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Troyer, Todd W. and Allison J. Doupe. An associational model of and memorize a tutor song, or “template” (Konishi 1965;
birdsong sensorimotor learning. II. Te_mpor_al hierarchies and thgarler 1964). Later, duringensorimototearning, birds use
learning of song sequencad. Neurophysiolg4: 1224-1239, 2000. auditory feedback from their own vocalizations to gradually

Understanding the neural mechanisms underlying serially orde . .
behavior is a fundamental problem in motor learning. We presen atch their vocal output to the template. In the companion

computational model of sensorimotor learning in songbirds that RAPer (Troyer and Doupe 2000), we focused on one level of
constrained by the known functional anatomy of the song circuit. THB€ hierarchy for song and showed how simple associational
model subsumes our companion model for learning individual sofgiebbian) learning rules could be used to learn the motor
“syllables” and relies on the same underlying assumptions. The eepresentations for individual tutor syllables. The syllable

tended model addresses the problem of learning to produce syllahigsrning model addresses the important problem of feedback
in the correct sequence. Central to our approach is the hypothesis f@fay and demonstrates that associational plasticity natu-

the Anterior Forebrain Pathway (AFP) produces signals related to %W leads to the learning of an efference copy, or internal

comparison of the bird’s own vocalizations and a previously mema-. . _.: - L g
rized “template.” This “AFP comparison hypothesis” is challenged bE{redmnon, of the auditory feedback. This internal prediction

the lack of a direct projection from the AFP to the song nucleus HV ,‘r’m then be compared with the memorized tutor song to

a candidate site for the generator of song sequence. We propose %fje S,ensor'mOtor learning.

sequencegenerationin HVc results from an associative chain of N this paper, we address a second fundamental problem
motor and sensory representations (motersensory— next mo- N motor Iearnlng, the question of serial order in behavior
tor . . . )encoded within the two known populations of HVc projectio{Lashley 1951), by extending our syllable learning model to
neurons. The sensory link in the chain is provided, not by auditogccount for the learning of syllable sequence. As in our
feedback, bu_t b_y acentr_ally generated efference copy that serves as@mpanion paper, we use simple rules of associational plas-
internal prediction of this feedback. The use of efference copy agjgity and assume that the template comparison signals that
substitute for the sensory signal explains the ability of adult birds ﬁjhide learning are provided by the Anterior Forebrain Path-
produce normal song immediately after deafening. We also predfgh, (\Fp), g circuit that passes through avian basal ganglia
that the AFP guides sequentssarning by biasing motor activity in %alamic, a1nd cortex-like nuclei before projecting back onto,

nucleus RA, the premotor nucleus downstream of HVc. Associati o
learning then remaps the output of the HVc sequence generator. B¢ MOtor pathway (see Troyer and Doupe 2000; Fig. 1). We

altering the motor pathway in RA, the AFP alters the corresponderS0 assume a functional segregation between the two known
between HVc motor commands and the resulting sensory feedbd¥koulations of projection neurons in song nucleus HVc (Nor-
and triggers renewed efference copy learning in HVc. Thus, auditathgen and Nordeen 1988; HVc used as proper name, Margoliash
feedback-mediated efference copy learning provides an indirect paghh-al. 1994), with AFP-projecting HVc neurons (HVc_AFP)
way by which the AFP can influence sequence generation in HVc. Theceiving auditory feedback and encoding signals in sensory
model makes predictions concerning the role played by specific neutgbrdinates, and HVc neurons projecting to the robust nucleus
populations durl_ng the sensorimotor p_hase of song learning arjd d&fP-the archistriatum (RA; HVc_RA) more closely tied to a
T s o m g o cor "M ftor code (Troyer and Doupe 2000). The main biologica
' constraint addressed in this paper is the hierarchical organiza-
tion of the motor pathway (Fig. 1): the detailed motor programs
for individual syllables are believed to be contained in nucleus
RA (Vu et al. 1994; Yu and Margoliash 1996), whereas the
Like many complex behaviors, birdsong is arranged in@ntral pattern generator for song sequence is likely to be
temporal hierarchy. In zebra finches, song consists of a féaund upstream of RA, perhaps within the song nucleus
short introductory notes, followed by several repetitions ¢iVc (Vu et al. 1994). Our sequence learning model ad-
a stereotyped sequence of vocal gestures, or “syllabledresses two key questions left unanswered by current ex-
separated by brief periods of silence (Sossinka aidnBo perimental data: what is the mechanism for sequence gen-
1980). Song is learned in two phases. First, birds listen évation in HVc, and how can signals from the AFP guide
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HVc learning of syllable sequence. Our sequence learning model

i subsumes our syllable model, accomplishing syllable learning

HVe: as well as the learning of syllable sequence. The structure of
Sequence | { HVc_RA ) ( HVc_AFP this paper mirrors that of the preceding companion paper
Generation N (Troyer and Doupe 2000) and relies on the same underlying

biological assumptions. We present our results in the form of

|
AFP ! two closely related models: a “conceptual model” containing a
RA: Template | self-consistent set of functional hypotheses, and a “computa-
Motor Programs Comparison I tional model” that incorporates these hypotheses into a work-
for Individual ! ing computer algorithm. In this section, we describe the func-
Syllables RA Auditory tional problems addressed by our sequence learning model and
T Feedback outline the key elements of our proposed solutions. Then, we
= >®; n - — 1 present our conceptual model, which describes our functional
Vocalization hypotheses in greater detail. Quantitative results from our

computational model are presented in tkesuLTs section.

Fic. 1. Encoding of motor hierarchy within the song circuit. The fin . -
temporal structure within individual song syllables is believed to be encodec?%ecause our model is relat|vely abstract at the level of local

RA (Yu and Margoliash 1996). The pattern generator for song sequenceCE_CUit& implementation of these hY_pOthes_eS was governed
believed to be located upstream of RA, possibly within HVc (Vu et al. 1994ghiefly by considerations of computational simplicity. Related
We have shown the two populations of HVc projection neurons (Nordeen apgsyes are described in theTtHops but are not crucial for

Nordeen 1988) in separate ovals, although these are intermixed and inter‘iﬁ’ﬁderstanding the main functional impIications of the model
nected in HVc. We assume auditory feedback enters the song system via inpLts )

to HVc_AFP. e details of our computer algorithm are confined to an
appendix.

sequence learning given that there are no known connec-

tions from the AFP to HVc? Problems addressed

We propose that sequence generation results from a recip-
rocal chaining of motor and sensory representations [motorOur model explores how song learning can result from
(HVc_RA) — sensory (HVc_AFP)-> next motor (HVc_RA)— associational learning, guided by template comparison signals
next sensory (HVc_AFP. . . ] between the two populations oftransmitted by the AFP. We do not address learning the de-
HVc projection neurons. Our model differs from classic “adailed temporal structure within each syllable, nor learning the
sociative chaining” models (James 1983) in that the “sensodgngth of syllables and intersyllable gaps. Timing of song
component in this chain is actually an efference copy, a motyllables is provided by a rhythmically clocked premotor drive
signal that serves as a prediction of the expected sens8fjiving in HVc_RA (Troyer and Doupe 2000). While the
feedback (Sperry 1950; von Holst and Mittelstaedt 1980). Wining of this drive is fixed, itspatternis completely random:;
also propose that AFP-guided teaching signals act to remap the magnitude of each component of the premotor input is
connections from HVc to RA, so that the output of the Hv@enerated independently for each vocalization produced by the
pattern generator maps onto the sequence of motor featurdel. The model’s task is to take this unstructured premotor
(encoded in RA) that matches the memorized tutor song (§Ming signal and convert it to a sequence of syllables matched
Doya and Sejnowski 1998). However, simply remapping HV® the tutor template.
outputs cannot explain AFP-guided learnimithin HVc. In The learning of motor r(_apresentations for individu_al song
our model, auditory feedback-driven efference copy Iearniﬁ¥”ab|93 was addressed in the preceding companion paper
provides the crucial link between the AFP and HVc. By altefTroyer and Doupe 2000). This model contained three key
ing the HVc outflow tract, the AFP alters the associatiofdnctional elements. By associating premotor commands in
between HVc_RA motor activity and the auditory feedbacklVC_RA with auditory feedback arriving in HVc_AFP, a
received by HVc_AFP. The resulting efference copy Iearnir1'gOtor — sensory efference copy mapping develops between
then changes the motor-sensory interaction underlying $8e two populations of HVc projection neurons (Fig. 2, marked
quence generation in HVc. 1). After this mapping develops, HVc_AFP activity driven by

Our model demonstrates that associational learning, distrbgiven HVc_RA motor command encodes a sensory predic-
uted throughout the motor pathway, is sufficient for learninigon of the vocal output resulting from that command. This
both individual syllables and their proper sequence. The modRéediction is then compared with the template in the AFP,
provides a specific hypothesis for how basal ganglia—forebrdfsulting in a global reinforcement signal that modulates plas-
loops could contribute to learning a sequential behavior afi@ity in all RA neurons (Fig. 2, marke®). This reinforcement
highlights key computational problems imposed by the funtearning leads to a pattern of connectivity in RA in which
tional anatomy of the song circuit. More generally, the modé&eurons encoding the same tutor syllable become strongly
provides a framework that relates the neural mechanisms gennected (Fig. 2, marke8). As a result, RA has a strong

derlying song learning to fundamental problems in motdgndency to produce coherent patterns of motor activity
learning and speech production. matched to the syllables in the tutor template.

Given our adoption of the AFP comparison hypothesis, the
most difficult problem regarding sequence learning is the fol-
lowing: how can the AFP guide learning given tiathe only

In this paper, we extend our previous model for learninghown output from the AFP projects to RA, agilithe site of
individual syllables (Troyer and Doupe 2000) to address tlsequence generation is likely to be upstream of RA? Our

Model and approach
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Syllable Learning Sequence Learning qguences are generated as a chain of mappings from metor
(DEfference Copy OcContext Signal sensory— next motor— next sensory, etc. This hypothesis
®Reinforcement ©5Sequence Bias borrows from classical chaining ideas (James 1983), as well as
@sSyllable Encoding @sequence Mapping more recent computational models (Kleinfeld and Sompolin-
@Efference Copy (Cont.) sky 1988) of sequence generation.
Premotor The second problem we address is the problem of how AFP
Drive Y @ signals guide sequence learning at the level of RA. The most

straightforward method of directing associational learning to-
ward a desired goal is to bias the pattern of neural activity
toward the desired state. Associational plasticity then strength-
ens the connections consistent with this pattern. In our model,
we assume that the AFP generates an expectation of the next
syllable in the tutor sequence and uses this expectation to bias
RA activity (Table 1, number 2; Fig. 2, markeg). Associa-
tional plasticity then changes the pattern of connections be-
tween HVc and RA so that syllables are produced in the proper
sequence (Fig. 2, markes). Note that this solution gives rise
Vocalization to an additional problem to be solved before the AFP can bias
, _ _ RA activity in the proper direction: template information is
Co:r']ii‘t'ifm g:r:":c':izz C:;”;‘:;‘t’igs stored in sgnsory coordinates, brl].lt the required bias must be in
< e e motor coordinates. We propose that a sensergnotor mapping
“ is learned between the AFP and RA soon after the initial period of

