In HVc_AFP, only associations within a syllable and
from one syllable to the next were considered. The time course of the
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neural plasticity trace,a(t), was modeled as a difference of exponen-
tials: a(t) 5 (e2t/tfall 2 e2t/trise)/a. trise 5 1 ms,tfall 5 40 ms, and
a is a normalizing constant that ensures thata(t) has a maximum value
of 1.

To reduce spurious correlations, we included a “momentum” term
in our update rule (e.g., Rumelhart et al. 1986). The total synaptic
change at each time step,D# [post, pre] ij(n), was computed by taking
the running average of past associations

D# @post, pre# ij~n! 5 ~1 2 g!D# @post, pre# ij~n! 1 D@post, pre# ij~n!

@post, pre# ij~n! 5 @post, pre# ij~n 2 1! 1 D# @post, pre# ij~n!

With momentum, the change in strength for the current syllable results
from associations occurring over the previous;1/g syllables. We use
g 5 1/1000. Although it is added for computational reasons, momen-
tum may have some relation to mechanisms of memory consolidation
acting on the time scale of hours (Karni et al. 1998).

8. Update and apply homeostatic mechanisms.
8a. Normalize synaptic strengths. First, we normalized total synap-

tic strength for each presynaptic neuron

@post, pre# ij 5 @post, pre#S @post, pre# ijN
postYO

j

@post, pre# ijD
Then, we normalized for each postsynaptic neuron

@post, pre# ij 5 @post, pre#S @post, pre# ijN
preYO

i

@post, pre# ijD
[post, pre] determines the average synaptic strength for each projec-
tion and was set to control the average amount of input received by
assemblies in each population. This in turn controls the degree of
inhibitory competition (seeMETHODS). To set [post, pre], we first
determined the desired level of input, then assumed that presynaptic
activity was maintained at an average value of 1 and divided by the
number of presynaptic assemblies. HVc_RA assemblies received 20
units of input on average, as did HVc_AFP assemblies (when both
efference copy and auditory feedback inputs were active); RA and
AFP assemblies received 15 units. In HVc_AFP and RA, synaptic
strengths were normalized to ensure a fixed ratio of synaptic input:
auditory feedback accounted for 20% of the input to HVc_AFP
relative to the input from HVc_RA; intrinsic connections provided
50% of the input to RA assemblies, with the other 50% coming from
HVc_RA. [HA, HR] 5 0.08 5 (1 2 0.2) 3 20/200; [RA, RA] 5
0.18755 0.5 3 15/40; and [RA, HR] 5 0.03755 0.5 3 15/200.

8b. Update inhibitory strengths. These are designed to keep average
activities, r#i (see step 9), at the target valuertarg 5 1. DGi

post 5
kinh(r#i

post2 rtarg), wherekHR 5 1 3 1024, kinh 5 2 3 1025. A similar
algorithm was used to determine reinforcement thresholds:Dfk 5
(2.53 1024)(R# k

syl 2 1). Inhibitory changes were also smoothed using
momentum (see step 7), butgI 5 1/100, making inhibitory change
faster than for excitation and thus avoiding feedback oscillations.

8c. Update adaptation. Only HVc_AFP included adaptation. The
level of adaptation for assemblyi, ai(t), was updated at the end of each
epoch (early, middle, late, and gap; Fig. 7). Adaptation increase is
proportional to activity; adaptation decrease results from exponential
decay. Assuming that an assembly had activityr for a time period of
lengtht starting at timet, ai(t 1 t) 5 thri 1 e2t/tdecayai(t). tdecay

HA 5
115 ms andhHA 5 0.043 ms21. Assuming a constant activity level of
1, adaptation would have a strength of five input units, 25% of the
total input during periods when HVc_AFP is receiving both efference
copy and auditory input.

9. Calculate running averages of activity. The running average of
activity was calculated usingr#(n) 5 (1 2 br)r#(n 2 1) 1 brr(n). For
all activity variables,br 5 1/10. Since reinforcement matches were
more variable, slower averaging (bRsyl 5 1/100) was used forR# k

syl.

Initializing variables

Initial excitatory synaptic strengths were set as described inMETH-
ODS. To equilibrate homeostatically adjusted variables, 500 syllables
were simulated in which no associational learning took place. When
reporting our results, these syllables were not included, i.e., syllable
number 1 starts after this period.

Simulations with altered parameters

In arriving at our results, many simulations were run in which
parameters were varied in a nonsystematic manner (results not re-
ported). To more systematically explore the range of model behavior,
simulations were run when various parameters were increased by a
constant factorc. Figure 14A (circles) shows increased excitatory and
inhibitory learning rates,kpost,pre3 c 3 kpost,preandkinh3 c 3 kinh.
Figure 14A (plus signs) shows increased correlation in initial connec-
tions, Gaussian noise added when setting initial synaptic strengths3
c 3 10% of strength of nonzero synapses (seeMETHODS). Figure 14C
(circles) shows increased LTP threshold in RA,bRA 3 c 3 bRA.
Figure 14A (plus signs) shows increased synaptic strengths in RA,
[RA, RA] 3 c 3 [RA, RA] and [RA, HR] 3 c 3 [RA, HR].
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