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Understanding the neural mechanisms underlying serially ordered
behavior is a fundamental problem in motor learning. We present a
computational model of sensorimotor learning in songbirds that is
constrained by the known functional anatomy of the song circuit. The
model subsumes our companion model for learning individual song
“syllables” and relies on the same underlying assumptions. The ex-
tended model addresses the problem of learning to produce syllables
in the correct sequence. Central to our approach is the hypothesis that
the Anterior Forebrain Pathway (AFP) produces signals related to the
comparison of the bird’s own vocalizations and a previously memo-
rized “template.” This “AFP comparison hypothesis” is challenged by
the lack of a direct projection from the AFP to the song nucleus HVc,
a candidate site for the generator of song sequence. We propose that
sequencegeneration in HVc results from an associative chain of
motor and sensory representations (motor3 sensory3 next mo-
tor . . . )encoded within the two known populations of HVc projection
neurons. The sensory link in the chain is provided, not by auditory
feedback, but by a centrally generated efference copy that serves as an
internal prediction of this feedback. The use of efference copy as a
substitute for the sensory signal explains the ability of adult birds to
produce normal song immediately after deafening. We also predict
that the AFP guides sequencelearning by biasing motor activity in
nucleus RA, the premotor nucleus downstream of HVc. Associative
learning then remaps the output of the HVc sequence generator. By
altering the motor pathway in RA, the AFP alters the correspondence
between HVc motor commands and the resulting sensory feedback
and triggers renewed efference copy learning in HVc. Thus, auditory
feedback-mediated efference copy learning provides an indirect path-
way by which the AFP can influence sequence generation in HVc. The
model makes predictions concerning the role played by specific neural
populations during the sensorimotor phase of song learning and dem-
onstrates how simple rules of associational plasticity can contribute to
the learning of a complex behavior on multiple time scales.

I N T R O D U C T I O N

Like many complex behaviors, birdsong is arranged in a
temporal hierarchy. In zebra finches, song consists of a few
short introductory notes, followed by several repetitions of
a stereotyped sequence of vocal gestures, or “syllables,”
separated by brief periods of silence (Sossinka and Bo¨hner
1980). Song is learned in two phases. First, birds listen to

and memorize a tutor song, or “template” (Konishi 1965;
Marler 1964). Later, duringsensorimotorlearning, birds use
auditory feedback from their own vocalizations to gradually
match their vocal output to the template. In the companion
paper (Troyer and Doupe 2000), we focused on one level of
the hierarchy for song and showed how simple associational
(Hebbian) learning rules could be used to learn the motor
representations for individual tutor syllables. The syllable
learning model addresses the important problem of feedback
delay and demonstrates that associational plasticity natu-
rally leads to the learning of an efference copy, or internal
prediction, of the auditory feedback. This internal prediction
can then be compared with the memorized tutor song to
guide sensorimotor learning.

In this paper, we address a second fundamental problem
in motor learning, the question of serial order in behavior
(Lashley 1951), by extending our syllable learning model to
account for the learning of syllable sequence. As in our
companion paper, we use simple rules of associational plas-
ticity and assume that the template comparison signals that
guide learning are provided by the Anterior Forebrain Path-
way (AFP), a circuit that passes through avian basal ganglia,
thalamic, and cortex-like nuclei before projecting back onto
the motor pathway (see Troyer and Doupe 2000; Fig. 1). We
also assume a functional segregation between the two known
populations of projection neurons in song nucleus HVc (Nor-
deen and Nordeen 1988; HVc used as proper name, Margoliash
et al. 1994), with AFP-projecting HVc neurons (HVc_AFP)
receiving auditory feedback and encoding signals in sensory
coordinates, and HVc neurons projecting to the robust nucleus
of the archistriatum (RA; HVc_RA) more closely tied to a
motor code (Troyer and Doupe 2000). The main biological
constraint addressed in this paper is the hierarchical organiza-
tion of the motor pathway (Fig. 1): the detailed motor programs
for individual syllables are believed to be contained in nucleus
RA (Vu et al. 1994; Yu and Margoliash 1996), whereas the
central pattern generator for song sequence is likely to be
found upstream of RA, perhaps within the song nucleus
HVc (Vu et al. 1994). Our sequence learning model ad-
dresses two key questions left unanswered by current ex-
perimental data: what is the mechanism for sequence gen-
eration in HVc, and how can signals from the AFP guide
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sequence learning given that there are no known connec-
tions from the AFP to HVc?

We propose that sequence generation results from a recip-
rocal chaining of motor and sensory representations [motor
(HVc_RA)3 sensory (HVc_AFP)3 next motor (HVc_RA)3
next sensory (HVc_AFP) . . . ] between the two populations of
HVc projection neurons. Our model differs from classic “as-
sociative chaining” models (James 1983) in that the “sensory”
component in this chain is actually an efference copy, a motor
signal that serves as a prediction of the expected sensory
feedback (Sperry 1950; von Holst and Mittelstaedt 1980). We
also propose that AFP-guided teaching signals act to remap the
connections from HVc to RA, so that the output of the HVc
pattern generator maps onto the sequence of motor features
(encoded in RA) that matches the memorized tutor song (cf.
Doya and Sejnowski 1998). However, simply remapping HVc
outputs cannot explain AFP-guided learningwithin HVc. In
our model, auditory feedback-driven efference copy learning
provides the crucial link between the AFP and HVc. By alter-
ing the HVc outflow tract, the AFP alters the association
between HVc_RA motor activity and the auditory feedback
received by HVc_AFP. The resulting efference copy learning
then changes the motor-sensory interaction underlying se-
quence generation in HVc.

Our model demonstrates that associational learning, distrib-
uted throughout the motor pathway, is sufficient for learning
both individual syllables and their proper sequence. The model
provides a specific hypothesis for how basal ganglia–forebrain
loops could contribute to learning a sequential behavior and
highlights key computational problems imposed by the func-
tional anatomy of the song circuit. More generally, the model
provides a framework that relates the neural mechanisms un-
derlying song learning to fundamental problems in motor
learning and speech production.

Model and approach

In this paper, we extend our previous model for learning
individual syllables (Troyer and Doupe 2000) to address the

learning of syllable sequence. Our sequence learning model
subsumes our syllable model, accomplishing syllable learning
as well as the learning of syllable sequence. The structure of
this paper mirrors that of the preceding companion paper
(Troyer and Doupe 2000) and relies on the same underlying
biological assumptions. We present our results in the form of
two closely related models: a “conceptual model” containing a
self-consistent set of functional hypotheses, and a “computa-
tional model” that incorporates these hypotheses into a work-
ing computer algorithm. In this section, we describe the func-
tional problems addressed by our sequence learning model and
outline the key elements of our proposed solutions. Then, we
present our conceptual model, which describes our functional
hypotheses in greater detail. Quantitative results from our
computational model are presented in theRESULTS section.
Because our model is relatively abstract at the level of local
circuits, implementation of these hypotheses was governed
chiefly by considerations of computational simplicity. Related
issues are described in theMETHODS but are not crucial for
understanding the main functional implications of the model.
The details of our computer algorithm are confined to an
appendix.

Problems addressed

Our model explores how song learning can result from
associational learning, guided by template comparison signals
transmitted by the AFP. We do not address learning the de-
tailed temporal structure within each syllable, nor learning the
length of syllables and intersyllable gaps. Timing of song
syllables is provided by a rhythmically clocked premotor drive
arriving in HVc_RA (Troyer and Doupe 2000). While the
timing of this drive is fixed, itspattern is completely random;
the magnitude of each component of the premotor input is
generated independently for each vocalization produced by the
model. The model’s task is to take this unstructured premotor
timing signal and convert it to a sequence of syllables matched
to the tutor template.

The learning of motor representations for individual song
syllables was addressed in the preceding companion paper
(Troyer and Doupe 2000). This model contained three key
functional elements. By associating premotor commands in
HVc_RA with auditory feedback arriving in HVc_AFP, a
motor3 sensory efference copy mapping develops between
the two populations of HVc projection neurons (Fig. 2, marked
1). After this mapping develops, HVc_AFP activity driven by
a given HVc_RA motor command encodes a sensory predic-
tion of the vocal output resulting from that command. This
prediction is then compared with the template in the AFP,
resulting in a global reinforcement signal that modulates plas-
ticity in all RA neurons (Fig. 2, marked2). This reinforcement
learning leads to a pattern of connectivity in RA in which
neurons encoding the same tutor syllable become strongly
connected (Fig. 2, marked3). As a result, RA has a strong
tendency to produce coherent patterns of motor activity
matched to the syllables in the tutor template.

Given our adoption of the AFP comparison hypothesis, the
most difficult problem regarding sequence learning is the fol-
lowing: how can the AFP guide learning given that1) the only
known output from the AFP projects to RA, and2) the site of
sequence generation is likely to be upstream of RA? Our

FIG. 1. Encoding of motor hierarchy within the song circuit. The fine
temporal structure within individual song syllables is believed to be encoded in
RA (Yu and Margoliash 1996). The pattern generator for song sequence is
believed to be located upstream of RA, possibly within HVc (Vu et al. 1994).
We have shown the two populations of HVc projection neurons (Nordeen and
Nordeen 1988) in separate ovals, although these are intermixed and intercon-
nected in HVc. We assume auditory feedback enters the song system via inputs
to HVc_AFP.
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solution involves the concerted action of multiple associa-
tional mechanisms acting at different levels of the motor
hierarchy. For ease of presentation, we will break this
problem into three smaller problems, described below (see
Conceptual model). However, our choice of solution to each
individual problem is affected by the other two, as well as
constraints imposed by our solution to the problem of syl-
lable learning. The key to our model is the concept of
efference copy, which serves to link all model components
into a coherent hypothesis regarding the multiple sensory-
motor interactions involved in song learning.

