
Andrew ID:
Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read
your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read
either your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Spring 2023 Final Exam
Monday, May 1, 2023

Instructions:
● Make sure that your exam is not missing any sheets (check page numbers at bottom)
● Write your Andrew ID and full name on this page (and we suggest on each and

every page)
● This exam is closed book and closed notes (except for 2 double-sided note sheets).
● You may not use any electronic devices or anything other than what we provide,

your notes sheets, and writing implements, such as pens and pencils.
● Write your answers in the space provided for the problem.
● If you make a mess, clearly indicate your final answer.
● The exam has a maximum score of 100 points.
● The point value of each problem is indicated.
● Good luck!

Problem
#

Scope Max
Points

Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Assume we are running code on a machine using two’s complement arithmetic for signed
integers:

● 7-bit integers
● 2s complement signed representation

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when
impossible. An “Everyday” number or expression has the value it would be understood to have
in middle school arithmetic. A “C expression” has the value it would have if evaluated in a C
Language program.

Goal Machine 1: 7-bit
w/2s complement

signed

True or False

“Everyday number”
-67

UNABLE

“Everyday number”
-9

1110111

“C Expression”
(-64 - 3) 61

C Expression:
(-7 > 11U) True

Tmax (Most positive number) 63

2

Part B: Floats (5 points, 1 point per blank)
For this problem, please consider a floating point number representation based upon an IEEE-
like floating point format as described below.

● Format:
○ There are 8 bits
○ There is 1 sign bit s.
○ There are n = 4 exponent bits.

Fill in the empty (non grayed-out) boxes as instructed.

Answer

Total Number of Bits
(Decimal)

8

Number of Sign Bits (Decimal) 1

Number of Exponent Bits
(Decimal) 4

Number of Fraction Bits
(Decimal) 3

Bias
(Decimal) 7

The absolute difference,
represented as a reduced
fraction or as a power of two,
between any two adjacent
denormalized numbers

1.0x 2-9

1100 1010
(Decimal value, unrounded) -5

Bit representation of the value
shown below, or the closest
possible representable value to
it. Hint: Round even.

9/1024

0 0000 100

Continued on next page.

3

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Please consider a “Shark” machine for all parts of this question: 1-byte chars, 2-byte shorts, 4-byte ints,
8-byte longs, 8 byte doubles, 4 byte floats, and 8 byte doubles

Part A (2 points): Consider the following struct. How much memory is required? Answer in bytes.

struct {
float f;
double d;
short s;
char c;

} examStruct1;

24 bytes

Part B (2 points): Rewrite the struct to require as little memory as possible:

struct {
double d;
float f;
short s;
char c;

} examStruct1;

Part C (2 point): How much memory, in bytes, is saved by the reorganization of the struct?

8 bytes

Part D (2 points): Consider the following array. How far apart are array[3][2] and array[2][1]? Answer in
bytes.

struct examStruct1 array[4][3];

#rows=4
#cols=3
width = #cols*ESIZE = 3*ESIZE
array[3][2] is at offset 3*width+2*ESIZE
array[2][1] is at offset 2*width+1*ESIZE
(3*width + 2*ESIZE) - (2*width + ESIZE) = (width + ESIZE) =
3*ESIZE + ESIZE = 4*ESIZE = 4 * 16Bytes = 64 bytes

Part E (2 points): Considering the original, unoptimized struct and the following definition, what is the
offset in bytes of es1p->c within the referenced struct.

18 bytes

4

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 (15 points)

Assume that all subparts pertain to the “Shark Machine” environment.

Part A: Calling Convention (4 points)

Consider the following code which adds numbers.

(gdb) disassemble fn
Dump of assembler code for function fn:

0x00000000004005d0 <+0>: add 0x200a79(%rip),%rdi
0x00000000004005d7 <+7>: add 0x200a6a(%rip),%rdi
0x00000000004005de <+14>: add %rsi,%rdi
0x00000000004005e1 <+17>: add %rdi,%rdx
0x00000000004005e4 <+20>: add %rdx,%rcx
0x00000000004005e7 <+23>: add %rcx,%r8
0x00000000004005ea <+26>: lea (%r8,%r9,1),%rax
0x00000000004005ee <+30>: add 0x8(%rsp),%rax
0x00000000004005f3 <+35>: add 0x10(%rsp),%rax
0x00000000004005f8 <+40>: add 0x18(%rsp),%rax
0x00000000004005fd <+45>: add 0x20(%rsp),%rax
0x0000000000400602 <+50>: retq

End of assembler dump.