FIG. 2. Network architecture. White circles: functional connections aféfference copy Iearning (Table 1. number 3: @mnceptual
dressed in our syllable learning model (Troyer and Doupe 2000). Black circl :ode) ' ’

functional connections important for sequence learning (Troyer and Dou . .
2000). The association of HVc_RA premotor activity and auditory feedback Th? third problem we address_ is the pr0b|em_ of sequence
input to leads to a motor> sensory efference copy mapping between thedearning at the level of HVc. While the mechanism outlined
neural populations1). Reinforcement signals from the Anterior Forebrainghove is sufficient for a rudimentary form of sequence learn-
Pathway (AFP)Z2) are used to reorganize intrinsic RA connections so thatthemg, it fails as a complete model.” In particular, it fails to

encode the motor representations for individual tutor syllal8&sSequence -

generation results from a reciprocal interaction involving the sensergotor  account for any learned changes in the number or sequence of
efference copy mapping followed by a slow “context” signal that flows fropremotor commands formed upstream of RA. In our model, the
HVc_AFP — HVC_RA (4). The AFP uses template information to bias RAefference copy provides the key link between learning at the
toward the appropriate syllable transitior. (This alters associations in the |eye| of RA and Iearning upstream of RA, in HVc. In partic-

motor pathway so that the connections from HVc_RARA map the output : :
of the HVc pattern generator onto the correct syllable representations in I!?I,&ar’ by alterlng connections between HVc and RA, the AFP

(6). Alterations in the motor pathway lead to renewed efference copy learnif§langes the pattern of vocal output and hence auditory reaf-

(7). Black arrows: plastic connections. Thick arrows: new connections addégrence. This in turn induces new efference copy learning in

to address sequence learning. Gray arrows: connections not subject to agpgc (Table 1, number 4; Fig. 2, markef) via the same

ciational plasticity. mechanism described in our syllable learning model (Troyer
and Doupe 2000). Since efference copy mapping plays a key

solution involves the concerted action of multiple associasle in the HVc pattern generator, the new efference copy

tional mechanisms acting at different levels of the motdearning alters the sequence of HVc outputs (€eeceptual

hierarchy. For ease of presentation, we will break thimode). In addition to providing a specific mechanism for how

problem into three smaller problems, described below (s#e AFP affects sequence generation in HVc, the need for

Conceptual modégl However, our choice of solution to eachongoing efference copy learning is consistent with experiments

individual problem is affected by the other two, as well ademonstrating that auditory feedback is required throughout

constraints imposed by our solution to the problem of sytlevelopment (Price 1979).

lable learning. The key to our model is the concept of In addressing the problem of sequence learning, we have

efference copy, which serves to link all model componentslded two new sets of connections to our model for sylla-

into a coherent hypothesis regarding the multiple sensotyle learning (Fig. 2). The connections from HVc _AFB

motor interactions involved in song learning. HVc_RA are necessary faequence generatiohVithout the

The first problem we address is the problem of sequencentext signals carried by these connections, activity within

generation, i.e., what is the nature of the central pattern gerr/%—BLE 1. Functional hypotheses for sequence learning

erator for song? We propose that sequence generation restis

from a reciprocal interaction between the two populations @f reciprocal interaction in Hvc

HVc projection neurons (Table 1, number 1). The solution A. Fast motor— sensory efference copy signal (HVc_RA

naturally incorporates the mechanism of efference copy, which  HVc_AFP) } L

contributes one half of this interaction by providing a moter i'FFS,"S’Z" sensory > motor “context ;S'ggaA' g:t\|</ Cit—At';\'/:erdH\ég;thAu)tor

sensory mapping from HVc_RA> HVc_AFP. The other half ™ Sy”ableq 9519 Y

of the interaction depends on connections from HVC_ABP 3. Sensory— motor associations guide development of connections from

HVc_RA. These are hypothesized to provide slow signals AFP — RA

carrying information from one syllable to the next (Fig. 24. AFP guided changes in RA trigger renewed efference copy learning in

marked4). We call such signals “context” signals. Thus, se-

Syllable +
Sequence| @ Auditory
Template | | Feedback
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A described in our model for syllable learning (Troyer and Doupe

Reciprocal Circuit for 2000). Figure B shows how these mappings result in the
Sequence Generation reproduction of the tutor sorafter learning is completaysing

the transition from syllable A to syllable B as an example. Let

Motor ., Sensory Sen, denote the sensory representation for syllable A in

Premotor

o HVc_AFP. This representation is elicited by the efference copy
rve

mapping during production of A. Via the connections from
HVc_AFP— HVc_RA, Sen elicits a context signaCtxt, that
drives activity in HVc_RA during the syllable following syl-
lable A.Ctxt, maps onto the motor representatidotg in RA,
and the model produces syllable B after syllable A. This is the
sensory predictior> next motor component of the interaction.
With an accurate efference copy mappi@gxt, also elicits an
efference copy representati®ery in HVc_AFP. This me
tor — sensory prediction component of the interaction com-
pletes the cycle. Thus, correct sequence learning in our model
depends on learning the chain of mappilggs) — (Ctxty, —
B Sensory-Motor Chain for Motg) — Ser — .. .. Note that our implementation of this
Tutor Sequence functional circuit is highly simplified: HVc_RA— HVc_AFP
connections transmibnly fast motor — sensory (efference
copy) signals, whereas HVc_AFP> HVc_RA connections

Motor-to-Sensory
(Eff. Copy for Current Syliable)
Sensory-to-Motor v
(Context Signal for Next) &

WVOARR]. MioA. [NVCoARR:| MscRA transmit only slow sensory> next motor (context) signals.
r-Sen, | Cixty  Seng | Cixtg - -- More realistic circuit models of HVc will be required to ex-
7 % il | plore possible local circuit mechanisms subserving this recip-
v Y rocal flow of activity.
MOtB MOIC
RA RA PROBLEM 2: SEQUENCE LEARNING IN RA. In our model, the AFP
uses template information to generate “sequence teaching”
Syl. A Syllable B Syl. C signals that bias RA activity toward the proper tutor sequence
(Table 1, number 2). The details of how these signals reorga-
CrxrA Mot B SenB nize the motor pathway to produce correct sequence transitions
Syl. A-Context Syl B-Motor Syl. B - Sensory are illustrated in Fig. 4, using the transition from syllable A to

syllable B as an example. In our model, the efference copy

Fic. 3. Sequence generatiof. sequence generation results from a recip;, . . P - .
rocal interaction between representations in HVc_RA (motor) and HVc_AI'—rlgpresentatlorser}\’ that is registered in HVc_AFP during the

(sensory). The final motor output of the model depends on the mapping frdtioduction of syllable A, generates two distinct signals during
HVc_RA — RA. B: schematic of the mappings necessary for correct repro-

duction of the tutor sequence . A—B —C . . .. Suppose an efference copy, Remapping HVc_RA —»RA
Sen, is represented in HVc_AFP (in sensory coordinates). This is followed by
the HVc_RA context representati@txt,, which is mapped ontMotg in RA. Motor Sensory

Syllable B follows syllable A.Ctxt, also elicits Sen, the efference copy
corresponding tdViot;. Se, — Cixt; — Mot leads to the production of

syllable C, etc. j— HVc_AFP

Premotor

HVc_RA would not be affected by activity related to the
previous syllable and the sequence of HVc outputs would be
random (Troyer and Doupe 2000). Patterned connections from
the AFP — RA are necessary fosequence learningn our
model. Without these connections, information stored in the Seny
AFP related to the tutor sequence cannot be used to guide )
learning in the motor pathway.

AFP
Conceptual model Associational  Signals Relevant  Signals Not

Remapping to Association Relevant

PROBLEM 1: SEQUENCE GENERATION. We propose 'that se- . > —_— 5

guences of song syllables are generated by a reciprocal inter- ) ) ) ) )

action between motor (HVC RA) and sensory/efference COW'G' 4. AFP-guided sequence learning. Schematic showing the learning of
T e

L LN . transition from syllable A to B. The efference copy for@en, results in
(HVC_AFP) activity within HVc (Table 1, number 1): mO-; coniext signalCixt, that arrives in HVC,_RA after a delagen, is also

tor — sensory predictior-> next motor— next Sensory pre- passed on to the AFP. Using previously stored template information, the AFP
diction — ... (Fig. 33). The motor— sensory component of generates, after an appropriate delay, the sensory representation for the next
this interaction is subserved by the efference copy mappigable in the tutor songen. Ser, biases RA toward the motor patteviots.

; : : sociational learning (white arrow) between the context sigbitt, in
between HVe_RA and HVC_AFP. This mapping 1S learne Vc_RA andMotg in RA ensures that future productions of syllable A will

early in development by associating HVc_RA motor comsyoke the composite mappirgen, — Ctxt, — Mot resulting in the tran
mands with auditory feedback arriving back in HVc_AFP, astion from A to B.
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Sensory-to-Motor Learning to bias RA activity toward the tutor sequence, these same AFP
Motor Sensory output neurons must encode a representation oféxesylla-

ble. Our model simply assumes that AFP efferents contain a

g’ril’g“” Eff. copy combination of these signals. Possible explanations for how the

components of this mixed signal could exert distinct functional
influences in RA are described in tiveTHoDs.

PROBLEM 3: SEQUENCE LEARNING IN HvC. Even though the
Auditory model has learned the correct efference cepynext motor

| Feedback transition,Sen, — Ctxt, — Motg, sequence learning is not yet

@ complete. This is because by altering synapses in RA, the AFP
o has perturbed the motes sensory matching necessary for an
s; ‘i% ﬁ accurate efference copy in HVc. In particular, HVc_RA neu-

S e B . - N
Vc;cal' ;;on rons belonging to the representation f@txt, originally
1 . . .
'z mapped onto some particular combination of motor represen-
Sensory-to-Motor  Signals Relevant  Signals Not tations in RA. For example, perha@xt, originally mapped
Plasticity to Association Relevant .
> > . most strongly onto syllable D. With an accurate efference

copy, these same HVc_RA neurons were mapped onto the
" F'_G-_t?’-l 'F]eamir}g a sensorp m0|t0f m_appmg E%MBSRAFtP_?“?thA- A(‘;tercorresponding combination of sensory representations in
e initial phase of efference copy learning, the HVc_RA activity that produc : : :
motor activity for syllable A in RA Mot,) will also produce a senso ﬁVC—AFP'Se%' RemappindCixi, ontoMotg in RA alters this
prediction Geny) of that motor activity in the AFP (black arrows). This leadsCOrrespondence, and the HVc sequence generator produces the
to associational learning between AFP assemblies encoding syllable Afgilowing set of mappingsSen, — Cixt, — Sen, — Cixts.
sensory coordinates and the RA assemblies encoding syllable A in moplresumamy’ the context signal from syllable Dixts, is

coordinates (white arow). mapped ontdMotg in RA. Therefore, syllable B (produced by
the vocalization that follows syllable A. First, in HVc, due td=txta) will be followed, not by C, but by E. However, such
the slow connections from HVc_AFP> HVc_RA, Sern, re- errors in the efference copy component of the HVc sequence
sults in a context signalCtxt,, that is input to HVc_RA. generator are continually corrected by renewed auditory feed-
Second, the AFP receives the efference c&mn, from back-driven learning in the HVc_RA> HVc_AFP connec-
HVc_AFP and generates the sequence teaching signal fions (Table 1, number 4Ctxt, excitesMotg in RA, leading
syllable B, after an appropriate delay. This signal is input to an auditory feedback sign&er, arriving in HVc_AFP (Fig.