The first problem we address is the problem of sequence
generation, i.e., what is the nature of the central pattern gen-
erator for song? We propose that sequence generation results
from a reciprocal interaction between the two populations of
HVc projection neurons (Table 1, number 1). The solution
naturally incorporates the mechanism of efference copy, which
contributes one half of this interaction by providing a motor3
sensory mapping from HVc_RA3 HVc_AFP. The other half
of the interaction depends on connections from HVc_AFP3
HVc_RA. These are hypothesized to provide slow signals
carrying information from one syllable to the next (Fig. 2,
marked4). We call such signals “context” signals. Thus, se-

quences are generated as a chain of mappings from motor3
sensory3 next motor3 next sensory, etc. This hypothesis
borrows from classical chaining ideas (James 1983), as well as
more recent computational models (Kleinfeld and Sompolin-
sky 1988) of sequence generation.

The second problem we address is the problem of how AFP
signals guide sequence learning at the level of RA. The most
straightforward method of directing associational learning to-
ward a desired goal is to bias the pattern of neural activity
toward the desired state. Associational plasticity then strength-
ens the connections consistent with this pattern. In our model,
we assume that the AFP generates an expectation of the next
syllable in the tutor sequence and uses this expectation to bias
RA activity (Table 1, number 2; Fig. 2, marked5). Associa-
tional plasticity then changes the pattern of connections be-
tween HVc and RA so that syllables are produced in the proper
sequence (Fig. 2, marked6). Note that this solution gives rise
to an additional problem to be solved before the AFP can bias
RA activity in the proper direction: template information is
stored in sensory coordinates, but the required bias must be in
motor coordinates. We propose that a sensory3 motor mapping
is learned between the AFP and RA soon after the initial period of
efference copy learning (Table 1, number 3; seeConceptual
model).

The third problem we address is the problem of sequence
learning at the level of HVc. While the mechanism outlined
above is sufficient for a rudimentary form of sequence learn-
ing, it fails as a complete model. In particular, it fails to
account for any learned changes in the number or sequence of
premotor commands formed upstream of RA. In our model, the
efference copy provides the key link between learning at the
level of RA and learning upstream of RA, in HVc. In partic-
ular, by altering connections between HVc and RA, the AFP
changes the pattern of vocal output and hence auditory reaf-
ference. This in turn induces new efference copy learning in
HVc (Table 1, number 4; Fig. 2, marked7) via the same
mechanism described in our syllable learning model (Troyer
and Doupe 2000). Since efference copy mapping plays a key
role in the HVc pattern generator, the new efference copy
learning alters the sequence of HVc outputs (seeConceptual
model). In addition to providing a specific mechanism for how
the AFP affects sequence generation in HVc, the need for
ongoing efference copy learning is consistent with experiments
demonstrating that auditory feedback is required throughout
development (Price 1979).

In addressing the problem of sequence learning, we have
added two new sets of connections to our model for sylla-
ble learning (Fig. 2). The connections from HVc_AFP3
HVc_RA are necessary forsequence generation.Without the
context signals carried by these connections, activity within

TABLE 1. Functional hypotheses for sequence learning

1. Reciprocal interaction in HVc
A. Fast motor3 sensory efference copy signal (HVc_RA3

HVc_AFP)
B. Slow sensory3 motor “context” signal (HVc_AFP3 HVc_RA)

2. AFP sequence teaching signals bias RA activity toward next tutor
syllable

3. Sensory3 motor associations guide development of connections from
AFP3 RA

4. AFP guided changes in RA trigger renewed efference copy learning in
HVc

FIG. 2. Network architecture. White circles: functional connections ad-
dressed in our syllable learning model (Troyer and Doupe 2000). Black circles:
functional connections important for sequence learning (Troyer and Doupe
2000). The association of HVc_RA premotor activity and auditory feedback
input to leads to a motor3 sensory efference copy mapping between these
neural populations (1). Reinforcement signals from the Anterior Forebrain
Pathway (AFP) (2) are used to reorganize intrinsic RA connections so that they
encode the motor representations for individual tutor syllables (3). Sequence
generation results from a reciprocal interaction involving the sensory3 motor
efference copy mapping followed by a slow “context” signal that flows from
HVc_AFP3 HVc_RA (4). The AFP uses template information to bias RA
toward the appropriate syllable transitions (5). This alters associations in the
motor pathway so that the connections from HVc_RA3 RA map the output
of the HVc pattern generator onto the correct syllable representations in RA
(6). Alterations in the motor pathway lead to renewed efference copy learning
(7). Black arrows: plastic connections. Thick arrows: new connections added
to address sequence learning. Gray arrows: connections not subject to asso-
ciational plasticity.
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HVc_RA would not be affected by activity related to the
previous syllable and the sequence of HVc outputs would be
random (Troyer and Doupe 2000). Patterned connections from
the AFP3 RA are necessary forsequence learningin our
model. Without these connections, information stored in the
AFP related to the tutor sequence cannot be used to guide
learning in the motor pathway.

Conceptual model

PROBLEM 1: SEQUENCE GENERATION. We propose that se-
quences of song syllables are generated by a reciprocal inter-
action between motor (HVc_RA) and sensory/efference copy
(HVc_AFP) activity within HVc (Table 1, number 1): mo-
tor3 sensory prediction3 next motor3 next sensory pre-
diction3 . . . (Fig. 3A). The motor3 sensory component of
this interaction is subserved by the efference copy mapping
between HVc_RA and HVc_AFP. This mapping is learned
early in development by associating HVc_RA motor com-
mands with auditory feedback arriving back in HVc_AFP, as

described in our model for syllable learning (Troyer and Doupe
2000). Figure 3B shows how these mappings result in the
reproduction of the tutor songafter learning is complete,using
the transition from syllable A to syllable B as an example. Let
SenA denote the sensory representation for syllable A in
HVc_AFP. This representation is elicited by the efference copy
mapping during production of A. Via the connections from
HVc_AFP3 HVc_RA, SenA elicits a context signalCtxtA that
drives activity in HVc_RA during the syllable following syl-
lable A.CtxtA maps onto the motor representationMotB in RA,
and the model produces syllable B after syllable A. This is the
sensory prediction3 next motor component of the interaction.
With an accurate efference copy mapping,CtxtA also elicits an
efference copy representationSenB in HVc_AFP. This mo-
tor 3 sensory prediction component of the interaction com-
pletes the cycle. Thus, correct sequence learning in our model
depends on learning the chain of mappingsSenA 3 (CtxtA 3
MotB) 3 SenB 3 . . . . Note that our implementation of this
functional circuit is highly simplified: HVc_RA3 HVc_AFP
connections transmitonly fast motor3 sensory (efference
copy) signals, whereas HVc_AFP3 HVc_RA connections
transmit only slow sensory3 next motor (context) signals.
More realistic circuit models of HVc will be required to ex-
plore possible local circuit mechanisms subserving this recip-
rocal flow of activity.

PROBLEM 2: SEQUENCE LEARNING IN RA. In our model, the AFP
uses template information to generate “sequence teaching”
signals that bias RA activity toward the proper tutor sequence
(Table 1, number 2). The details of how these signals reorga-
nize the motor pathway to produce correct sequence transitions
are illustrated in Fig. 4, using the transition from syllable A to
syllable B as an example. In our model, the efference copy
representation,SenA, that is registered in HVc_AFP during the
production of syllable A, generates two distinct signals during

FIG. 3. Sequence generation.A: sequence generation results from a recip-
rocal interaction between representations in HVc_RA (motor) and HVc_AFP
(sensory). The final motor output of the model depends on the mapping from
HVc_RA 3 RA. B: schematic of the mappings necessary for correct repro-
duction of the tutor sequence. . . A3 B3 C . . . . Suppose an efference copy,
SenA, is represented in HVc_AFP (in sensory coordinates). This is followed by
the HVc_RA context representationCtxtA, which is mapped ontoMotB in RA.
Syllable B follows syllable A.CtxtA also elicitsSenB, the efference copy
corresponding toMotB. SenB 3 CtxtB 3 MotC leads to the production of
syllable C, etc.