3(A)(1) (1 points): How many numbers are being added? How do you know?

12. 2 for the 1st add, one for each additional add, one for the lea.

3(A)(2) (1 points): How many of the numbers being added are global variables? How do you know?

2. They aren’t in registers or on the stack. %rip isn’t the stack pointer. It is just another reference
address.

3(A)(3) (1 points): How many of the numbers being added are local variables? How do you know?

10. 6 from registers and 4 from the stack (relative to %rsp).

3(A)(4) (1 points): How many bytes on the stack are being used to store local variables? How do you
know?

32 bytes. Addresses are 8 bytes apart on the stack and the 8-byte “r” registers are being used.
So 4 local variables at 8 bytes/local variable.

5

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)

Part B: Conditionals and Loops (5 points)

Consider the following code:

Dump of assembler code for function loop:
0x0000000000001169 <+0>: endbr64
0x000000000000116d <+4>: push %rbp
0x000000000000116e <+5>: mov %rsp,%rbp
0x0000000000001171 <+8>: sub $0x20,%rsp
0x0000000000001175 <+12>: mov %edi,-0x14(%rbp)
0x0000000000001178 <+15>: mov %esi,-0x18(%rbp)
0x000000000000117b <+18>: mov %edx,-0x1c(%rbp)
0x000000000000117e <+21>: mov %ecx,-0x20(%rbp)
0x0000000000001181 <+24>: movl $0xffffffff,-0x8(%rbp)
0x0000000000001188 <+31>: mov -0x18(%rbp),%eax
0x000000000000118b <+34>: mov %eax,%edx
0x000000000000118d <+36>: neg %edx
0x000000000000118f <+38>: cmovns %edx,%eax
0x0000000000001192 <+41>: mov %eax,-0x18(%rbp)
0x0000000000001195 <+44>: mov -0x20(%rbp),%eax
0x0000000000001198 <+47>: mov %eax,%edx
0x000000000000119a <+49>: neg %edx
0x000000000000119c <+51>: cmovns %edx,%eax
0x000000000000119f <+54>: mov %eax,-0x20(%rbp)
0x00000000000011a2 <+57>: mov -0x14(%rbp),%eax
0x00000000000011a5 <+60>: mov %eax,-0x10(%rbp)
0x00000000000011a8 <+63>: jmp 0x11f4 <loop+139>
0x00000000000011aa <+65>: mov -0x1c(%rbp),%eax
0x00000000000011ad <+68>: mov %eax,-0xc(%rbp)
0x00000000000011b0 <+71>: jmp 0x11e8 <loop+127>
0x00000000000011b2 <+73>: mov -0x10(%rbp),%eax
0x00000000000011b5 <+76>: imul -0xc(%rbp),%eax
0x00000000000011b9 <+80>: mov %eax,-0x4(%rbp)
0x00000000000011bc <+83>: cmpl $0x0,-0x4(%rbp)
0x00000000000011c0 <+87>: je 0x11e3 <loop+122>
0x00000000000011c2 <+89>: mov -0x4(%rbp),%ecx
0x00000000000011c5 <+92>: mov -0xc(%rbp),%edx
0x00000000000011c8 <+95>: mov -0x10(%rbp),%eax
0x00000000000011cb <+98>: mov %eax,%esi
0x00000000000011cd <+100>: lea 0xe30(%rip),%rax # 0x2004
0x00000000000011d4 <+107>: mov %rax,%rdi
0x00000000000011d7 <+110>: mov $0x0,%eax
0x00000000000011dc <+115>: call 0x1060 <printf@plt>
0x00000000000011e1 <+120>: jmp 0x11e4 <loop+123>
0x00000000000011e3 <+122>: nop
0x00000000000011e4 <+123>: addl $0x1,-0xc(%rbp)
0x00000000000011e8 <+127>: mov -0xc(%rbp),%eax
0x00000000000011eb <+130>: cmp -0x20(%rbp),%eax
0x00000000000011ee <+133>: jl 0x11b2 <loop+73>
0x00000000000011f0 <+135>: addl $0x1,-0x10(%rbp)
0x00000000000011f4 <+139>: mov -0x10(%rbp),%eax
0x00000000000011f7 <+142>: cmp -0x18(%rbp),%eax
0x00000000000011fa <+145>: jl 0x11aa <loop+65>
0x00000000000011fc <+147>: nop
0x00000000000011fd <+148>: nop
0x00000000000011fe <+149>: leave
0x00000000000011ff <+150>: ret

End of assembler dump.