RA and biases RA activity toward the next motor representd). Therefore, HVc_RA— HVc_AFP connections between
tion in the tutor sequencé/lotg. Since both of these signalsHVc_RA neurons belonging t€txt, and HVc_AFP neurons
exert their effects with a one syllable delay, during the syllablgelonging toSeny are strengthened (Fig. 6, white arrow),
following A, neurons in HVc_RA that are part of the contextypplanting the “old” connections frofitxt, — Sen,. In this
representatiorCtxt, tend to be co-active with RA neuronsyay, the HVc sequence generator is able to track the AFP-
comprising the motor representatioMots. Associational jquced changes in RA. By combining the appropriate sen-
learning then strengthens the connections between these sets%%; — motor and motor— sensory mappings, the model

neurons (Fig. 4, white arrow). In this way, the context réprgsa s the chain of sensory-motor associations that reproduces
sentationCtxt, gets mapped ontMotg, and the model learns \hq tytor sequenceen, — (Ctxt, — Mots) — Sen,
the transitionSer, — Ctxt, — Motg. B T

SENSORY — MOTOR MAPPING FROM THE AFP — RA. If the Update Efference Copy
sequence teaching signal for syllable B, which we assume to be Motor Sensory
encoded in sensory coordinates in the AFP, is to bias RA motor Premotor

activity toward syllable B, a sensory motor mapping be- Drive EF. copy

tween the AFP and RA is required (Table 1, number 3). In our = HVe_AFP

sequence learning model, the required map develops soon after
the initial period of efference copy learning, and before sylla-
ble learning is complete. With an accurate efference copy,
HVc_RA excites a sensory representation in the output neurons
of the AFP (via HVc_AFP) that corresponds to the motor
activity in RA. For example, if HVc_RA drives motor activity

in RA that is relatively well matched to tutor syllable A, it will Vocalization

also drive an efference copy within HVc_AFP that leads to it Rl . ,

excitation within the AFP output neurons encoding tutor syl- for St opy | nals Relevant - Signals Not

lable A (Fig. 5). Associative learning then strengthens connec- > —_— R

tions between the AFP neurons encoding syllable A in sensory _ _ ’ _
coordinales and the RA neurons encoding A in molor coordi7e,, Se1ewss, Sivorce ey g Stes S et seqrce
nates. Note that tdevelopthe appropr!ate mapping betweed arning (white arrow) is required so th&ItxtAy projects ontoSerg in

the AFP and RA, the output neurons in the AFP must enCOEQC_AFP (cf. Troyer and Doupe 2000, FigAy Thus, auditory feedback is

a sensory representation of thierrentsyllable. Tousethe map necessary throughout development to maintain an accurate efference copy.

Auditory
Feedback
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METHODS input from
- . . l_l\HV'c_AFP
The model presented in this paper is an extension of the syllable
learning model described in the preceding companion paper (Troyer AFP /
and Doupe 2000). To account for the generation and learning of song Feedforward
sequence, we added two new sets of synaptic connections to this Inhibition
model (Fig. B). Because our model is relatively abstract at the level (Competition)

of local circuits, the choice of how these connections were embedded

; ; ; ; ; Input
in our computer algorithm was governed chiefly by considerations of Assemblies @ @ @ @

computational simplicity (a variety of biological mechanisms could

contribute to their functionality). An understanding of the theoretical / + \
issues related to our implementation is not necessary to understand
our simulation results. Most features of the model are described in Current Reinforcement Sequence
detail in Troyer and Doupe (2000). We discuss here only new addi- Syllable Calculation Template
tions to the model. The final subsection in terHops describes the
method we used for quantifying the time course of model develop-
ment.

Most simulations of the complete model contained 25,000 sylla- Output
bles, over 5,000 more than were typically needed for model output to Assemblies @ @ @ @

I

become stereotyped (seerenDIX). Computer simulations were writ-
ten using the MATLAB simulation environment (version 5.3; The
Mathworks, Natick, MA). Typical simulations took3 h when run
using a 400-MHz Pentium Il processor. Details regarding simulations Input from
and parameters are contained in HreENDIX. HVc_RA

Feedforward Inhibition:
Counter-balances
Reinforcement-driven

activity

HVc_AFP— HVc_RA connections

To account for sequence generation, connections from HVc_AFP
to HVc_RA were added (Fig.B). These connections are assumed FiG. 7. Processing in the AFP (seesTHops for details). Input from
to be functionally “slow synapses” that carry information fronHVc_AFP excites “feedforward” inhibition (filled circlepp) that implements
one syllable to the next (cf. Kleinfeld and Sompolinsky 1988 competition between AFP input assemblies (only those assemblies receiving
For computational simplicity, the functional separation of Hv¢ignificantly more than the average amount of input will be active). Three
connections was strict: HVc_RA> HVc_AFP connections carried different calculatlo_ns are performed on _th'e results of this compgtm))mhe _

- - tch between this efference copy activity and the tutor song is determined
only efference copy information relat_ed to the current §y|lab|e, aNlee Troyer and Doupe 2000). The results in a single “reinforcement” value
the HVc_AFP — HVc_RA connections broadcast signals thajat s strongly broadcast to all AFP output assemblies, accounting for 75% of
affected only the subsequent syllable. However, our general ageir activity. 2) Patterned activity related to the current syllable is passed on
proach requires only a functional imbalance between the tw@changed, accounting for 15% of AFP output assembly act@jtPatterned
populations of HVc projection neurons. A strict separation is ne@ttivity related to the current syllable is delayed for the duration of one syllable
crucial. To match the functional delay in the HVc_AFP HVc_RA and then delivered to AFP output assemblies in a pattern that is shifted forward

pathway &50 ms), a corresponding delay was introduced ifne syllable in the tutor sequence. This shiftihg mechanism is how tutor
the time window for synaptic plasticity in these connectiongequence is stored in the AFP, and the shifted signal accounts for 10% of AFP

(seearpenDIX). In general, we followed the principle that the timeoutput assembly activity. Feedforward inhibition in RA (filled cirdettom)
: ’ ounteracts the strong reinforcement signal, leaving the patterned signal to

Wlndovv_ for synaptic plas_tICIty shoul_d be ro_ughly proportionale . g activity via the pattern of AFP> RA connections. After the initial
to the time scale of encoding for the information passed over thgiiod of sensory-motor matching (seesuLts), signal (2) is redundant with
synapse. RA connections, which encode the detailed motge strong motor input from HVC_RA, leaving signal (3) to be the main
programs within each syllable, had the shortest plasticity wientribution to altering activity in RA.
dow, and the HVc_AFP— HVc_RA context synapses had the = . ) )
longest. simplicity, but most calculations could be implemented relatively
Since it relies on reciprocal excitatory connections, the patte@@sily by a variety of biologically plausible circuits. _
generator within HVc tended to be unstable. To help control this Processing within the AFP is shown in Fig. 7. Each AFP “input
positive feedback, wd) normalized the size of the context signaPssembly” receives input from the HVc_AFP assemblies encoding
during each syllable (seeepenDIX), and2) included “adaptation” in Sensory features related to the corresponding tutor syllable (the nature
the HVc_RA assemblies. HVc_RA adaptation was of the same foié the encoding scheme used in our model is described in Troyer and
as the HVc_AFP adaptation included to cancel the delayed auditd@upe 2000; Fig. 6). Input is also received by a single inhibitory unit
feedback (Troyer and Doupe 2000). However, because HVc_Hiaat broadcasts its output to all input assemblies. This “feedforward
adaptation was included to counteract an overall build up of Hvghibition” implements a form of competition in which the only active
activity, its decay time (225 ms) was considerably longer than tH&P assemblies are those that receive significantly more input than

decay time of HVc_AFP adaptation (115 ms). average. ] )
The main difficulty for our model is that the AFP is assumed to

simultaneously broadcast three distinct signals that are important
AFP — RA connections and signals for separate aspects of sensorimotor learning. Each of these cal-
culations is represented by a separate box in the middle of Fig. 7:
The circuitry within the three song nuclei that make up the AFR) to guide syllable learning, the AFP transmits a nonspecific
could, in principle, subserve a variety of complex processing taskeinforcement signal that modulates plasticity in R#;to orga-
Our model treats the entire AFP as a “black box” performing theize a sensory— motor mapping between the AFP and RA, the
necessary calculations related to template comparisonaésegpix AFP forms a sensory representation related to the current syllable;
for details). Our algorithm was governed chiefly by computation&) to guide sequence learning, the AFP must generate, with a one
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syllable delay, a sequence teaching signal that biases RA activifies encoding the same syllable. (Fig. 5). After the sensemnotor
toward the next syllable in the tutor sequence. A possible neurahtching is accomplished, the input from the AFP activity related to
substrate for this delayed sequence teaching signal is the aignal 2 will be redundant with the (stronger) input to RA from HVc.
collaterals that transmit information from the lateral portion of the Our functional requirements for the sequence teaching signal (sig-
magnocellular nucleus of the anterior neostriatum (LMAN), thgal 3) are that it biases RA activity toward the next syllable in the tutor
output nucleus of the AFP, to aré@athe input nucleus of the AFP sequence, but does not disrupt the learning in the AFRA pathway
(see Fig. T, Troyer and Doupe 2000). The appropriate delay igriven by signal 2. To implement the proper bias, the processing box
roughly 75 ms, the length of a typical song syllabte1(l5 ms) marked “Sequence Template” in Fig. 7 accepts a pattern of input,
minus the processing delay contributed by the ARRQ ms). Note Wwaits for one syllable, and then excites AFP output assemblies in a
that signals 1 and 2 are used to guide plasticity in RA but are npattern that is shifted one syllable forward in the tutor sequence. Since
required to influence RA activity. In contrast, the purpose of signéile AFP— RA connections perform a sensery motor mapping, this
3 is to guide activity, but in principle, could disrupt learning in thesignal will bias RA toward the next motor command in the tutor
AFP — RA pathway. sequence (Fig. 4). The reason that this signal does not disrupt the
In our implementation, the three signals are not segregated at @ssociations necessary to develop a sensemotor mapping to RA
level of AFP outputs: the activity within the AFP output assemblieis that, before sequence learning is accomplished, the inputs from
is just a summation of signals 1-3. The input to each RA assemt#yc_RA to RA are strong and their sequence is random. Therefore,
is then calculated as a sum of AFP outputs, weighted by the patté¥iP activity for the subsequent syllable (signal 3) will not be strongly
of synaptic strengths from the ARFP RA. This input serves both correlated with RA activity and hence will not contribute significantly
as a source of additive external input summed with RA inpde plasticity in the AFP— RA connections. After the model begins to
coming from HVc, and as a modulatory term in the RA plasticitproduce the proper sequence, the motor patterns in RA driven by
rule (seearpeNDIX). The modulation of RA plasticity in our model HVc_RA will be matched to the sequence teaching signal syllable
is completely phenomenological. Candidate mechanisms inclugégnal 3). Hence, the associational plasticity related to signal 3 will
release of trophic factors by AFP efferents (Johnson et al. 1997)simply reinforce the sensory>- motor mapping originally organized
downstream effects of calcium entering through AFP glutamatedy signal 2.
gic synapses, which are dominated by NMDA receptors (Mooney Our implementation represents only one of many plausible ways in
and Konishi 1991). which different signals could exert different effects in RA. A concep-
How does the superposition of signals 1-3 in AFP output neurofwglly simple solution to the problem of segregation would be to have
exert separate effects in RA? The nonspecific reinforcement comglifferent functional signals carried by distinct classes of AFP projec-
nent of the AFP activity (signal 1) is separated from the two patterng@n neurons. However, developing such a separation could be diffi-
components by its magnitude: we assume that the reinforcemettt. Another alternative is for different signals to be encoded in
signal contributes 75% of the input to AFP output assemblies. ARlifferent temporal patterns of AFP activity (e.g., bursting versus
output is then dominated by this reinforcement signal, and the restiinic). These could preferentially excite separate receptors in RA
ing modulation of RA plasticity can be used to guide syllable learningnd/or trigger different plasticity mechanisms in RA. Finally, since
To allow the two patterned signals to play their role in song learnint)e three signals make crucial contributions to learning at different
we assume that the AFP also excites a population of inhibitoiynes during song learning (see Fig. 11resuLTy), their functions
interneurons local to RA (Fig. 7, filled circléotton). This feedfor- could be subserved by mechanisms tied to developmental critical
ward inhibition counteracts the nonspecific (reinforcement) compperiods. Our model makes predictions regarding the functional infor-
nent of the AFP input to RA, causing this nonspecific input to haweation carried by the AFP> RA pathway. Further experiments will
little effect on spiking activity in RA. However, inhibition would not be required to determine the possible neural substrate for these sig-
be expected to cancel trophic effects of AFP inputs and hence woulals.
not block reinforcement mediated by neurotrophins. In an alternative
scenario, inhibition that is proximal to the cell body might eliminat e . .
spiking but not prevent the depolarization within d)gstalgdendrites b uantifying learning time course