FIG. 4. AFP-guided sequence learning. Schematic showing the learning of
the transition from syllable A to B. The efference copy for A,SenA, results in
a context signal,CtxtA, that arrives in HVc_RA after a delay.SenA is also
passed on to the AFP. Using previously stored template information, the AFP
generates, after an appropriate delay, the sensory representation for the next
syllable in the tutor song,SenB. SenB biases RA toward the motor patternMotB.
Associational learning (white arrow) between the context signalCtxtA in
HVc_RA andMotB in RA ensures that future productions of syllable A will
evoke the composite mappingSenA 3 CtxtA 3 MotB, resulting in the tran-
sition from A to B.
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the vocalization that follows syllable A. First, in HVc, due to
the slow connections from HVc_AFP3 HVc_RA, SenA re-
sults in a context signal,CtxtA, that is input to HVc_RA.
Second, the AFP receives the efference copySenA from
HVc_AFP and generates the sequence teaching signal for
syllable B, after an appropriate delay. This signal is input to
RA and biases RA activity toward the next motor representa-
tion in the tutor sequence,MotB. Since both of these signals
exert their effects with a one syllable delay, during the syllable
following A, neurons in HVc_RA that are part of the context
representationCtxtA tend to be co-active with RA neurons
comprising the motor representationMotB. Associational
learning then strengthens the connections between these sets of
neurons (Fig. 4, white arrow). In this way, the context repre-
sentationCtxtA gets mapped ontoMotB, and the model learns
the transitionSenA 3 CtxtA 3 MotB.

SENSORY 3 MOTOR MAPPING FROM THE AFP3 RA. If the
sequence teaching signal for syllable B, which we assume to be
encoded in sensory coordinates in the AFP, is to bias RA motor
activity toward syllable B, a sensory3 motor mapping be-
tween the AFP and RA is required (Table 1, number 3). In our
sequence learning model, the required map develops soon after
the initial period of efference copy learning, and before sylla-
ble learning is complete. With an accurate efference copy,
HVc_RA excites a sensory representation in the output neurons
of the AFP (via HVc_AFP) that corresponds to the motor
activity in RA. For example, if HVc_RA drives motor activity
in RA that is relatively well matched to tutor syllable A, it will
also drive an efference copy within HVc_AFP that leads to
excitation within the AFP output neurons encoding tutor syl-
lable A (Fig. 5). Associative learning then strengthens connec-
tions between the AFP neurons encoding syllable A in sensory
coordinates and the RA neurons encoding A in motor coordi-
nates. Note that todevelopthe appropriate mapping between
the AFP and RA, the output neurons in the AFP must encode
a sensory representation of thecurrentsyllable. Tousethe map

to bias RA activity toward the tutor sequence, these same AFP
output neurons must encode a representation of thenextsylla-
ble. Our model simply assumes that AFP efferents contain a
combination of these signals. Possible explanations for how the
components of this mixed signal could exert distinct functional
influences in RA are described in theMETHODS.

PROBLEM 3: SEQUENCE LEARNING IN HVC. Even though the
model has learned the correct efference copy3 next motor
transition,SenA3 CtxtA3 MotB, sequence learning is not yet
complete. This is because by altering synapses in RA, the AFP
has perturbed the motor3 sensory matching necessary for an
accurate efference copy in HVc. In particular, HVc_RA neu-
rons belonging to the representation forCtxtA originally
mapped onto some particular combination of motor represen-
tations in RA. For example, perhapsCtxtA originally mapped
most strongly onto syllable D. With an accurate efference
copy, these same HVc_RA neurons were mapped onto the
corresponding combination of sensory representations in
HVc_AFP,SenD. RemappingCtxtA ontoMotB in RA alters this
correspondence, and the HVc sequence generator produces the
following set of mappings:SenA 3 CtxtA 3 SenD 3 CtxtD.
Presumably, the context signal from syllable D,CtxtD, is
mapped ontoMotE in RA. Therefore, syllable B (produced by
CtxtA) will be followed, not by C, but by E. However, such
errors in the efference copy component of the HVc sequence
generator are continually corrected by renewed auditory feed-
back-driven learning in the HVc_RA3 HVc_AFP connec-
tions (Table 1, number 4):CtxtA excitesMotB in RA, leading
to an auditory feedback signalSenB arriving in HVc_AFP (Fig.
6). Therefore, HVc_RA3 HVc_AFP connections between
HVc_RA neurons belonging toCtxtA and HVc_AFP neurons
belonging to SenB are strengthened (Fig. 6, white arrow),
supplanting the “old” connections fromCtxtA 3 SenD. In this
way, the HVc sequence generator is able to track the AFP-
induced changes in RA. By combining the appropriate sen-
sory 3 motor and motor3 sensory mappings, the model
learns the chain of sensory-motor associations that reproduces
the tutor sequence:SenA 3 (CtxtA 3 MotB) 3 SenB . . . .

FIG. 5. Learning a sensory3 motor mapping between AFP and RA. After
the initial phase of efference copy learning, the HVc_RA activity that produces
motor activity for syllable A in RA (MotA) will also produce a sensory
prediction (SenA) of that motor activity in the AFP (black arrows). This leads
to associational learning between AFP assemblies encoding syllable A in
sensory coordinates and the RA assemblies encoding syllable A in motor
coordinates (white arrow).

FIG. 6. Renewed efference copy learning. Since AFP-guided sequence
learning alters the projection from HVc_RA3 RA, renewed efference copy
learning (white arrow) is required so thatCtxtA projects ontoSenB in
HVc_AFP (cf. Troyer and Doupe 2000, Fig. 4A). Thus, auditory feedback is
necessary throughout development to maintain an accurate efference copy.
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M E T H O D S

The model presented in this paper is an extension of the syllable
learning model described in the preceding companion paper (Troyer
and Doupe 2000). To account for the generation and learning of song
sequence, we added two new sets of synaptic connections to this
model (Fig. 2B). Because our model is relatively abstract at the level
of local circuits, the choice of how these connections were embedded
in our computer algorithm was governed chiefly by considerations of
computational simplicity (a variety of biological mechanisms could
contribute to their functionality). An understanding of the theoretical
issues related to our implementation is not necessary to understand
our simulation results. Most features of the model are described in
detail in Troyer and Doupe (2000). We discuss here only new addi-
tions to the model. The final subsection in theMETHODS describes the
method we used for quantifying the time course of model develop-
ment.

Most simulations of the complete model contained 25,000 sylla-
bles, over 5,000 more than were typically needed for model output to
become stereotyped (seeAPPENDIX). Computer simulations were writ-
ten using the MATLAB simulation environment (version 5.3; The
Mathworks, Natick, MA). Typical simulations took'3 h when run
using a 400-MHz Pentium II processor. Details regarding simulations
and parameters are contained in theAPPENDIX.

HVc_AFP3 HVc_RA connections

To account for sequence generation, connections from HVc_AFP
to HVc_RA were added (Fig. 2B). These connections are assumed
to be functionally “slow synapses” that carry information from
one syllable to the next (cf. Kleinfeld and Sompolinsky 1988).
For computational simplicity, the functional separation of HVc
connections was strict: HVc_RA3 HVc_AFP connections carried
only efference copy information related to the current syllable, and
the HVc_AFP3 HVc_RA connections broadcast signals that
affected only the subsequent syllable. However, our general ap-
proach requires only a functional imbalance between the two
populations of HVc projection neurons. A strict separation is not
crucial. To match the functional delay in the HVc_AFP3 HVc_RA
pathway ('50 ms), a corresponding delay was introduced in
the time window for synaptic plasticity in these connections
(seeAPPENDIX). In general, we followed the principle that the time
window for synaptic plasticity should be roughly proportional
to the time scale of encoding for the information passed over that
synapse. RA connections, which encode the detailed motor
programs within each syllable, had the shortest plasticity win-
dow, and the HVc_AFP3 HVc_RA context synapses had the
longest.

Since it relies on reciprocal excitatory connections, the pattern
generator within HVc tended to be unstable. To help control this
positive feedback, we1) normalized the size of the context signal
during each syllable (seeAPPENDIX), and2) included “adaptation” in
the HVc_RA assemblies. HVc_RA adaptation was of the same form
as the HVc_AFP adaptation included to cancel the delayed auditory
feedback (Troyer and Doupe 2000). However, because HVc_RA
adaptation was included to counteract an overall build up of HVc
activity, its decay time (225 ms) was considerably longer than the
decay time of HVc_AFP adaptation (115 ms).

AFP3 RA connections and signals

The circuitry within the three song nuclei that make up the AFP
could, in principle, subserve a variety of complex processing tasks.
Our model treats the entire AFP as a “black box” performing the
necessary calculations related to template comparison (seeAPPENDIX

for details). Our algorithm was governed chiefly by computational

simplicity, but most calculations could be implemented relatively
easily by a variety of biologically plausible circuits.

Processing within the AFP is shown in Fig. 7. Each AFP “input
assembly” receives input from the HVc_AFP assemblies encoding
sensory features related to the corresponding tutor syllable (the nature
of the encoding scheme used in our model is described in Troyer and
Doupe 2000; Fig. 6). Input is also received by a single inhibitory unit
that broadcasts its output to all input assemblies. This “feedforward
inhibition” implements a form of competition in which the only active
AFP assemblies are those that receive significantly more input than
average.