6

Hint: Please be careful to understand the code. Answering these questions isn’t as simple as
counting forward or backward jumps.

3(B)(1) (2 points): How many loops are there? How do you know? If there are nested loops, count each
separately.

2 loops nested

3(B)(2) (1 points): How many “if statements” are there? How do you know?
.

1 if statement

3(B)(3) (1 points): How many ?-operators (ternary operators) are there? Explain your answer.

2 conditional

3(B)(4) (1 points): Does any loop end other than by the condition tested in the loop’s predicate/test? How
do you know?

No

7

Part C: Switch statement (6 points)

Consider the following compiled from C Language code containing a switch statement and no if
statements.

(gdb) disassemble foo
Dump of assembler code for function foo:

0x0000000000400550 <+0>: cmp $0x6,%esi
0x0000000000400553 <+3>: ja 0x4005a0 <foo+80>
0x0000000000400555 <+5>: mov %esi,%esi
0x0000000000400557 <+7>: jmpq *0x400650(,%rsi,8)
0x000000000040055e <+14>: xchg %ax,%ax
0x0000000000400560 <+16>: lea 0x0(,%rdi,8),%eax
0x0000000000400567 <+23>: sub %edi,%eax
0x0000000000400569 <+25>: mov %eax,%edi
0x000000000040056b <+27>: lea 0x2(%rdi),%edx
0x000000000040056e <+30>: mov %edx,%eax
0x0000000000400570 <+32>: retq
0x0000000000400571 <+33>: nopl 0x0(%rax)
0x0000000000400578 <+40>: lea 0x9(%rdi),%edx
0x000000000040057b <+43>: mov %edx,%eax
0x000000000040057d <+45>: retq
0x000000000040057e <+46>: xchg %ax,%ax
0x0000000000400580 <+48>: mov %edi,%edx
0x0000000000400582 <+50>: shr $0x1f,%edx
0x0000000000400585 <+53>: add %edi,%edx
0x0000000000400587 <+55>: sar %edx
0x0000000000400589 <+57>: mov %edx,%eax
0x000000000040058b <+59>: retq
0x000000000040058c <+60>: nopl 0x0(%rax)
0x0000000000400590 <+64>: lea (%rdi,%rdi,2),%edx
0x0000000000400593 <+67>: mov %edx,%eax
0x0000000000400595 <+69>: retq
0x0000000000400596 <+70>: nopw %cs:0x0(%rax,%rax,1)
0x00000000004005a0 <+80>: mov %edi,%eax
0x00000000004005a2 <+82>: mov $0x55555556,%edx
0x00000000004005a7 <+87>: sar $0x1f,%edi
0x00000000004005aa <+90>: imul %edx
0x00000000004005ac <+92>: sub %edi,%edx
0x00000000004005ae <+94>: mov %edx,%eax
0x00000000004005b0 <+96>: retq

End of assembler dump.

Consider also the following memory dump, with the address obscured. Assume that it begins with the
0th entry of the switch statement’s jump table.

(gdb) x/16gx 0xXXXXXX

: 0x0000000000400590 0x0000000000400560
: 0x000000000040056b 0x0000000000400578
: 0x00000000004005a0 0x0000000000400580
: 0x0000000000400580 0x0000003c3b031b01
: 0x00000000004005a0 0x0000000000400580
: 0x0000000000400590 0x0000000000400560
: 0x0000000000400590 0x0000000000400560
: 0x000000000040056b 0x0000000000400578

Continued on next page.

8

Part C: Switch statement, cont. (6 points)

(3)(C)(1) (2 point): At what address does the jump table shown above begin? How do you
know?