inputs from HVc_RA or other RA neurons. Thus, calcium entry Tq gptain quantitative results regarding the time course of learning
through NMDA receptors at AFP synapses could still be used {9 the model, we measured how closely the statistics of RA motor
modulate plasticity within the dendritic tree, even though the currendgtput matched the statistics of the tutor song, as well as measuring
flowing through these receptors are counteracted by inhibition arriyoy closely important patterns of connectivity matched the properties
ing at the soma. o o of an “ideal” model that would accurately reproduce the tutor song.
In addition to explaining how the nonspecific reinforcement COMrhe measure used to compute these matches was the correlation
ponent of the AFP activity is prevented from disrupting patterns ebefficient (CC) applied to the elements of the relevant connection
RA activity, we must explain how to prevent it from disrupting the@natrices (seaeTHops in Troyer and Doupe 2000). Syllable-related
learningin the AFP— RA pathway. By definition, a large reinforce- 5ctivity was quantified as in Troyer and Doupe 2000. Sequence-
ment signal that is expressed as high activity in all AFP outpy|ated activity was quantified by dividing the model output into 250
assembliesvill also leadto increased plasticity within all RA assem-gy|japle epochs and constructind’®< the matrix of co-fluctuations

blies. This correlation between nonspecific presynaptic firing in thtwween patterns of RA activity for a given syllable and the patterns
AFP and nonspecific modulation of plasticity in RA tends tef RA activity for the nextsyllable

strengthenall synapses from the AFP> RA. To counteract this
tendency, AFP— RA synapses were assigned a higher plasticity 1 250m
threshold (seeppeNDIX). Mt = — 2 [ri(n — 1) — 7(n — DI[r,(n) — F(n)]

The action of the AFP activity related to the current efference copy
(signal 2) is straightforward: after the efference copy mapping from
HVc_RA to HVc_AFP gives an accurate prediction of the motor inpwherer;(n) is the activity level in theth RA assembly, ant(n) is the
from HVc_RA to RA (Troyer and Doupe 2000), the AFP assemblgverage activity across assemblies during syllabM/e used the CC
corresponding to the current syllable will be most active when R compareM"®*to an ideal syllabléransitionmatrix, M ¢ M=
assemblies corresponding to that syllable are also active. Sensory, if assemblyj forms part of the representation for the syllable
motor associational learning follows, causing AFP assemblies encéalfowing the syllable coded by assemltyM$®? = —1, otherwise.
ing a particular tutor syllable to project most strongly to RA asseniiagonal entries were included.

n=250(m-1)+1
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In addition to monitoring patterns of RA activity, we monitored A B C
development in four sets of connectiorf§. The accuracy of the Initial Syllable Sequence
efference copy map was quantified by calculating the correlation State Learning Learning
coefficient between the pattern of HVc_RA motor connections .
(HVc_RA — RA) and HVc_RA— sensory connections (HVc_RA RA activity level
HVc_AFP).2) To quantify the development of the sensegymotor o= B z
mapping (Fig. 5), we computed the CC between the pattern of AFP E :
RA connection strengths and the ideal pattern of connectivity, in
which the AFP assembly representing a given tutor syllable would
have connections only onto RA assemblies encoding the motor fea-
tures belonging to that syllabl8) To quantify the progress of syllable
learning, we computed the CC between the ideal syllable correlation
matrix, MY, and the pattern of intrinsic RA connections as in Troyer ‘, 1 % %
and Doupe 2000V 3°%= 4, if assemblyj forms part of the represen I B . i
tation for same syllable as assemiyl:°¢= —1, otherwise. Diag 1 5 10 11001 11010 24001 24010
onal entries were excluded) To evaluate sequence-related connec- Syllable Number
tivity, we multiplied the HVc_AFP— HVc_RA and HVc_RA— RA
connection matrices. The resulting matrix represents the influence of 0
each HVc_AFP assembly on each RA assembly via the context signalc. 8. Overview of model behavior. RA assemblies (40 total) are grouped
in HVc (Fig. 3). The correlation coefficient between this matrix andiong the vertical axis according to the tutor syllable to which they correspond

Ms®9was used to measure the development of sequence-related dlaheled A-E). Bar shows color scale for this and subsequent fighrdzA
nectivity. activity during the first 10 simulated syllables (humbered from start of simu-

lation). RA activity is unorganized and randomB: syllable learning. RA

activity during each syllable is well-matched to one of the tutor syllables, but
RESULTS syllables are produced in a nearly random ord&rsequence learning. By

syllable 25,000, activity is matched to the tutor representation, with syllables

Our model explores how song learning can result fromroduced in the proper sequence.
associational plasticity, guided by template comparison signals . )
transmitted by the AFP. The representation of the sensory gPh mechanism in HVc so that syllable representations are
motor aspects of song in our model is described in detail in ogfoduced in the correct order,#B —-C—D —E—A...
companion paper (Fig. 6 in Troyer and Doupe 2000). Briefl{Stage 3; Fig. 8). It is important to note that a segregation
the information encoded within each neural populatioR€Ween developmental stages is not embedded within our
(HVc_RA, HVc_AFP, RA, and the AFP) is represented by thiearning rule or netW(_)rk archlt_ecture._ Rather, all synapses in
activation value of a number of processing units, each meantiyyC and RA are plastic, and this plasticity lasts throughout the
capture the average level of activity within a connected set 9fnulation. Thus, development is driven by interdependent
neurons or “cell assembly” (Hebb 1949). For most simulationRatterns of association that emerge during song learning.
the tutor song contains five syllables, with each syllable com- )
posed of eight abstract vocal features. The features encodfrfiuence learning
different syIIabIe_s are assumed to be unique, so we number thg-,o key to sequence learning in the model is the ability of
features according to tutor syllable (syllable A, features 1-8,nals from the AFP to bias RA activity toward the proper

syllable B, features 9-16; etc.). Each of 40 RA assembli Iéable transitions (Fig. A, arrows). Acting over multiple
ables, this in turn biases the association between HVc_RA

et

i
e
SR

R

SRR SRS

Vocal Feature
R
kS

(5]
(&)

moom »
8|qe|lAg JoIn)

R

max

encodes the motor aspect of one vocal feature, and each o
HVc_AFP assemblies encodes the sensory aspect of one RA activity. The resulting change in connections from
ture. The template for syllables is stored in the connectiopg/: ra — RA connectivity leads to the production of ap-
from HVe_AFP— AFP, and the template for tutor sequence irgpriate syllable transitions (Fig. 4). Auditory feedback en-
stored by circuitry internal to the AFP (seTHops). ures that an accurate efference copy mapping is maintained

_ Sensorimotor learning is accomplished in three stages. Ti§€ 6) The gradual improvement of syllable transitions is
first two stages were explored in our companion paper (Troygtown in Fig. ®.

and Doupe 2000). At the beginning of the simulation, al
connections m_the motor pathway are _unstructured_, and Tﬁ“ne course of learning

premotor drive initiating each syllable drives unorganized pat-

terns of RA activity (Fig. ). During the initial, efference  To examine the time course of learning, we considered the
copy learning stage, associations between the HVc_RA motwoperties of an “ideal” solution, in which patterns of connec-
activity and the resulting auditory feedback input to HVc_AFRvity were set so that this ideal model would accurately repro-
cause a motor> sensory efference copy mapping to develoguce the tutor song (seeTHops for detailed definitions). We
between these two populations (stage 1; Fids.8lin Troyer then quantified how closely important sets of connections
and Doupe 2000). In the second, syllable learning stage, thatched the ideal model. The match was calculated using the
AFP evaulates the efference copy signals and broadcasts teorrelation coefficient, a method that gives a value of one for
plate matching “reinforcement” signals that reorganize synaiglentical connection patterns and values near zero for connec-
tic strengths in RA so that assemblies corresponding to indiien patterns that are uncorrelated. We measured four sets of
vidual tutor syllables are co-active (stage 2; FiB; 8igs. 4A, connections, the efference copy map from HVc_RA

10 in Troyer and Doupe 2000). In this paper, we focus on th&/c_AFP, the sensory> motor map from the AFP— RA,

final, sequence learning stage, in which “sequence teachirgyllable storage in the RA> RA connections, and the sen-
signals from the AFP act in concert with the sequence genspry — next motor pathway from HVc_AFP> HVc_RA —
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A 10A. Initially, the only consistent pattern of association in the
HRA HRA HRA HRA HRA HRA HRA network is between motor activity and delayed auditory feed-
A III ll g back, and the corresponding efference copy mapping develops
| | T | | FSERRRTUIN S rapidly (stage 1, dotted line). As accurate efference copies are
B¢ ll< 2 ! % passed onto the AFP, a sensesymotor mapping also devel-
B g SR o g ops between the AFP and RA (stage 1a, dashed-dotted line; see
C I ll Fig. 5). An accurate efference copy also causes the AFP to
b [ P T li<l produce consistent reinforcement signals, which reorganize
L s S 1. intrinsic RA connections so that RA assemblies corresponding
E ’ III ! to the same tutor syllable begin to receive common patterns of
s ! synaptic input (stage 2, thin solid line). As this happens, the
14001 14003 14005 14007 model begins to produce RA activity patterns matched to the
Syllable Number . :
nout tutor syllables (thin dashed line). As syllables are learned,
nput from ivi Input from efference copy activity in HVc_AFP becomes increasing|
Hve(H) PAActvity R)  © oo ) py Yy _ aly
o A i
B RA activity level Developmental Time Course
A ERE T I R Broken lines: Connectivity; Soliid lines: Acitivy patterns
cBli o : sA fERER = o[A] |+ Efference copy (motor->sensory) learning
ol'# g o2 .
E'l s R o= m |- - —| AFP->RA (sensory->motor) learning
13000 13025 3 3 [2] E=—] Syllable learning
A 3 II ‘; o L g My B 80 o9 B [F—_—= =1 Sequence learning
i £ & 8 & i
ED i !ll ‘I g i 5 i I“ l! i ll II ll [
16000 162);5 16050 1
AlS ] [ ] EE 1 [
Py g hf ' g RIRE L, B TR S .
e’ ll ! ll il i ' l'l' - I | =0 f
18000 18025 18050 % .,_g
AlME ¥ § 8 ¥ I & ¥ 1 i § =T
CE Il IE ¥ |I 5 I| ‘Z H " ﬁll i l‘ 88
E ll lI ] I. l' I' !l l! s & I.
19000 19025 19050 0
A 3 1 [] [] [] [] 1 n 1 1
oo, ottt T 0 5 10 15 20 25
il S B e B N N T I e I Syllable number (x1000)
20000 20025 20050
Syllable Number B
FIc. 9. Sequence learning: AFP-guided syllable transitions. HVc input Motor Sensory
to RA (H), AFP input to RA (A), and RA activity (R) for syllables 14,001— p " EFff.
14,007. For syllables 14,002 and 14,006, the input from the AFP ensures D:i/";O 0; Copy

proper syllable transitions, overriding “incorrect” input from HVc (arrows). To
emphasize differences in the input to various RA assemblies, the density of
shading for H and A represents the amount of input that exceeds the mean for
that pathway; inputs weaker than the mean are not sh@wveonvergence
{ Auditory

toward proper sequence. Model output for 51 consecutive syllables is shown at
5 different developmental time points. Syllable transitions are initially random AFP | Feedback
but eventually begin to be produced in small strings matching the tutor song. H