The main difficulty for our model is that the AFP is assumed to
simultaneously broadcast three distinct signals that are important
for separate aspects of sensorimotor learning. Each of these cal-
culations is represented by a separate box in the middle of Fig. 7:
1) to guide syllable learning, the AFP transmits a nonspecific
reinforcement signal that modulates plasticity in RA;2) to orga-
nize a sensory3 motor mapping between the AFP and RA, the
AFP forms a sensory representation related to the current syllable;
3) to guide sequence learning, the AFP must generate, with a one

FIG. 7. Processing in the AFP (seeMETHODS for details). Input from
HVc_AFP excites “feedforward” inhibition (filled circle,top) that implements
a competition between AFP input assemblies (only those assemblies receiving
significantly more than the average amount of input will be active). Three
different calculations are performed on the results of this competition.1) The
match between this efference copy activity and the tutor song is determined
(see Troyer and Doupe 2000). The results in a single “reinforcement” value
that is strongly broadcast to all AFP output assemblies, accounting for 75% of
their activity.2) Patterned activity related to the current syllable is passed on
unchanged, accounting for 15% of AFP output assembly activity.3) Patterned
activity related to the current syllable is delayed for the duration of one syllable
and then delivered to AFP output assemblies in a pattern that is shifted forward
one syllable in the tutor sequence. This shifting mechanism is how tutor
sequence is stored in the AFP, and the shifted signal accounts for 10% of AFP
output assembly activity. Feedforward inhibition in RA (filled circle,bottom)
counteracts the strong reinforcement signal, leaving the patterned signal to
affect RA activity via the pattern of AFP3 RA connections. After the initial
period of sensory-motor matching (seeRESULTS), signal (2) is redundant with
the strong motor input from HVc_RA, leaving signal (3) to be the main
contribution to altering activity in RA.
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syllable delay, a sequence teaching signal that biases RA activity
toward the next syllable in the tutor sequence. A possible neural
substrate for this delayed sequence teaching signal is the axon
collaterals that transmit information from the lateral portion of the
magnocellular nucleus of the anterior neostriatum (LMAN), the
output nucleus of the AFP, to areaX, the input nucleus of the AFP
(see Fig. 1C, Troyer and Doupe 2000). The appropriate delay is
roughly 75 ms, the length of a typical song syllable ('115 ms)
minus the processing delay contributed by the AFP ('40 ms). Note
that signals 1 and 2 are used to guide plasticity in RA but are not
required to influence RA activity. In contrast, the purpose of signal
3 is to guide activity, but in principle, could disrupt learning in the
AFP3 RA pathway.

In our implementation, the three signals are not segregated at the
level of AFP outputs: the activity within the AFP output assemblies
is just a summation of signals 1–3. The input to each RA assembly
is then calculated as a sum of AFP outputs, weighted by the pattern
of synaptic strengths from the AFP3 RA. This input serves both
as a source of additive external input summed with RA input
coming from HVc, and as a modulatory term in the RA plasticity
rule (seeAPPENDIX). The modulation of RA plasticity in our model
is completely phenomenological. Candidate mechanisms include
release of trophic factors by AFP efferents (Johnson et al. 1997) or
downstream effects of calcium entering through AFP glutamater-
gic synapses, which are dominated by NMDA receptors (Mooney
and Konishi 1991).

How does the superposition of signals 1–3 in AFP output neurons
exert separate effects in RA? The nonspecific reinforcement compo-
nent of the AFP activity (signal 1) is separated from the two patterned
components by its magnitude: we assume that the reinforcement
signal contributes 75% of the input to AFP output assemblies. AFP
output is then dominated by this reinforcement signal, and the result-
ing modulation of RA plasticity can be used to guide syllable learning.
To allow the two patterned signals to play their role in song learning,
we assume that the AFP also excites a population of inhibitory
interneurons local to RA (Fig. 7, filled circle,bottom). This feedfor-
ward inhibition counteracts the nonspecific (reinforcement) compo-
nent of the AFP input to RA, causing this nonspecific input to have
little effect on spiking activity in RA. However, inhibition would not
be expected to cancel trophic effects of AFP inputs and hence would
not block reinforcement mediated by neurotrophins. In an alternative
scenario, inhibition that is proximal to the cell body might eliminate
spiking but not prevent the depolarization within distal dendrites by
inputs from HVc_RA or other RA neurons. Thus, calcium entry
through NMDA receptors at AFP synapses could still be used to
modulate plasticity within the dendritic tree, even though the currents
flowing through these receptors are counteracted by inhibition arriv-
ing at the soma.

In addition to explaining how the nonspecific reinforcement com-
ponent of the AFP activity is prevented from disrupting patterns of
RA activity, we must explain how to prevent it from disrupting the
learning in the AFP3 RA pathway. By definition, a large reinforce-
ment signal that is expressed as high activity in all AFP output
assemblieswill also leadto increased plasticity within all RA assem-
blies. This correlation between nonspecific presynaptic firing in the
AFP and nonspecific modulation of plasticity in RA tends to
strengthenall synapses from the AFP3 RA. To counteract this
tendency, AFP3 RA synapses were assigned a higher plasticity
threshold (seeAPPENDIX).

The action of the AFP activity related to the current efference copy
(signal 2) is straightforward: after the efference copy mapping from
HVc_RA to HVc_AFP gives an accurate prediction of the motor input
from HVc_RA to RA (Troyer and Doupe 2000), the AFP assembly
corresponding to the current syllable will be most active when RA
assemblies corresponding to that syllable are also active. Sensory3
motor associational learning follows, causing AFP assemblies encod-
ing a particular tutor syllable to project most strongly to RA assem-

blies encoding the same syllable. (Fig. 5). After the sensory3 motor
matching is accomplished, the input from the AFP activity related to
signal 2 will be redundant with the (stronger) input to RA from HVc.

Our functional requirements for the sequence teaching signal (sig-
nal 3) are that it biases RA activity toward the next syllable in the tutor
sequence, but does not disrupt the learning in the AFP3 RA pathway
driven by signal 2. To implement the proper bias, the processing box
marked “Sequence Template” in Fig. 7 accepts a pattern of input,
waits for one syllable, and then excites AFP output assemblies in a
pattern that is shifted one syllable forward in the tutor sequence. Since
the AFP3 RA connections perform a sensory3motor mapping, this
signal will bias RA toward the next motor command in the tutor
sequence (Fig. 4). The reason that this signal does not disrupt the
associations necessary to develop a sensory3 motor mapping to RA
is that, before sequence learning is accomplished, the inputs from
HVc_RA to RA are strong and their sequence is random. Therefore,
AFP activity for the subsequent syllable (signal 3) will not be strongly
correlated with RA activity and hence will not contribute significantly
to plasticity in the AFP3 RA connections. After the model begins to
produce the proper sequence, the motor patterns in RA driven by
HVc_RA will be matched to the sequence teaching signal syllable
(signal 3). Hence, the associational plasticity related to signal 3 will
simply reinforce the sensory3 motor mapping originally organized
by signal 2.

Our implementation represents only one of many plausible ways in
which different signals could exert different effects in RA. A concep-
tually simple solution to the problem of segregation would be to have
different functional signals carried by distinct classes of AFP projec-
tion neurons. However, developing such a separation could be diffi-
cult. Another alternative is for different signals to be encoded in
different temporal patterns of AFP activity (e.g., bursting versus
tonic). These could preferentially excite separate receptors in RA
and/or trigger different plasticity mechanisms in RA. Finally, since
the three signals make crucial contributions to learning at different
times during song learning (see Fig. 11 inRESULTS), their functions
could be subserved by mechanisms tied to developmental critical
periods. Our model makes predictions regarding the functional infor-
mation carried by the AFP3 RA pathway. Further experiments will
be required to determine the possible neural substrate for these sig-
nals.

Quantifying learning time course

To obtain quantitative results regarding the time course of learning
in the model, we measured how closely the statistics of RA motor
output matched the statistics of the tutor song, as well as measuring
how closely important patterns of connectivity matched the properties
of an “ideal” model that would accurately reproduce the tutor song.
The measure used to compute these matches was the correlation
coefficient (CC) applied to the elements of the relevant connection
matrices (seeMETHODS in Troyer and Doupe 2000). Syllable-related
activity was quantified as in Troyer and Doupe 2000. Sequence-
related activity was quantified by dividing the model output into 250
syllable epochs and constructingMnext, the matrix of co-fluctuations
between patterns of RA activity for a given syllable and the patterns
of RA activity for thenextsyllable

Mij
next 5

1

250 O
n5250~m21!11

250m

@r i~n 2 1! 2 r#~n 2 1!#@r j~n! 2 r#~n!#

whereri(n) is the activity level in theith RA assembly, andr#(n) is the
average activity across assemblies during syllablen. We used the CC
to compareMnext to an ideal syllabletransitionmatrix,Mseq: Mij

seq5
4, if assemblyj forms part of the representation for the syllable
following the syllable coded by assemblyi; Mij

seq 5 21, otherwise.
Diagonal entries were included.
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In addition to monitoring patterns of RA activity, we monitored
development in four sets of connections.1) The accuracy of the
efference copy map was quantified by calculating the correlation
coefficient between the pattern of HVc_RA3 motor connections
(HVc_RA3 RA) and HVc_RA3 sensory connections (HVc_RA3
HVc_AFP).2) To quantify the development of the sensory3 motor
mapping (Fig. 5), we computed the CC between the pattern of AFP3
RA connection strengths and the ideal pattern of connectivity, in
which the AFP assembly representing a given tutor syllable would
have connections only onto RA assemblies encoding the motor fea-
tures belonging to that syllable.3) To quantify the progress of syllable
learning, we computed the CC between the ideal syllable correlation
matrix, Msyl, and the pattern of intrinsic RA connections as in Troyer
and Doupe 2000.Mij

seq5 4, if assemblyj forms part of the represen-
tation for same syllable as assemblyi; Mij

seq5 21, otherwise. Diag-
onal entries were excluded.4) To evaluate sequence-related connec-
tivity, we multiplied the HVc_AFP3 HVc_RA and HVc_RA3 RA
connection matrices. The resulting matrix represents the influence of
each HVc_AFP assembly on each RA assembly via the context signal
in HVc (Fig. 3). The correlation coefficient between this matrix and
Mseqwas used to measure the development of sequence-related con-
nectivity.

R E S U L T S

Our model explores how song learning can result from
associational plasticity, guided by template comparison signals
transmitted by the AFP. The representation of the sensory and
motor aspects of song in our model is described in detail in our
companion paper (Fig. 6 in Troyer and Doupe 2000). Briefly,
the information encoded within each neural population
(HVc_RA, HVc_AFP, RA, and the AFP) is represented by the
activation value of a number of processing units, each meant to
capture the average level of activity within a connected set of
neurons or “cell assembly” (Hebb 1949). For most simulations,
the tutor song contains five syllables, with each syllable com-
posed of eight abstract vocal features. The features encoding
different syllables are assumed to be unique, so we number the
features according to tutor syllable (syllable A, features 1–8;
syllable B, features 9–16; etc.). Each of 40 RA assemblies
encodes the motor aspect of one vocal feature, and each of 40
HVc_AFP assemblies encodes the sensory aspect of one fea-
ture. The template for syllables is stored in the connections
from HVc_AFP3 AFP, and the template for tutor sequence is
stored by circuitry internal to the AFP (seeMETHODS).

Sensorimotor learning is accomplished in three stages. The
first two stages were explored in our companion paper (Troyer
and Doupe 2000). At the beginning of the simulation, all
connections in the motor pathway are unstructured, and the
premotor drive initiating each syllable drives unorganized pat-
terns of RA activity (Fig. 8A). During the initial, efference
copy learning stage, associations between the HVc_RA motor
activity and the resulting auditory feedback input to HVc_AFP
cause a motor3 sensory efference copy mapping to develop
between these two populations (stage 1; Figs. 4A, 8 in Troyer
and Doupe 2000). In the second, syllable learning stage, the
AFP evaulates the efference copy signals and broadcasts tem-
plate matching “reinforcement” signals that reorganize synap-
tic strengths in RA so that assemblies corresponding to indi-
vidual tutor syllables are co-active (stage 2; Fig. 8B; Figs. 4A,
10 in Troyer and Doupe 2000). In this paper, we focus on the
final, sequence learning stage, in which “sequence teaching”
signals from the AFP act in concert with the sequence gener-

ation mechanism in HVc so that syllable representations are
produced in the correct order, A3 B3 C3 D3 E3 A . . .
(stage 3; Fig. 8C). It is important to note that a segregation
between developmental stages is not embedded within our
learning rule or network architecture. Rather, all synapses in
HVc and RA are plastic, and this plasticity lasts throughout the
simulation. Thus, development is driven by interdependent
patterns of association that emerge during song learning.

Sequence learning

The key to sequence learning in the model is the ability of
signals from the AFP to bias RA activity toward the proper
syllable transitions (Fig. 9A, arrows). Acting over multiple
syllables, this in turn biases the association between HVc_RA
and RA activity. The resulting change in connections from
HVc_RA 3 RA connectivity leads to the production of ap-
propriate syllable transitions (Fig. 4). Auditory feedback en-
sures that an accurate efference copy mapping is maintained
(Fig. 6). The gradual improvement of syllable transitions is
shown in Fig. 9B.

Time course of learning

To examine the time course of learning, we considered the
properties of an “ideal” solution, in which patterns of connec-
tivity were set so that this ideal model would accurately repro-
duce the tutor song (seeMETHODS for detailed definitions). We
then quantified how closely important sets of connections
matched the ideal model. The match was calculated using the
correlation coefficient, a method that gives a value of one for
identical connection patterns and values near zero for connec-
tion patterns that are uncorrelated. We measured four sets of
connections, the efference copy map from HVc_RA3
HVc_AFP, the sensory3 motor map from the AFP3 RA,
syllable storage in the RA3 RA connections, and the sen-
sory3 next motor pathway from HVc_AFP3 HVc_RA3

FIG. 8. Overview of model behavior. RA assemblies (40 total) are grouped
along the vertical axis according to the tutor syllable to which they correspond
(labeled A–E). Bar shows color scale for this and subsequent figures.A: RA
activity during the first 10 simulated syllables (numbered from start of simu-
lation). RA activity is unorganized and random.B: syllable learning. RA
activity during each syllable is well-matched to one of the tutor syllables, but
syllables are produced in a nearly random order.C: sequence learning. By
syllable 25,000, activity is matched to the tutor representation, with syllables
produced in the proper sequence.
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RA. We also measured how closely the motor output from RA
matched the tutor song. These calculations were performed for
“epochs” consisting of 250 consecutive syllables produced by
the model. To quantify the development of tutor syllables, we
calculated the matrix of co-fluctuations, whoseij th entry indi-
cates whether assemblyi and assemblyj have similar patterns
of activity. To quantify the development of tutor sequence, we
calculated a similar matrix, except that theij th entry indicates
whether activity in RA assemblyi during syllablen co-fluctu-
ated with the activity in assemblyj during syllablen 1 1.
These matrices were matched to the corresponding matrices
computed from the tutor song, again using the correlation
coefficient (seeMETHODS).

The developmental time courses of the multiple, interacting
associations underlying model development are summarized in
Fig. 10A. Figure 10B shows which connections are most im-
portant during each of the song learning stages traced in Fig.

10A. Initially, the only consistent pattern of association in the
network is between motor activity and delayed auditory feed-
back, and the corresponding efference copy mapping develops
rapidly (stage 1, dotted line). As accurate efference copies are
passed onto the AFP, a sensory3 motor mapping also devel-
ops between the AFP and RA (stage 1a, dashed-dotted line; see
Fig. 5). An accurate efference copy also causes the AFP to
produce consistent reinforcement signals, which reorganize
intrinsic RA connections so that RA assemblies corresponding
to the same tutor syllable begin to receive common patterns of
synaptic input (stage 2, thin solid line). As this happens, the
model begins to produce RA activity patterns matched to the
tutor syllables (thin dashed line). As syllables are learned,
efference copy activity in HVc_AFP becomes increasingly

FIG. 9. Sequence learning.A: AFP-guided syllable transitions. HVc input
to RA (H), AFP input to RA (A), and RA activity (R) for syllables 14,001–
14,007. For syllables 14,002 and 14,006, the input from the AFP ensures
proper syllable transitions, overriding “incorrect” input from HVc (arrows). To
emphasize differences in the input to various RA assemblies, the density of
shading for H and A represents the amount of input that exceeds the mean for
that pathway; inputs weaker than the mean are not shown.B: convergence
toward proper sequence. Model output for 51 consecutive syllables is shown at
5 different developmental time points. Syllable transitions are initially random
but eventually begin to be produced in small strings matching the tutor song.
Eventually the entire sequence is learned.

FIG. 10. Summary of developmental time course.A: 3 basic stages of
development. The initial stage of efference copy learning is nearly complete by
syllable 1000 (stage 1, dotted line). As accurate efference copy signals are
passed on to the AFP, a sensory3 motor mapping is learned in the connec-
tions from the AFP3 RA (stage 1a, dashed-dotted line; see Fig. 5). Accurate
efference copy signals also allow the onset of syllable learning (stage 2). The
development of motor activity matched to the tutor song (thin solid line)
mirrors the development of appropriate connectivity intrinsic to RA (thin
dashed line). Because sequence learning (stage 3) is driven by correct transi-
tions guided by the AFP (Fig. 4), correct sequence activity (thick solid line)
occurs before the development of the appropriate composite mapping
(HVc_AFP3 HVc_RA 3 RA) in the motor pathway (thick dashed line).
Note that reorganization in the HVc_RA3 RA pathway that underlies
sequence learning disrupts the efference copy match during syllables 8,000–
17,000. The correlation coefficients computed are defined in theRESULTS. B:
involvement of connections in the different stages of learning shown inA.
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confined to patterns matched to the relatively small number of
tutor syllables. These aspects of the model (with the exception
of stage 1a) were described in detail in our companion paper
(Troyer and Doupe 2000). As syllable learning proceeds,
clearly defined sequence teaching signals begin to be produced
by the AFP. These begin to bias RA activity toward the tutor
sequence (stage 3, thick solid line; see Fig. 9A). This altered
activity then remaps the connections from HVc_RA to RA, so
that the polysynaptic pathway from HVc_AFP3 HVc_RA3
RA (thick dashed line) yields correct sensory3 next motor
syllable transitions. Note that improvement in the sequencing
of RA activity happensbeforethe learning of the appropriate
connectivity from HVc_AFP3 HVc_RA3 RA, since AFP-
driven sequence transitions are necessary to drive sequence
related learning. The reorganization of the HVc_RA3 RA
pathway disrupts the efference copy mapping, which begins to
degrade slightly during the period of sequence learning (dotted
line, syllables 8,000–17,000). This tension between AFP-
guided changes in the motor pathway and renewed efference
copy learning continues until both are in rough agreement. This
agreement causes a transient decline in the efference copy
match (near syllable 16,000), since the HVc3 RA connection
races ahead to the final solution. The efference copy makes a
final recovery, and the model produces a stereotyped sequence
of song syllables.