Eventually the entire sequence is learned.

i
RA. We also measured how closely the motor output from RA s @ ﬂ
matched the tutor song. These calculations were performed for Connection Vocalization
“epochs” consisting of 250 consecutive syllables produced by ”°Lf’j;ff°
the model. To quantify the development of tutor syllables, we

calculated the matrix of co-fluctuations, th'ﬁb entry indi- Fic. 10. Summary of developmental time courge. 3 basic stages of
development. The initial stage of efference copy learning is nearly complete by

Cates_whether asse_mblyand assembly have similar patterns syllable 1000 (stage 1, dotted line). As accurate efference copy signals are
of activity. To quantify the development of tutor sequence, Wfssed on to the AFP, a sensesymotor mapping is leamned in the connec-
calculated a similar matrix, except that tiph entry indicates tions from the AFP— RA (stage 1a, dashed-dotted line; see Fig. 5). Accurate
whether activity in RA assembliyduring syllablen co-fluctu- efference copy signals also allow the onset of syllable learning (stage 2). The
ated with the activity in assembly during syllablen + 1. development of motor activity matched to the tutor song (thin solid line)

. . " _.mirrors the development of appropriate connectivity intrinsic to RA (thin
These matrices were matched to the corresponding matriggshed line). Because sequence learning (stage 3) is driven by correct transi-
computed from the tutor song, again using the correlati@bns guided by the AFP (Fig. 4), correct sequence activity (thick solid line)
coefficient (seeueTHODS). occurs before the development of the appropriate composite mapping

The developmental time courses of the multiple, interactiéﬁé’c—AFP — HVC_RA — RA) in the motor pathway (thick dashed line).

L. . . e that reorganization in the HVc_RA> RA pathway that underlies
associations underlymg model devebpment are summarizeqly),,once learning disrupts the efference copy match during syllables 8,000—

Fig. 10A. Figure 1@ shows which connections are most im17,000. The correlation coefficients computed are defined ineseLts B:
portant during each of the song learning stages traced in Rigolvement of connections in the different stages of learning show in

Learning
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confined to patterns matched to the relatively small number of A

tutor syllables. These aspects of the model (with the exception
of stage 1a) were described in detail in our companion paper

Syllable .
Leamning~ 4"

(=
(Troyer and Doupe 2000). As syllable learning proceeds, -%_5
clearly defined sequence teaching signals begin to be produced @;f-i Sequence
by the AFP. These begin to bias RA activity toward the tutor 8‘§ Leaming
sequence (stage 3, thick solid line; see Fig).9This altered ,
activity then remaps the connections from HVc_RA to RA, so 0 ' .
that the polysynaptic pathway from HVc_AFB HVc_RA — 0 5 10 15 20 25
RA (thick dashed line) yields correct sensery next motor Syllable Number (x1000)
syllable transitions. Note that improvement in the sequencing
of RA activity happendeforethe learning of the appropriate T sylable 7 AR
connectivity from HVc_AFP— HVc_RA — RA, since AFP- ST | Leaming~.
driven sequence transitions are necessary to drive sequence 85 ;
related learning. The reorganization of the HVc_RA RA g§ Sequence
pathway disrupts the efference copy mapping, which begins to 00 Learning
degrade slightly during the period of sequence learning (dotted obe

line, syllables 8,000-17,000). This tension between AFP-

guided changes in the motor pathway and renewed efference
copy learning continues until both are in rough agreement. This
agreement causes a transient decline in the efference copy C
match (near syllable 16,000), since the H¥RA connection

0 5 10 15 20 25
Syllable Number (x1000)

RA activity level

. . A|E N ] 2 gz 4 8 B E %

races ahead to the final solution. The efference copy makes a Bl B E L ELEERD R EEE R R
final recovery, and the model produces a stereotyped sequence e'ly s ! CERETE PR

of song syllables. oo s us
Aglfe e Bs By e By By B R R R RN

) c| By R, B o R E BE R G T

Range of model behavior e°l, 1 A B .

19900 19925 18950

By presenting results from a singl_e _r_epresentative simula- 23 ?,,g gz if.% % Ty 1 Ty i,

tion, we have demonstrated the plausibility of our core hypoth- c T TR T T T T T T
. .. . .. . e sz ms ] ] ag B | .

esis that associational learning, distributed widely throughout 25900 22525 T oo
the song system, is sufficient for sensorimotor matching to a R R e T N T

previously memorized template stored in the AFP. Because ED . ﬁ; Qﬁ 5,” igm '] % 5% % ﬁgg %k

each stage of the learning is dependent on previously devel-
oped associations, a complete assessment of the reaction of our

Fic. 11. Variability of learning time courséA: Development of syllable-

model to changes in model parameters Is beyond the SCOergfed and sequence-related activity for 9 of 10 repeated simulations. Param-

this paper (see Troyer and Doupe 2000 for some importasdrs were fixed at their default values and simulations were run using different

manipulations). random seeds to determine the initial connectivity and the sequence of pre-
Overall, sequence learning was significantly less robust th@ator drives. Output was quantified as in FigAl®8: convergence in 1 of the
.0 simulations was not complete until syllable 25,000 (solid lines). The

syllable learning, since it results from continual interplay béé.tverage time course of the 9 simulations showA is plotted for comparison

tween the changes n th_e HVc to RA projection and th@otted lines).C: model output for simulation plotted iB. The model first

efference copy mapping in HVc. The robustness of modeinverged on a suboptimal solution by repeating syllables A-D and occasion-
behavior at the default set of parameters was assessedallyysubstituting syllable E for D. Due to homeostatic mechanisms that act to
running 10 simulations, each with different random See’% ep average activity in all assemblies constant, syllable E had large activity

L s . . ack rectangles). By syllable 23,000, E was inserted in the proper position but
determlnlng the initial pattern of synaptic connectivity and t as often repeated 2-3 times. Syllable A was sometimes dropped. Repetitions

sequence of premotor drives. A”' simulations e_VGmUQ'Mentually ceased and by syllable 25,000 the model produced the proper
learned the tutor song perfectly. Nine of these simulatiossquence.

followed a similar time course, completing sequence learning

near syllable 17,000 (Fig. ). However, in one of the sim- syllable E was repeated and sometimes syllable A was
ulations, correct learning took significantly longer and was nétopped. By syllable 25,000, the model had converged on the
complete until syllable 25,000 (Fig. BL. Examination of the correct sequence. Personal observation of many simulations
output of this simulation reveals that during the period betweeeavealed that such temporary “compromise” solutions to the
syllable 15,000 and 20,000 when the other simulations wezempeting requirements of associational change in the
stringing together series of transitions to match the tutor sortgy/c_RA — RA projection and the maintenance of an accurate
this simulation began to repeat the subsequence A-D, omittiefflerence copy mapping within HVc were not uncommon.
syllable E (Fig. 1T). Since the strong homeostatic mecha- To further assess the range of model behavior, we increased
nisms in the model prevent any RA assemblies from becomitite number of syllables to eight, thereby increasing the range
permanently inactive, the model compromised, occasionatlf possible sequence transitions. The number of vocal features
inserting a strong version of syllable E in place of syllable On each syllable was reduced to five, so that the simulations
However, by syllable 23,000, the model began to inserbntained the same number of RA assemblies as before (8
syllable E in its proper place in the sequence, but sometimes= 40). AFP circuitry was adjusted for the different template,

T T T
24900 24925 24950
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RA activity level learning. These developmental stages are not predetermined by
A AT i 7 i 3 i ] our learning rule, but follow a cascade of interrelated associ-
Cp| M . L. iy L. L. ations that are guided by template matching signals from the
E
E
G
H

L n " LN L8 LA AFP.
In this paper, we focused on the problem of learning song
sequence. We propose that sequence generation results from
' ' ' 1 ' ' a reciprocal sensory-motor interaction between the two pop-
' o e LI T LI ulations of HVc projection neurons: the motor component is
1 £ 2 : ! . encoded primarily in RA-projecting HVc neurons, whereas
the sensory component is encoded primarily in AFP-project-
8 T ing neurons (Katz and Gurney 1981; Kimpo and Doupe
1997; Lewicki 1996; Saito and Maekawa 1993). This mech-
anism predicts that the participation of neurons in both
populations is required for normal sequence generation. We
also predict that the slow “context” signals linking one
syllable to the next flow primarily from AFP-projecting to
RA-projecting neurons. While we have not explored possi-
ble neural substrates for this functionally slow connection,
Kubota and Taniguchi (1998) have reported that RA-pro-
jecting neurons possess an ionic current that delays the
s Yy % % 5 initiation of action potentials.
2397 24000 24025 The absence of a direct projection from the AFP to nuclei
Syllable Number upstream of RA, the likely site of sequence generation (Vu et
Fic. 12. Imperfect sequence learning—E outcomes of 10 simulations al. 1994), poses a significant challenge to the hypothesis that
with increased numbers of syllables. Perfect learniigoccurred in 6 simu- the AFP guides learning of song sequence. One strategy for
lations. In one S|mulat|orE\)_, a full seq“uence c?’fSSyIIabIes was produced, b“ﬁ(vercoming this challenge is for the AFP to guide Iearning
the sequence was broken into three “chunks” of _syllables. In 2 of these chun % . .
(syllables A—C and G-H), syllables were sung in the proper order. In theV8! hin the connections from HVc to RA, so that the OUtquS
other simulations@-E), the sequence was broken into two subsequences,wﬁﬂ)m the pattern generator are mapped onto the appropriate
subsequences sung in alternation. Transition times between subsequencesegrience of syllable representations in RA (Doya and Sej-

determined by the interaction of learning with slow homeostatic mechanism\wski 1998). Viewed in isolation, this hypothesis predicts the

. . . existence of an autonomous pattern generator that is unaffected
and AFP— RA learning was slightly adjusted to ensure that 3y outputs from the AFP. In our model, however, a moter
accurate sensory> motor mapping was learned (SE®ENDIX).  sansory efference copy mapping within HVc plays a crucial
To push the model to make mistakes, all learning rate parapge jn sequence generation. Therefore, we predict that the AFP
eters were increased by a factor of 5. No other parameters Wgfe. affect the pattern generator, although indirectly: AFP-
readjusted. The range of RA output for a set of 10 simulatiofigy,ced changes in RA change the relation between HVc
is shown in Fig. 12. Perfect learning occurred in six of the te&emotor activity and the resulting auditory feedback, trigger-

simulations. An example is shown in Fig.A2In one simu- o renewed learning in HVc and altering the sequence of its
lation, the model produced a stereotyped sequence of I8 motor outputs (Fig. 6).

syllables, but this motif consisted of two "chunks” of appro= o, model predicts that neural activity recorded within
priately copied song, separated by a string of three syllablgs, AFp should contain a mixture of three signals. First, to

sung in reverse order (Fig. B2 In the three other simulations,guide syllable learning, the output from the AFP should

the full sequence was broken into two repeated subsequentesy 3 reinforcement signal that modulates plasticity widely
(Fig. 12,C-E). These were sung in alternation, with the rate Qfithin RA. This reinforcement signal should have a com-
alternation controlled by the interaction between associational,ant operating on the time scale of individual syllables.
learning and homeostatic mechanisms that prevent the elil@lcong, the AFP should carry efference copy information
nation of either su_bsequencg. In versions of th_e model Wilfljated to the current syllable. This is necessary for asso-
weaker homeostatic mechanisms, syllables outside of the mastional learning of the appropriate sensesymotor map-
commonly sung subsequence were simply dropped (NQhg from the AFP to RA and should be particularly prom-

shown). inent in the early stages of sensorimotor learning. Finally, to
guide sequence learning, the AFP should be able to bias RA

DISCUSSION activity toward syllable transitions contained within the

Principal findings and predictions tutor song. Given our proposed developmental time course

of learning (Fig. 1@), we predict that the ability of the AFP

By constructing a computational model, we have demots bias RA motor activity should be maximal during the
strated that simple rules of associational plasticity, operatipgak period of sequence learning. Early in learning, the AFP
throughout the song system, are sufficient to support senseoi-RA connections are expected to be relatively unorga-
motor learning at multiple levels of the temporal hierarchy fatized, and, after sequence learning, the highly organized
song. Learning proceeds in a series of stages, with efferemosnections from HVc to RA are expected to dominate the
copy learning followed by syllable learning and then sequenirgut to RA. This prediction could be tested using cross-
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correlation analyses and/or electrically stimulating the ousignals be matched to the sequence of sensory expectations that

put nucleus of the AFP during singing. would be elicited by recruiting the motor circuit. In our circuit,
auditory stimulation using syllable A of the bird’'s own song
Weaknesses of the model should excite the sensory representation of A in HVc_AFP.

. _ This in turn would excite, with a delay, the HVc_RA context

Like our syllable learning model (Troyer and Doupe 2000%ignal Ctxt,, and this should produce efference copy input for
the main weakness of the sequence learning model is #glable B. A match between this internally generated expec-
simplified representation of the problem. In particular, we haygtion and the auditory signal may lead to an enhanced re-
treated the motor hierarchy as having two distinct levelshonse. Because the efference copy mapping is learned from
syllables and sequences of syllables. Questions regarding 48gociations generated when the bird vocalizes, this mecha-
mechanisms for starting and stopping song have not be@sm may explain why auditory responses in HVc become
considered, nor have we addressed the possibility that sgbned to the bird’s own song during the course of sensorimotor
syllabic “notes” might be the true units of song (Cynx 1990)earning (Volman 1993). Our model also predicts that neurons
Quantitative data regarding these issues are scant, and mgitin both populations of HVc projection neurons should
extensive analysis of developing song will be required thow sensory-related as well as motor-related activity. Further-
constrain more realistic models of learning at multiple levels @fore, since the presentation of multiple syllables may be

the song hierarchy. necessary to fully recruit the motor circuit, this mechanism
may underlie the selectivity of some HVc neurons to aspects of
Sequences by associative chaining the auditory stimuli occurring several hundred milliseconds

efore the recorded neural response (Lewicki and Arthur 1996;

b
_ Our model assumes that sequences are generated as &ficki and Konishi 1995; Margoliash 1983; Margoliash and
associative chain” of sensory and motor representations (M&sne 1992).

tor — sensory— next motor— next sensor. . . ; James 1983;
Adams 1984). One important difference in our model is tha}I
the sensory components of the chain are internally generate(a
efference copy representations. Use of an efference copy adOur model demonstrates how associational learning, distrib-
dresses two of the three main challenges to associative chaited widely throughout the song circuit, can be used to address
ing (Rosenbaum 1991). First, efference copy addresses gfemeral problems in sensorimotor learning. Moreover, the
limitations placed on chaining by feedback delay. Second, awodel points to specific problems raised by song system anat-
version of chaining depends only on signals generated wittomy for learning multiple levels of the temporal hierarchy for
the brain and is therefore consistent with retention of motsong (Fig. B). The functional roles we propose for the AFP
skills even when sensory feedback has been removed (@ering song learning share similarities with hypotheses regard-
viewed in Sanes et al. 1985; Jeannerod 1988). A third chaidg the importance of basal ganglia/forebrain loops for rein-
lenge for associative chaining models is their inability to adercement and sequence learning in mammals (Aldridge and
count for the errors commonly produced during somBerridge 1998; Contreras-Vidal and Schultz 1999; Hikosaka et
sequential behaviors such as speech (Lashley 1951; Mackshy1999; Houk et al. 1995; Matsumoto et al. 1999; Montague
1970; reviewed in Houghton and Hartley 1996). Although et al. 1996).

thoroughh analysis 0; the (\j/ariaﬁility irr: Zl(?bf_a cfimc(i:h Song_lseg-NE TEMPORAL STRUCTURE (1-10 Ms). Birds are able to pro-
quence has yet to be undertaken, the limited data availagig-e vocal output that changes on the scale of milliseconds

suggest that song is sometimes learned in short seqUENCE-QE et a1, 1998; Suthers et al. 1994), and it is known that such

chunks” of song syllables (Williams and Staples 1992). Agjne changes affect neural responses in the song system
sociative chaining can naturally account for SL_JCh Iearnmgl Yheunissen and Doupe 1998) and influence avian behavior
viewing chunk boundaries as errors in learning approprigionr and Dooling 1998). The possibility that birds learn such

syllable transitions (Fig. 12). fine motor control poses a significant challenge to any model of

Recent technical advances raise the possibility of testing Q{ipor |earning. In addition to the fact that sensesymotor
chaining hypothesis by selectively photo-ablating neurorg,arge” mappings often are not well-defined (Jordan 1995),

within a single population of HVc projection neurons (Scharf arning such mappings may be extremely difficult at the finest

; . . e itive e scales. First, feedback delay is an order of magnitude
disruptions of HVc_AFP, while lesioning HVC_RA neuron§onger than the temporal precision of the senserymotor

can disrupt song. Howoever, the effects of HVC_RA lesiongaiching. Second, there is likely to be a complex relationship
were variable, with<50% of birds showing deterioration of e yeen motor neuron activity and behavioral output due to the

song. More complete lesions and/or more detailed analysiysics of the muscles and tissues that produce the behavior
may Yyield greater insight into the relative contribution o Fee et al. 1998; Goller and Larsen 1997).

HVc_RA and HVc_AFP neurons to song production. Our model relies on reinforcement learning to guide RA

ASSOCIATIVE CHAINS AND SENSORY SELECTIVITY. The same connectivity toward patterns encoding individual song sylla-
reciprocal circuit underlying song production may underlie tHeles. Even though we do not explicitly model the temporal
selectivity of HVc neurons to auditory stimuli (Lewicki andprecision of RA motor activity (Yu and Margoliash 1996), our
Konishi 1995; Margoliash 1983; Margoliash and Fortunapproach satisfies general constraints imposed by the problem
1992) and may contribute to song perception (Nottebohm et af. precise motor learning, as well as particular constraints
1990; Scharff et al. 1998). In particular, vigorous sensoiynposed by song system physiology. Most importantly, the use
responses may require that the sequence of incoming auditofyeinforcement learning avoids the difficult problem of learn-

mporal hierarchies and song learning
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ing a sensory— motor matching at fine time scales, since thdirect evidence for an active role of the AFP in sequence
evaluation of sensory input yields a single number that generation comes from Bengalese finches, an estrildid finch
broadcast equally to all RA assemblies. Fine structure withdtosely related to zebra finches: lesions in the AFP of adult
the motor representation for each syllable is assumed to Bengalese finches appear to have an immediate effect on song
learned by using the reinforcement signal to guide an initialsequence (Okanoya and Kobayashi 1998).
random exploration of motor space to the appropriate goal. The_earning at longer time scales is also less constrained by the
development of a fine time scale sensesymotor mapping problem of feedback delay. Our estimates suggest that auditory
between the AFP and RA is particularly unlikely given that thieedback should reach the song system before the onset of the
AFP input to RA is almost exclusively mediated by NMDAsubsequent syllable, raising the possibility that it may play a
receptors that have decay times on the order of 40—200 rade in sequence generation. In zebra finches, these reafferent
(Mooney 1992; Stark and Perkel 1999; White et al. 1999). signals appear not to contribute acutely to vocal production
Our model also predicts that circuits intrinsic to RA play asince altering the auditory feedback pathway does not have
important role in encoding the motor programs for individudmmediate effects on the temporal structure of song (Leonardo
song syllables (cf. Spiro et al. 1999). Thus, syllable represeand Konishi 1999; Nordeen and Nordeen 1988; Price 1979). In
tations can remain stable even during the sequence-relagedtrast, Bengalese finches that are deafened as adults show a
remapping of HVc efferents. Moreover, our model does noapid disruption of song sequence (M. Brainard, personal com-
require that the precise patterns of RA motor activity be drivenunication; Okanoya and Yamaguchi 1997; Woolley and
by input from HVc, where neural activity has been shown to Jeubel 1997), suggesting that auditory reafference may play an
temporally less precise (Yu and Margoliash 1996). important role in this species. However, auditory feedback in
INDIVIDUAL VOCAL GESTURES (~100 Ms). Our model uses a Bengalese finches does not appear to contribute to singing at
Hebbian plasticity rule roughly matcHed 10 the time scale flper time scales, since the degradatlon of |nd|V|du§1I syIIabIes_
NMDA receptor-mediated currents (40—200 ms). The durati%ilrallels the slower postdeafening song degradation seen in
: bra finches. In our model based on zebra finches, auditory

of these currents is of similar duration to both the length ¢ e
; ignals are canceled within HVc (Troyer and Doupe 2000).
sensory feedback delay and evaluatier66 + 40 ms) and the However, the model could be generalized so that auditory

duration. of t_he individual elements of S°n°§11.5 ms). Hum:.in.feedback contributes significantly to the context signals that
speech is disrupted by delayed playback using delays withinya o the sensory> next motor link in the chain underlying
similar range (Lee 1950). The similarity between the tim ong sequence (Fig. 3)

scales of internal processing and sensory feedback is important
for the workings of our model. A relatively broad window for ) . ) .
associational plasticity in HVc is sufficient to span the sensoljotor hierarchies and selective attrition

feedback delay, and the temporal asymmetry of Hebbian plas:]uvenile birds in many species produce a large number of

ticity naturally leads to an efference copy mapping betweeqjapes that are winnowed down to the final adult reper-
motor and sensory representations within HVc. The use gf: (e.g., Marler and Peters 1982; Nelson and Marler