Range of model behavior

By presenting results from a single representative simula-
tion, we have demonstrated the plausibility of our core hypoth-
esis that associational learning, distributed widely throughout
the song system, is sufficient for sensorimotor matching to a
previously memorized template stored in the AFP. Because
each stage of the learning is dependent on previously devel-
oped associations, a complete assessment of the reaction of our
model to changes in model parameters is beyond the scope of
this paper (see Troyer and Doupe 2000 for some important
manipulations).

Overall, sequence learning was significantly less robust than
syllable learning, since it results from continual interplay be-
tween the changes in the HVc to RA projection and the
efference copy mapping in HVc. The robustness of model
behavior at the default set of parameters was assessed by
running 10 simulations, each with different random seeds
determining the initial pattern of synaptic connectivity and the
sequence of premotor drives. All simulations eventually
learned the tutor song perfectly. Nine of these simulations
followed a similar time course, completing sequence learning
near syllable 17,000 (Fig. 11A). However, in one of the sim-
ulations, correct learning took significantly longer and was not
complete until syllable 25,000 (Fig. 11B). Examination of the
output of this simulation reveals that during the period between
syllable 15,000 and 20,000 when the other simulations were
stringing together series of transitions to match the tutor song,
this simulation began to repeat the subsequence A–D, omitting
syllable E (Fig. 11C). Since the strong homeostatic mecha-
nisms in the model prevent any RA assemblies from becoming
permanently inactive, the model compromised, occasionally
inserting a strong version of syllable E in place of syllable D.
However, by syllable 23,000, the model began to insert
syllable E in its proper place in the sequence, but sometimes

syllable E was repeated and sometimes syllable A was
dropped. By syllable 25,000, the model had converged on the
correct sequence. Personal observation of many simulations
revealed that such temporary “compromise” solutions to the
competing requirements of associational change in the
HVc_RA3 RA projection and the maintenance of an accurate
efference copy mapping within HVc were not uncommon.

To further assess the range of model behavior, we increased
the number of syllables to eight, thereby increasing the range
of possible sequence transitions. The number of vocal features
in each syllable was reduced to five, so that the simulations
contained the same number of RA assemblies as before (83
5 5 40). AFP circuitry was adjusted for the different template,

FIG. 11. Variability of learning time course.A: Development of syllable-
related and sequence-related activity for 9 of 10 repeated simulations. Param-
eters were fixed at their default values and simulations were run using different
random seeds to determine the initial connectivity and the sequence of pre-
motor drives. Output was quantified as in Fig. 10A. B: convergence in 1 of the
10 simulations was not complete until syllable 25,000 (solid lines). The
average time course of the 9 simulations shown inA is plotted for comparison
(dotted lines).C: model output for simulation plotted inB. The model first
converged on a suboptimal solution by repeating syllables A–D and occasion-
ally substituting syllable E for D. Due to homeostatic mechanisms that act to
keep average activity in all assemblies constant, syllable E had large activity
(black rectangles). By syllable 23,000, E was inserted in the proper position but
was often repeated 2–3 times. Syllable A was sometimes dropped. Repetitions
eventually ceased and by syllable 25,000 the model produced the proper
sequence.
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and AFP3 RA learning was slightly adjusted to ensure that an
accurate sensory3motor mapping was learned (seeAPPENDIX).
To push the model to make mistakes, all learning rate param-
eters were increased by a factor of 5. No other parameters were
readjusted. The range of RA output for a set of 10 simulations
is shown in Fig. 12. Perfect learning occurred in six of the ten
simulations. An example is shown in Fig. 12A. In one simu-
lation, the model produced a stereotyped sequence of eight
syllables, but this motif consisted of two “chunks” of appro-
priately copied song, separated by a string of three syllables
sung in reverse order (Fig. 12B). In the three other simulations,
the full sequence was broken into two repeated subsequences
(Fig. 12,C–E). These were sung in alternation, with the rate of
alternation controlled by the interaction between associational
learning and homeostatic mechanisms that prevent the elimi-
nation of either subsequence. In versions of the model with
weaker homeostatic mechanisms, syllables outside of the most
commonly sung subsequence were simply dropped (not
shown).

D I S C U S S I O N

Principal findings and predictions

By constructing a computational model, we have demon-
strated that simple rules of associational plasticity, operating
throughout the song system, are sufficient to support sensori-
motor learning at multiple levels of the temporal hierarchy for
song. Learning proceeds in a series of stages, with efference
copy learning followed by syllable learning and then sequence

learning. These developmental stages are not predetermined by
our learning rule, but follow a cascade of interrelated associ-
ations that are guided by template matching signals from the
AFP.

In this paper, we focused on the problem of learning song
sequence. We propose that sequence generation results from
a reciprocal sensory-motor interaction between the two pop-
ulations of HVc projection neurons: the motor component is
encoded primarily in RA-projecting HVc neurons, whereas
the sensory component is encoded primarily in AFP-project-
ing neurons (Katz and Gurney 1981; Kimpo and Doupe
1997; Lewicki 1996; Saito and Maekawa 1993). This mech-
anism predicts that the participation of neurons in both
populations is required for normal sequence generation. We
also predict that the slow “context” signals linking one
syllable to the next flow primarily from AFP-projecting to
RA-projecting neurons. While we have not explored possi-
ble neural substrates for this functionally slow connection,
Kubota and Taniguchi (1998) have reported that RA-pro-
jecting neurons possess an ionic current that delays the
initiation of action potentials.

The absence of a direct projection from the AFP to nuclei
upstream of RA, the likely site of sequence generation (Vu et
al. 1994), poses a significant challenge to the hypothesis that
the AFP guides learning of song sequence. One strategy for
overcoming this challenge is for the AFP to guide learning
within the connections from HVc to RA, so that the outputs
from the pattern generator are mapped onto the appropriate
sequence of syllable representations in RA (Doya and Sej-
nowski 1998). Viewed in isolation, this hypothesis predicts the
existence of an autonomous pattern generator that is unaffected
by outputs from the AFP. In our model, however, a motor3
sensory efference copy mapping within HVc plays a crucial
role in sequence generation. Therefore, we predict that the AFP
does affect the pattern generator, although indirectly: AFP-
induced changes in RA change the relation between HVc
premotor activity and the resulting auditory feedback, trigger-
ing renewed learning in HVc and altering the sequence of its
premotor outputs (Fig. 6).

Our model predicts that neural activity recorded within
the AFP should contain a mixture of three signals. First, to
guide syllable learning, the output from the AFP should
carry a reinforcement signal that modulates plasticity widely
within RA. This reinforcement signal should have a com-
ponent operating on the time scale of individual syllables.
Second, the AFP should carry efference copy information
related to the current syllable. This is necessary for asso-
ciational learning of the appropriate sensory3 motor map-
ping from the AFP to RA and should be particularly prom-
inent in the early stages of sensorimotor learning. Finally, to
guide sequence learning, the AFP should be able to bias RA
activity toward syllable transitions contained within the
tutor song. Given our proposed developmental time course
of learning (Fig. 10A), we predict that the ability of the AFP
to bias RA motor activity should be maximal during the
peak period of sequence learning. Early in learning, the AFP
to RA connections are expected to be relatively unorga-
nized, and, after sequence learning, the highly organized
connections from HVc to RA are expected to dominate the
input to RA. This prediction could be tested using cross-

FIG. 12. Imperfect sequence learning.A–E: outcomes of 10 simulations
with increased numbers of syllables. Perfect learning (A) occurred in 6 simu-
lations. In one simulation (B), a full sequence of 8 syllables was produced, but
the sequence was broken into three “chunks” of syllables. In 2 of these chunks
(syllables A–C and G–H), syllables were sung in the proper order. In the 3
other simulations (C–E), the sequence was broken into two subsequences, with
subsequences sung in alternation. Transition times between subsequences are
determined by the interaction of learning with slow homeostatic mechanisms.
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correlation analyses and/or electrically stimulating the out-
put nucleus of the AFP during singing.

Weaknesses of the model

Like our syllable learning model (Troyer and Doupe 2000),
the main weakness of the sequence learning model is the
simplified representation of the problem. In particular, we have
treated the motor hierarchy as having two distinct levels:
syllables and sequences of syllables. Questions regarding the
mechanisms for starting and stopping song have not been
considered, nor have we addressed the possibility that sub-
syllabic “notes” might be the true units of song (Cynx 1990).
Quantitative data regarding these issues are scant, and more
extensive analysis of developing song will be required to
constrain more realistic models of learning at multiple levels of
the song hierarchy.