. ; , re
temporally imprecise, syllable-based neural representatlons_fég‘l)_ While we have not yet explored these issues directly,
&trors made by our model (Fig. 12) suggest how the number

lows for reliable associations even if the window for associ
f song elements may be influenced by circuitry at both the

tional plasticity is relatively broad, eliminating the need fo
associational learning tightly tuned to the relevant delays in tég}éable and sequence levels of the motor hierarchy: RA
uitry may influence the total number of syllable repre-

system. We suggest that feedback delay may set a prefer&
ntations encoded, whereas the pattern generator in HVc

time scale for sensorimotor learning and may relate to tgg
prevalence of~4-10 Hz rhythms in many motor beh""V'Orsdetermines which syllables get incorporated into the final
Eong. This two-level picture may explain the re-emergence

including active touch (Morley et al. 1983), motor tremo

(McCauley et al. 1997), and whisker twitching in ratg \hite crown sparrow syllables that were learned during

(Nicolelis et al. 1995). development but dropped from the original adult repertoire

SEQUENCE GENERATION ¥100 MS). Learning temporal structure (Benton et al. 1998). Quantitative data concerning the de-
on time scales greater than individual syllables poses signifelopmental time courses of syllable morphology and syl-

cantly fewer problems than learning structure at fine tempotable sequence will be crucial for understanding the mech-
scales. Sensory> motor matching is readily accomplished aanisms for learning on multiple time scales.

the level of syllable-based features, and, as a result, template

information encoded in sensory coordinates in the AFP is, ;-\ px

available to actively influence syllable transitions (Figs. 4 and

10). AFP lesion data are consistent with the active role inOur algorithm for sequence learning extends our previous syllable
sequence generation predicted by our model. Lesions I@aning.algorithm (SLA), described in detall in the appendix to our

LMAN, the output nucleus of the AFP, reduce the range §@mpanion paper (Troyer and Doupe 2000). We present here only
sequence transitions in juvenile birds (Scharff and Nottebotffiferences and additions to SLA. The main differences wdje:

: - ding plastic connections from HVc_AFP HVc_RA and from the
1991), as would be expected if AFP outputs were important f P — RA (Fig. 2B): 2) having more complex calculations in the

generating sequence trans_ltlons during sensorimotor Iearnlg\gp (Fig. 7); 3) adding adaptation to HVc_RA. The additional

In contrast, lesioning the input nucleus of the AFP, aX¢a connections were initialized using the “uniform strategy,” i.e., all
increases sequence variability (Scharff and Nottebohm 198}ihapses were initially set to have equal strength and then perturbed
Sohrabiji et al. 1990). Increased variability could result if are® zero mean Gaussian noise with standard deviation equal to 10% of
X damage led to inconsistent output from LMAN. The moghe unperturbed strength (see Methods in Troyer and Doupe 2000).
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As before, we abbreviate HVc_RA as HR, HVc_AFP as HA, anRA, pR*(n) = R(nr*(n). The time window for HVc_AFP—
AFP as AF, and let"R, rRA pHAE (HAM (HAL (HAG whereE, HVc_RA context learning was given as a difference of exponentials
M, L, G refer to the early, middle, late, and gap portions obeginning after a 50-ms delag(r) = (e~ ("~ 5/ — g~ (=50)/mise) /5
HVC_AFP activity. r=¢ is defined as in SLA and denotes thefor + > 50 ms.t,,.. = 50 ms, 7, = 150 ms, andh is a normalizing
HVc_AFP activity representing the efference copy passed to t@gnstant that ensures thatr) has a maximum value of 1. Learning
AFP. r°** denotes the HVc_AFP activity contributing to the eon e parameters for new plastic connectionskifg"A = 1 x 1077

text signal and was determined as the average activity during thg-2 kRARF — 3 % 1071 ms 2 The threshold for long-term
middle, late, and gap portions of the syllable (see step 8d below}entiation (LTP) and long-term depression (LTD) in HVc_RA was
For sequence learning, the AFP has both input and output ass ermined using™R = 0.4. Connections from the AFR> RA used
blies (Fig. 7), with ratesrAf”‘ and r*"°t, We use post, prd o 4 eparate LTP/LTD threshold (seeTtHops), bRARF = 3.5,

denote a matrix of synaptic strengths between a presynaptic an% Update and apply homeostatic mech,anisms

postsynaptic population of assemblies. 8a. Normalize synaptic strengths. Normalization follows SLA(8a).
) ) The total input received by each population remained the same as in
Simulations SLA,; in RA, synaptic strengths were reduced by 20% to accommodate

Running simulations for 25,000 syllables was found to be adequﬁ%ﬁ new connections from the AFP. S84 RA = 0.15 = 0.4 X

to guarantee the convergence of sequence learning (Fig. 11). The stehg0; RA HR] = 0.3 = 0.4 15/200; andRA AF] = 0.6 = 0.2 X
in the sequence learning algorithm are slightly reordered relative tg/>- Context inputs from HVc_AFP contributed 20% of the input to
SLA. Since input from the AFP alters RA activity, calculation of AFPHVC_AFP: [HR_’ HA] = 0.1= 0.2 X 20/40. )
activity had toprecedethe calculation of activity in RA. This in turn ~ 8b. Update inhibitory strengths. Same as in SLA(8b).
required calculation of the HVc_AFP activity contributing to the 8C. Update adaptation. HVc_AFP adaptation follows SLA(8c).
efference copy signalr't~€ and r*A™™). Calculation ofr"*#t and HVc_RA adaptation was of the same form but was updated only once
r"AG had tofollow the calculation of RA activity, since these-de at the end of each syllablel%.., = 225 ms anch"'™ = 6.133 ms ™.
pended on the auditory feedback from the current syllable. We Issuming a constant activity level of 1 during periods of HVc_RA
SLA(n) refer to stepn in our syllable learning algorithm. activity, adaptation would have a strength of 12 input units, 60% of
the total excitatory input to HVc_RA.
1. Premotor drive. Same as SLA(1), except fhaf,. was reduced  8d. Compute context signal. The context activit$, was deter
to 16 to compensate for the addition of context input from HVc_AFRnined from the average HVc_AFP activity during the middle (35-ms
2. Calculate HVc_RA activity. The afferent input to HVc_RA isjong), late (20-ms long), and gap (35-ms long) portions of the syllable:
calculated as the sum of premotor drive and HVC_AFP context>{pn) = [35r%4M(n) + 20r™A(n) + 35-H4C(n)])/(35 + 20 + 35).

signals: aff"*(n) = pi(n) + 3; [HR, HAl;r,°*{n — 1). Output firing  To reduce instability resulting from reciprocal positive feedback in

rates are determined as in SLA(2). . HVc, the context signal for each syllable was normalized to have
3. Calculate earlier portions of HVc_AFP activity"("® and average value equal to 1, L85 = 7, M)A (n)).
rtA™M). Same as in SLA(4). 9. Calculate running averages of activity. Same as in SLA(9), with

4. Calculate AFP activity and reinforcement. The calculation gRFin — (AF
AFP activity was more complex than in SLA (seetHops, Fig. 7).
The calculation of activity in AFP input assemblies follows SLA(5):
rAFN(n) = |affAF(n) — GAFI — 6 *, with | = [(aff*"(n)) — 627+, and INcreased number of tutor syllables
affeF(n) = 3, Ty Vr(n). The activityr 7°""in AFP output assem

. In some simulations, the number of tutor syllables was increased
bly k was calculated as the sum of three terms (Fig. 7) Y

from five to eight. The number of AFP assemblies was increased

rAFou () = 0.15 % rAFn(n) accordingly, and the connections from HVc_AFP were increased by a
factor of 8/5 so that the total connection strength onto each AFP input
reFeie(n) = 0.75X c¥[0.15+ 0.85R¥(n))] assembly remained at 15. To ensure proper sensonyotor learning
_ in the connections from the AFR RA, the learning rate was slowed,
re78(n) = 0.10X rf(n — 1) KRAAF 5 0.5 X KRAAF and the LTP/LTD threshold was reduced

slightly, "4 = 3. To push the model harder, all learning rates were
increased by a factor of 5, i.&?°4P"*— 5 X kPostPregndknh — 5 x
k"h All other parameters remained fixed.

wherec® = 20 andRY(n) = |R¥r 27 "(n) — ¢,/ as in SLA(6). Note

that r;7°"® is identical for allk. The magnitude of the reinforcement
signal for assembly in RA is proportional to the total amount of
excitatory input received from the AFRi(n) = =, [RA AF],r £7°"(n)/ _ _ _ _
(SW)- The correction factorw ensures that the magnitude We thank B. Baird, D. Buonomano, C. Linster, A. Krukowski, K. Miller,

of reinforcement corresponds to that used in SLA and members of the Doupe lab for many helpful comments. Special thanks to

o . . K. Miller for input and support throughout the project.
5. Calculate RA activity. The afferent input to RA is calculated as’pis work was supported by the McDonnell-Pew Program in Cognitive

the sum of inputs from HVc_RA and the AFP, with the mean of thQeroscience (T. W. Troyer), and National Institutes of Health Grants MH-
AFP input subtracted off due to feedforward inhibition (Fig. 7)12372 (T. W. Troyer) and MH-55987 and NS-34835 (A. J. Doupe).
afffA(n) = 3, [RA HRJ;ri'"™(n) + 3, [RA, AF],[ri™(n) —

(r"Feuin))]. Calculation of RA activity is the same as in SLA(3). To

monitor convergence, once every 250 syllables, the simulations w&EFERENCES

continued over the interval [0, 10]. As in SLA, the root-mean-squareamvs JA. Learning of movement sequenc@sychol Bull96: 3-28, 1984.
(RMS) difference between short and long simulations [run every 2#@ODRIDGE JW AND BER_RlDGE KC. Coding of serial order by neostriat'c_ll neu-
syllables to monitor convergence of RA dynamics, see SLA(3)] was/ons: & “natural action” approach to movement sequediddeuroscil8:

less than 0.1 except during the final stages of syllable learni 7772787, 1998. . .
(syllables 8750—11,500). B NTON S, MARLER P, NeLsoN DA, anD DeEVoocb TJ. Anterior forebrain

! . a . pathway is needed for stable song expression in adult male white-crowned
6. Calculate later portions of HVc_AFP activity " andr*-). sparrows Zonotrichia leucophrys Behav Brain Re§6: 135-150, 1998.
Same as in SLA(4). ) . CONTRERASVIDAL JL AND ScHuLTz W. A predictive reinforcement model of
7. Update synaptic strengths. Calculation of plasticity followed the dopamine neurons for learning approach behalo€omput Neurosc:
same rule described in SLA(7). The postsynaptic plasticity signal in191-214, 1999.