Sequences by associative chaining

Our model assumes that sequences are generated as an
“associative chain” of sensory and motor representations (mo-
tor3 sensory3 next motor3 next sensory . . . ; James 1983;
Adams 1984). One important difference in our model is that
the sensory components of the chain are internally generated,
efference copy representations. Use of an efference copy ad-
dresses two of the three main challenges to associative chain-
ing (Rosenbaum 1991). First, efference copy addresses the
limitations placed on chaining by feedback delay. Second, our
version of chaining depends only on signals generated within
the brain and is therefore consistent with retention of motor
skills even when sensory feedback has been removed (re-
viewed in Sanes et al. 1985; Jeannerod 1988). A third chal-
lenge for associative chaining models is their inability to ac-
count for the errors commonly produced during some
sequential behaviors such as speech (Lashley 1951; MacKay
1970; reviewed in Houghton and Hartley 1996). Although a
thorough analysis of the variability in zebra finch song se-
quence has yet to be undertaken, the limited data available
suggest that song is sometimes learned in short sequences or
“chunks” of song syllables (Williams and Staples 1992). As-
sociative chaining can naturally account for such learning by
viewing chunk boundaries as errors in learning appropriate
syllable transitions (Fig. 12).

Recent technical advances raise the possibility of testing our
chaining hypothesis by selectively photo-ablating neurons
within a single population of HVc projection neurons (Scharff
et al. 2000). Early results suggest that song is insensitive to
disruptions of HVc_AFP, while lesioning HVc_RA neurons
can disrupt song. However, the effects of HVc_RA lesions
were variable, with,50% of birds showing deterioration of
song. More complete lesions and/or more detailed analysis
may yield greater insight into the relative contribution of
HVc_RA and HVc_AFP neurons to song production.

ASSOCIATIVE CHAINS AND SENSORY SELECTIVITY. The same
reciprocal circuit underlying song production may underlie the
selectivity of HVc neurons to auditory stimuli (Lewicki and
Konishi 1995; Margoliash 1983; Margoliash and Fortune
1992) and may contribute to song perception (Nottebohm et al.
1990; Scharff et al. 1998). In particular, vigorous sensory
responses may require that the sequence of incoming auditory

signals be matched to the sequence of sensory expectations that
would be elicited by recruiting the motor circuit. In our circuit,
auditory stimulation using syllable A of the bird’s own song
should excite the sensory representation of A in HVc_AFP.
This in turn would excite, with a delay, the HVc_RA context
signalCtxtA, and this should produce efference copy input for
syllable B. A match between this internally generated expec-
tation and the auditory signal may lead to an enhanced re-
sponse. Because the efference copy mapping is learned from
associations generated when the bird vocalizes, this mecha-
nism may explain why auditory responses in HVc become
tuned to the bird’s own song during the course of sensorimotor
learning (Volman 1993). Our model also predicts that neurons
within both populations of HVc projection neurons should
show sensory-related as well as motor-related activity. Further-
more, since the presentation of multiple syllables may be
necessary to fully recruit the motor circuit, this mechanism
may underlie the selectivity of some HVc neurons to aspects of
the auditory stimuli occurring several hundred milliseconds
before the recorded neural response (Lewicki and Arthur 1996;
Lewicki and Konishi 1995; Margoliash 1983; Margoliash and
Fortune 1992).

Temporal hierarchies and song learning

Our model demonstrates how associational learning, distrib-
uted widely throughout the song circuit, can be used to address
general problems in sensorimotor learning. Moreover, the
model points to specific problems raised by song system anat-
omy for learning multiple levels of the temporal hierarchy for
song (Fig. 1A). The functional roles we propose for the AFP
during song learning share similarities with hypotheses regard-
ing the importance of basal ganglia/forebrain loops for rein-
forcement and sequence learning in mammals (Aldridge and
Berridge 1998; Contreras-Vidal and Schultz 1999; Hikosaka et
al. 1999; Houk et al. 1995; Matsumoto et al. 1999; Montague
et al. 1996).

FINE TEMPORAL STRUCTURE (1–10 MS). Birds are able to pro-
duce vocal output that changes on the scale of milliseconds
(Fee et al. 1998; Suthers et al. 1994), and it is known that such
fine changes affect neural responses in the song system
(Theunissen and Doupe 1998) and influence avian behavior
(Lohr and Dooling 1998). The possibility that birds learn such
fine motor control poses a significant challenge to any model of
motor learning. In addition to the fact that sensory3 motor
“inverse” mappings often are not well-defined (Jordan 1995),
learning such mappings may be extremely difficult at the finest
time scales. First, feedback delay is an order of magnitude
longer than the temporal precision of the sensory3 motor
matching. Second, there is likely to be a complex relationship
between motor neuron activity and behavioral output due to the
physics of the muscles and tissues that produce the behavior
(Fee et al. 1998; Goller and Larsen 1997).

Our model relies on reinforcement learning to guide RA
connectivity toward patterns encoding individual song sylla-
bles. Even though we do not explicitly model the temporal
precision of RA motor activity (Yu and Margoliash 1996), our
approach satisfies general constraints imposed by the problem
of precise motor learning, as well as particular constraints
imposed by song system physiology. Most importantly, the use
of reinforcement learning avoids the difficult problem of learn-
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ing a sensory3 motor matching at fine time scales, since the
evaluation of sensory input yields a single number that is
broadcast equally to all RA assemblies. Fine structure within
the motor representation for each syllable is assumed to be
learned by using the reinforcement signal to guide an initially
random exploration of motor space to the appropriate goal. The
development of a fine time scale sensory3 motor mapping
between the AFP and RA is particularly unlikely given that the
AFP input to RA is almost exclusively mediated by NMDA
receptors that have decay times on the order of 40–200 ms
(Mooney 1992; Stark and Perkel 1999; White et al. 1999).

Our model also predicts that circuits intrinsic to RA play an
important role in encoding the motor programs for individual
song syllables (cf. Spiro et al. 1999). Thus, syllable represen-
tations can remain stable even during the sequence-related
remapping of HVc efferents. Moreover, our model does not
require that the precise patterns of RA motor activity be driven
by input from HVc, where neural activity has been shown to be
temporally less precise (Yu and Margoliash 1996).

INDIVIDUAL VOCAL GESTURES ('100 MS). Our model uses a
Hebbian plasticity rule roughly matched to the time scale of
NMDA receptor-mediated currents (40–200 ms). The duration
of these currents is of similar duration to both the length of
sensory feedback delay and evaluation ('65 1 40 ms) and the
duration of the individual elements of song ('115 ms). Human
speech is disrupted by delayed playback using delays within a
similar range (Lee 1950). The similarity between the time
scales of internal processing and sensory feedback is important
for the workings of our model. A relatively broad window for
associational plasticity in HVc is sufficient to span the sensory
feedback delay, and the temporal asymmetry of Hebbian plas-
ticity naturally leads to an efference copy mapping between
motor and sensory representations within HVc. The use of
temporally imprecise, syllable-based neural representations al-
lows for reliable associations even if the window for associa-
tional plasticity is relatively broad, eliminating the need for
associational learning tightly tuned to the relevant delays in the
system. We suggest that feedback delay may set a preferred
time scale for sensorimotor learning and may relate to the
prevalence of'4–10 Hz rhythms in many motor behaviors,
including active touch (Morley et al. 1983), motor tremor
(McCauley et al. 1997), and whisker twitching in rats
(Nicolelis et al. 1995).

SEQUENCE GENERATION (.100 MS). Learning temporal structure
on time scales greater than individual syllables poses signifi-
cantly fewer problems than learning structure at fine temporal
scales. Sensory3 motor matching is readily accomplished at
the level of syllable-based features, and, as a result, template
information encoded in sensory coordinates in the AFP is
available to actively influence syllable transitions (Figs. 4 and
10). AFP lesion data are consistent with the active role in
sequence generation predicted by our model. Lesions of
LMAN, the output nucleus of the AFP, reduce the range of
sequence transitions in juvenile birds (Scharff and Nottebohm
1991), as would be expected if AFP outputs were important for
generating sequence transitions during sensorimotor learning.
In contrast, lesioning the input nucleus of the AFP, areaX,
increases sequence variability (Scharff and Nottebohm 1991;
Sohrabji et al. 1990). Increased variability could result if area
X damage led to inconsistent output from LMAN. The most

direct evidence for an active role of the AFP in sequence
generation comes from Bengalese finches, an estrildid finch
closely related to zebra finches: lesions in the AFP of adult
Bengalese finches appear to have an immediate effect on song
sequence (Okanoya and Kobayashi 1998).

Learning at longer time scales is also less constrained by the
problem of feedback delay. Our estimates suggest that auditory
feedback should reach the song system before the onset of the
subsequent syllable, raising the possibility that it may play a
role in sequence generation. In zebra finches, these reafferent
signals appear not to contribute acutely to vocal production
since altering the auditory feedback pathway does not have
immediate effects on the temporal structure of song (Leonardo
and Konishi 1999; Nordeen and Nordeen 1988; Price 1979). In
contrast, Bengalese finches that are deafened as adults show a
rapid disruption of song sequence (M. Brainard, personal com-
munication; Okanoya and Yamaguchi 1997; Woolley and
Rubel 1997), suggesting that auditory reafference may play an
important role in this species. However, auditory feedback in
Bengalese finches does not appear to contribute to singing at
finer time scales, since the degradation of individual syllables
parallels the slower postdeafening song degradation seen in
zebra finches. In our model based on zebra finches, auditory
signals are canceled within HVc (Troyer and Doupe 2000).
However, the model could be generalized so that auditory
feedback contributes significantly to the context signals that
bridge the sensory3 next motor link in the chain underlying
song sequence (Fig. 3).

Motor hierarchies and selective attrition

Juvenile birds in many species produce a large number of
syllables that are winnowed down to the final adult reper-
toire (e.g., Marler and Peters 1982; Nelson and Marler
1994). While we have not yet explored these issues directly,
errors made by our model (Fig. 12) suggest how the number
of song elements may be influenced by circuitry at both the
syllable and sequence levels of the motor hierarchy: RA
circuitry may influence the total number of syllable repre-
sentations encoded, whereas the pattern generator in HVc
determines which syllables get incorporated into the final
song. This two-level picture may explain the re-emergence
of white crown sparrow syllables that were learned during
development but dropped from the original adult repertoire
(Benton et al. 1998). Quantitative data concerning the de-
velopmental time courses of syllable morphology and syl-
lable sequence will be crucial for understanding the mech-
anisms for learning on multiple time scales.

A P P E N D I X

Our algorithm for sequence learning extends our previous syllable
learning algorithm (SLA), described in detail in the appendix to our
companion paper (Troyer and Doupe 2000). We present here only
differences and additions to SLA. The main differences were:1)
adding plastic connections from HVc_AFP3 HVc_RA and from the
AFP3 RA (Fig. 2B); 2) having more complex calculations in the
AFP (Fig. 7); 3) adding adaptation to HVc_RA. The additional
connections were initialized using the “uniform strategy,” i.e., all
synapses were initially set to have equal strength and then perturbed
by zero mean Gaussian noise with standard deviation equal to 10% of
the unperturbed strength (see Methods in Troyer and Doupe 2000).
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As before, we abbreviate HVc_RA as HR, HVc_AFP as HA, and
AFP as AF, and letrHR, rRA, rHA-E, rHA-M, rHA-L, rHA-G, whereE,
M, L, G refer to the early, middle, late, and gap portions of
HVc_AFP activity. rEC is defined as in SLA and denotes the
HVc_AFP activity representing the efference copy passed to the
AFP. rctxt denotes the HVc_AFP activity contributing to the con-
text signal and was determined as the average activity during the
middle, late, and gap portions of the syllable (see step 8d below).
For sequence learning, the AFP has both input and output assem-
blies (Fig. 7), with ratesrAFin and rAFout. We use [post, pre] to
denote a matrix of synaptic strengths between a presynaptic and
postsynaptic population of assemblies.

Simulations

Running simulations for 25,000 syllables was found to be adequate
to guarantee the convergence of sequence learning (Fig. 11). The steps
in the sequence learning algorithm are slightly reordered relative to
SLA. Since input from the AFP alters RA activity, calculation of AFP
activity had toprecedethe calculation of activity in RA. This in turn
required calculation of the HVc_AFP activity contributing to the
efference copy signal (rHA-E and rHA-M). Calculation ofrHA-L and
rHA-G had to follow the calculation of RA activity, since these de-
pended on the auditory feedback from the current syllable. We let
SLA(n) refer to stepn in our syllable learning algorithm.

1. Premotor drive. Same as SLA(1), except thatpdrive was reduced
to 16 to compensate for the addition of context input from HVc_AFP.

2. Calculate HVc_RA activity. The afferent input to HVc_RA is
calculated as the sum of premotor drive and HVc_AFP context
signals: affi

HR(n) 5 pi(n) 1 (j [HR, HA] ij rj
ctxt(n 2 1). Output firing

rates are determined as in SLA(2).
3. Calculate earlier portions of HVc_AFP activity (rHA-E and

rHA-M). Same as in SLA(4).
4. Calculate AFP activity and reinforcement. The calculation of

AFP activity was more complex than in SLA (seeMETHODS; Fig. 7).
The calculation of activity in AFP input assemblies follows SLA(5):
rk
AFin(n) 5 uaffk

AF(n) 2 Gk
AFI 2 uu1, with I 5 u^affAF(n)& 2 u I

AFu1, and
affk

AF(n) 5 (j Tkj
=r j

EC(n). The activityr k
AFout in AFP output assem-

bly k was calculated as the sum of three terms (Fig. 7)

r k
AFout1~n! 5 0.153 r k

AFin~n!

r k
AFout2~n! 5 0.753 cR@0.151 0.85̂ Rsyl~n!&#

r k
AFout3~n! 5 0.103 r k21

AFin~n 2 1!

wherecR 5 20 andRk
syl(n) 5 uR̂sylr k

AFin(n) 2 fku
1 as in SLA(6). Note

that r k
AFout2 is identical for allk. The magnitude of the reinforcement

signal for assemblyi in RA is proportional to the total amount of
excitatory input received from the AFP:Ri(n) 5 (k [RA, AF]ikr k

AFout(n)/
(5[RA, AF]). The correction factor 5[RA, AF] ensures that the magnitude
of reinforcement corresponds to that used in SLA.

5. Calculate RA activity. The afferent input to RA is calculated as
the sum of inputs from HVc_RA and the AFP, with the mean of the
AFP input subtracted off due to feedforward inhibition (Fig. 7):
aff i

RA(n) 5 (j [RA, HR] ij r j
HR(n) 1 (k [RA, AF] ik[r k

AFout(n) 2
^rAFout(n)&]. Calculation of RA activity is the same as in SLA(3). To
monitor convergence, once every 250 syllables, the simulations were
continued over the interval [0, 10]. As in SLA, the root-mean-square
(RMS) difference between short and long simulations [run every 250
syllables to monitor convergence of RA dynamics, see SLA(3)] was
less than 0.1 except during the final stages of syllable learning
(syllables 8750–11,500).

6. Calculate later portions of HVc_AFP activity (rHA-L andrHA-G).
Same as in SLA(4).

7. Update synaptic strengths. Calculation of plasticity followed the
same rule described in SLA(7). The postsynaptic plasticity signal in

RA, r i
RA(n) 5 Ri(n)r i

RA(n). The time window for HVc_AFP3
HVc_RA context learning was given as a difference of exponentials
beginning after a 50-ms delay:a(t) 5 (e2(t250)/tfall 2 e2(t250)/trise)/a
for t . 50 ms.trise 5 50 ms,tfall 5 150 ms, anda is a normalizing
constant that ensures thata(t) has a maximum value of 1. Learning
rate parameters for new plastic connections arekHR,HA 5 1 3 1027

ms22, kRA,RF 5 3 3 10211 ms22. The threshold for long-term
potentiation (LTP) and long-term depression (LTD) in HVc_RA was
determined usingbHR 5 0.4. Connections from the AFP3 RA used
a separate LTP/LTD threshold (seeMETHODS), bRA,RF 5 3.5.

8. Update and apply homeostatic mechanisms.
8a. Normalize synaptic strengths. Normalization follows SLA(8a).

The total input received by each population remained the same as in
SLA; in RA, synaptic strengths were reduced by 20% to accommodate
the new connections from the AFP. So [RA, RA] 5 0.15 5 0.4 3
15/40; [RA, HR] 5 0.35 0.43 15/200; and [RA, AF] 5 0.65 0.23
15/5. Context inputs from HVc_AFP contributed 20% of the input to
HVc_AFP: [HR, HA] 5 0.1 5 0.2 3 20/40.

8b. Update inhibitory strengths. Same as in SLA(8b).
8c. Update adaptation. HVc_AFP adaptation follows SLA(8c).

HVc_RA adaptation was of the same form but was updated only once
at the end of each syllable.tdecay

HA 5 225 ms andhHR 5 6.133 ms21.
Assuming a constant activity level of 1 during periods of HVc_RA
activity, adaptation would have a strength of 12 input units, 60% of
the total excitatory input to HVc_RA.

8d. Compute context signal. The context activity,rctxt, was deter-
mined from the average HVc_AFP activity during the middle (35-ms
long), late (20-ms long), and gap (35-ms long) portions of the syllable:
r̂ j

ctxt(n) 5 [35rHA-M(n) 1 20rHA-L(n) 1 35rHA-G(n)]/(35 1 20 1 35).
To reduce instability resulting from reciprocal positive feedback in
HVc, the context signal for each syllable was normalized to have
average value equal to 1, i.e.,rj

ctxt(n) 5 r̂ j
ctxt(n)/^r̂ctxt(n)&.

9. Calculate running averages of activity. Same as in SLA(9), with
rAFin 5 rAF.

Increased number of tutor syllables

In some simulations, the number of tutor syllables was increased
from five to eight. The number of AFP assemblies was increased
accordingly, and the connections from HVc_AFP were increased by a
factor of 8/5 so that the total connection strength onto each AFP input
assembly remained at 15. To ensure proper sensory3 motor learning
in the connections from the AFP3 RA, the learning rate was slowed,
kRA,AF 3 0.5 3 kRA,AF, and the LTP/LTD threshold was reduced
slightly, bRA,AF 5 3. To push the model harder, all learning rates were
increased by a factor of 5, i.e.,kpost,pre3 5 3 kpost,preandkinh3 5 3
kinh. All other parameters remained fixed.
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