1238 T. W. TROYER AND A. J. DOUPE

Cvynx J. Experimental determination of a unit of song production in the zebMARLER P aND PeTERS S. Developmental overproduction and selective attri-
finch.J Comp Psychol04: 3-10, 1990. tion: new processes in the epigenesis of birdsdbgv Psychobioll5:
Dovya K AND Sesnowski TJ. A computational model of birdsong learning by 369-378, 1982.
auditory experience and auditory feedback.@entral Auditory Processing MaTsumoto N, HANAKAWA T, MaklI S, GRAYBIEL AM, AND KIMURA M.
and Neural Modelingedited by Poon PWF and Brugge JF. New York: Nigrostriatal dopamine system in learning to perform sequential motor tasks

Plenum, 1998, p. 77-88. in a predictive mannerd NeurophysioB2: 978-998, 1999.

FEE M, SHRAIMAN B, PEsARAN B, anD MiTRA PP. The role of nonlinear McCauLey JH, RoTHWELL JC,AND MARSDEN CD. Frequency peaks of tremor,
dynamics of the syrinx in the vocalizations of a songbikthture 395: muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz
67-71, 1998. during human finger muscle contraction may reflect rhythmicities in central

GoLLER F AND LARSEN ON. A new mechanism of sound generation in song- neural firing.Exp Brain Resl14: 525-541, 1997.
birds. Proc Natl Acad Sci USA4: 14787-14791, 1997. MONTAGUE PR, DayaN P, AnD Seanowski TJ. A framework for mesencephalic

Hese DO. The Organization of BehavioNew York: Wiley, 1949. dopamine systems based on predictive Hebbian leardirigeuroscil6:

Hikosaka O, NakaHARA H, RanD MK, Sakal K, Lu X, NAKAMURA K, 1936-1947, 1996.

MivacHI S, aND Dova K. Parallel neural networks for learning sequentialviooney R. Synaptic basis for developmental plasticity in a birdsong nucleus.
proceduresTrends Neurosc22: 464—-471, 1999. J Neuroscil2: 2464—2477, 1992.

HougHTON G AND HARTLEY T. Parallel models of serial behavior: Lashleyyooney R anp Konistil M. Two distinct inputs to an avian song nucleus

revisited. Psyche2, 1996. [Retrieved February 15, 1999, from the World tivate diff t glut t t bt individual R
Wide Web: http://www.cs.monalsh.edu.au/volume2—1/psyche—95—2—25—|ash%‘;ltllvice‘,ﬂdI Se(:riess%lgfizﬁo?;g_l’jgsg o;gsgul ypes on Incividual ned

ley-1-houghton.html.] S
. MoRrLEY JW, GoobwiN AW, AND DARIAN-SMITH |. Tactile discrimination of
Houk JC, Abams JL, aND BarTO AG. A model of how the basal ganglia gratings.Exp Brain Resio: 291-299, 1983,

generate and use neural signals that predict reinforcemenkiddels of N DA M p. Selection-based | ing in bird devel
Information Processing in the Basal Ganglizdited by Houk JC, Davis JL, 'NELSON DA And MARLER P. Selection-based learning in bird song develop-

and Beiser DG. Cambridge, MA: MIT Press, 1995, p. 248—270. ment.Proc Natl Acad Sci USA1: 1049810501, 1994. _
James W. The Principles of PsychologyCambridge, MA: Harvard Univ. NicoLeLis MA, BaccaLa LA, LiIN RC,anD CHaPIN JK. Sensorimotor encoding

Press, 1983. [Original work published in 1890.] by synchronous neural ensemble activity at multiple levels of the somato-
JEANNEROD M. The Neural and Behavioral Organization of Goal-Directed Sensory systenBcience268: 1353-1358, 1995.

MovementsOxford, UK: Clarendon Press, 1988. NorDEEN KW AND NoORDEEN EJ. Projection neurons within a vocal motor

JoHNsoN F, HoHMANN SE, DSTeFANO PS, AND BoTTJER SW. Neurotrophins pathway are born during song learning in zebra finciNegure 334: 149—
suppress apoptosis induced by deafferentation of an avian motor-cortical 51, 1988.
region.J Neuroscil7: 2101-2111, 1997. NoOTTEBOHM F, ALVAREZ-BuvyLLA A, Cynx J, LING C, NOTTEBOHM M, SUTER
JorDAN MI. Computational motor control. InThe Cognitive Neurosciences, R, ToLLes A, AND WILLIARMS H. Song learning in birds: the relation
edited by Gazzaniga MS. Cambridge, MA: MIT Press, 1995, p. 597-610. between perception and productithilos Trans R Soc Lond B Biol S229:
Katz LC AnND GURNEY ME. Auditory responses in the zebra finch's motor 115124, 1990.
system for songBrain Res211: 192-197, 1981. OKANOYA K AND KoBavasHi K. Lesioning a nucleus (area X) of the anterior
Kimpo RR anD Doupe AJ. FOS is induced by singing in distinct neuronal o reprain pathway affects the production of learned song in adult Bengalese

populations in a motor networkleuron18: 315-325, 1997. finches [onchura striatavar. domestick (Abstract). 5th Int Soc Neuro-
KLEINFELD D AND SompPoLINSKY H. Associative neural network model for the ethology1998, No. 303

generation of temporal patterns: Theory and application to central pattetn ) .
generatorsBiophys J54: 1039-1057, 1988. ORanova K aND YamacucH! A. Adult Bengalese finched ¢6nchura striata

KonisHi M. The role of auditory feedback in the control of vocalization in the var. domestlc@rgqtg; rga;tlgzauggory feedback to produce normal song
white-crowned sparrowZ Tierpsychol2: 770-783, 1965. syntax.J Neurobiol33: 343-356, 1997. . .
KugoTa M AnD TANIGUCHI I. Electrophysiological characteristics of classes o RICE PH. Developmental determinants of structure in zebra finch song.

neuron in the HVc of the zebra finch.NeurophysioBO: 914-923, 1998. _ J Comp Physiol Psychd3: 268277, 1979. ,
LasHLEY KS. The problem of serial order in behavior. l@erebral Mecha- ROsENBAUM DA. Human Motor Control.San Diego, CA: Academic Press,

nisms in Behavior (the Hixon Symposiurajlited by Jeffress LA. New 1991

York: Wiley, 1951, p. 112-136. Sato N AND Maekawa M. Birdsong, the interface with human language.
Lee BS. Effects of delayed speech feedbaglcoust Soc Ar@2: 824—826, Brain Dev15: 31-39, 1993.

1950. Sanes JN, Mauritz KH, DaLakas MC, anp EvarTts EV. Motor control in
LeonarDO A AND KonisHi M. Decrystallization of adult birdsong by pertur- humans with large-fiber sensory neuropatiyman Neurobio#: 101-114,

bation of auditory feedbacature 399: 466—-470, 1999. 1985.
Lewicki MS. Intracellular characterization of song-specific neurons in th&cHARFFC, KIRN JR, GRossMANM, MackLis JD,AND NoTTEBOHM F. Targeted

zebra finch auditory forebraid. Neuroscil6: 5855-5863, 1996. neuronal death affects neuronal replacement and vocal behavior in adult
Lewicki MS anD ARTHUR BJ. Hierarchical organization of auditory temporal songbirdsNeuron25: 481-492, 2000.

context sensitivity.J Neuroscil6: 6987—-6998, 1996. ScHARFF C, KIRN JR, Mackuis JD, anD NotTeBoHM F. Conspecific and
Lewicki MS anp KonisHi M. Mechanisms underlying the sensitivity of song- heterospecific song discrimination in male zebra finches with lesions in the

bird forebrain neurons to temporal ordé?roc Natl Acad Sci USA2: anterior forebrain pathwayl Neurobiol36: 81-90, 1998.

5582-5586, 1995. ScHARFF C AND NoTTEBOHM F. A comparative study of the behavioral deficits

LoHR B anD DooLING RJ. Detection of changes in timbre and harmonicity in following lesions of various parts of the zebra finch song system: implica-
complex sounds by zebra fincheBaéniopygia guttataand budgerigars  tions for vocal learningd Neuroscill: 2896-2913, 1991.
(Melopsittacus undulatysJ Comp Psychol12: 36—-47, 1998. SoHRABJI F, NORDEEN EJ, AND NoRDEEN KW. Selective impairment of song
MacKAY DG. Spoonerisms: the structure of errors in the serial order of speechlearning following lesions of a forebrain nucleus in the juvenile zebra finch.
Neuropsychologia: 323-350, 1970. Behav Neural Biob3: 51-63, 1990.
MARGoLIASH D. Acoustic parameters underlying the responses of song-speciilossinka R AND BOHNER J. Song types in the zebra fincRdephila guttata
neurons in the white-crowned sparrodvNeurosci3: 1039-1057, 1983. castanottiy. Z Tierpsycholl7: 123-132, 1980.
MARGoLIASH D AND ForTUNE ES. Temporal and harmonic combination-SPErRRYRW. Neural basis of the spontaneous optokinetic response produced by
sensitive neurons in the zebra finch’'s H\&.Neuroscil2: 4309-4326, visual inversion.J Comp Physiol Psychal3: 482—489, 1950.
1992. SpIROJE, DaLva MB, AnD MooNEY R. Long-range inhibition within the zebra
MARGoOLIASH D, FORTUNE ES, SITTER ML, Yu AC, WREN-HARDIN BD, AND finch song nucleus RA can coordinate the firing of multiple projection
Dave A. Distributed representation in the song system of oscines: evolu-neuronsJ NeurophysioB1: 3007-3020, 1999.
tionary implications and functional consequencBsain Behav Evold4: Stark LL AnD PerkeL DJ. Two-stage, input-specific synaptic maturation in a
247-264, 1994. nucleus essential for vocal production in the zebra firkiNeuroscil9:
MARLER P. Inheritance and learning in the development of animal vocaliza- 9107-9116, 1999.
tions. In: Acoustic Behavior of Animalgdited by Busnel RG. Amsterdam: SUTHERS RA, GoLLER F, AND HARTLEY RS. Motor dynamics of song produc-
Elsevier, 1964. tion. J Neurobiol25: 917-936, 1994.



BIRDSONG SEQUENCE LEARNING 1239

THeuNisseENFE anD DoupPe AJ. Temporal and spectral sensitivity of complexVu ET, Mazurek ME, AN Kuo Y. Identification of a forebrain motor programming

auditory neurons in the nucleus HVc of male zebra fincéseuroscil8: network for the learned song of zebra finchiebleuroscil4: 6924—6934, 1994.

3786-3802, 1998. WHITE SA, LivingsToN FS,anD MoonEY R. Androgens modulate NMDA receptor-
TrROYER TW anD Doure AJ. An associational model of birdsong sensorimotor mediated EPSCs in the zebra finch song syseleurophysioB2: 22212234,

learning. |. Efference copy and the learning of song syllablebleuro- 1999.

physiol84: 1204-1223, 2000. WiLLiams H anp StapLEs K. Syllable chunking in zebra finchlréeniopygia
VoLmaN SF. Development of neural selectivity for birdsong during vocal guttatg song.J Comp Psychol06: 278—-286, 1992.

learning.J Neurosci Methl3: 4737-4747, 1993. WooLLey SM anD RuseL EW. Bengalese finchdsonchura striata domestica

VON HoLsT E AnD MITTELSTAEDT H. The reafference principle: interaction depend upon auditory feedback for the maintenance of adult SoNgu-
between the central nervous system and the peripheryheOrganization rosci 17: 6380—-6390, 1997.
of Action edited by Gallistel CR. Hillsdale, NJ: Lawrence Earlbaum, 1980¢u AC AND MARGOLIASH D. Temporal hierarchical control of singing in birds.
p. 176-209. Science?273: 1871-1875, 1996.