0x400650
0x0000000000400557 <+7>: jmpq *0x400650(,%rsi,8)

(3)(B)(3) (2 points): Is there a default case? If so, at what address does it begin? How do
you know?

0x400670
0x0000000000400553 <+3>: ja 0x4005a0 <foo+80>

0x400650: 0x0000000000400590 0x0000000000400560
0x400660: 0x000000000040056b 0x0000000000400578
0x400670: 0x00000000004005a0 0x0000000000400580
0x400680: 0x0000000000400580 0x0000003c3b031b01
0x400690: 0xfffffd7800000006 0xfffffdb800000088
0x4006a0: 0xfffffddd000000c8 0xfffffec800000058
0x4006b0: 0xffffff38000000b0 0xffffffa8000000e8

(3)(C)(2) (2 points):Which case(s), if any, fall through to the next case after executing some of their
own code? How do you know?

Hint: Give the value for the case not the address.

case 1
It is at address 0x400560

which begins this block of code:
0x0000000000400560 <+16>: lea 0x0(,%rdi,8),%eax
0x0000000000400567 <+23>: sub %edi,%eax
0x0000000000400569 <+25>: mov %eax,%edi
0x000000000040056b <+27>: lea 0x2(%rdi),%edx
0x000000000040056e <+30>: mov %edx,%eax
0x0000000000400570 <+32>: retq

xsaad
0x400650: 0x0000000000400590 0x0000000000400560
0x400660: 0x000000000040056b 0x0000000000400578

which continues past the starting address of case 2 before returning at the end of case 2.

Continued on next page.

9

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part A: Caching (9 points)

Given a model described as follows:
● Associativity: 2-way set associative
● Total size: 64 bytes (not counting meta data)
● Block size: 8 bytes/block
● Replacement policy: Set-wise LRU
● 8-bit addresses

4(A)(1) (1 point) How many bits for the block offset?

3 bits

4(A)(2) (1 point) How many bits for the set index?

64 bytes / (8 bytes/block) = 8 blocks; 8 blocks / (2 blocks/set) = 4 sets
4 sets need 2 bits for the set index

4(A)(3) (1 point) How many bits for the tag?

8 bits - 3 offset bits - 2 set bits = 3 tag bits

4(A)(4) (6 points, ½ point per row): For each of the following addresses, please indicate
if it hits, or misses, and if it misses, the type of miss:

Address Circle one (per
row):

Circle one (per
row):

0xA0 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x25 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xA6 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x0D Hit Miss Capacity Compulsory/Cold Conflict N/A

0x11 Hit Miss Capacity Compulsory/Cold Conflict N/A0

0x60 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x0F Hit Miss Capacity Compulsory/Cold Conflict N/A

0xBA Hit Miss Capacity Compulsory/Cold Conflict N/A

0xA5 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x42 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x67 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xC7 Hit Miss Capacity Compulsory/Cold Conflict N/A

Continued on next page

10

Part B: Locality (4 points)

Consider a 64B data cache that is 2-way associative and can hold four (4) 4-bytes ints in each line.

For the code below assume a cold cache, a cache-aligned array of 16 ints, and that all other variables
are in registers.

The code is parameterized by positive integers m and n that satisfy m*n = 16 such that if you know
either one, you know both.

int A[16], t = 0;
for(int i = 0; i < m; i++)

for(int j = 0; j < n; j++)
t += A[j*m + i];

4(B)(1) (1 points) For m=1, what is the miss rate?

25%. It misses one then hits 3 per block

4(B)(2) (1 points) For m=2, what is the miss rate?

25%. It hits one, then misses one per block, because it is skipping every other one. But, then on
the 2nd pass, it hits everything as all of the blocks are still in cache.

4(B)(3) (1 points) For m=4, what is the miss rate?

25%. It misses every hit for the 1st pass since it jumps right to the next block, but then hits the
next three passes because they are within the blocks and nothing got forced out.

4(B)(4) (1 points) For m=8, what is the miss rate?

25%. Yep, again 25%. Cute. Huh? This time we are bouncing between 0s blick and 8ts block
and then 4s block and 12s block. for a MMHHHHHHHH pattern

Part C: Memory Hierarchy and Effective Access Time (2 points)

Imagine a computer system as follows:
● 2-level memory hierarchy (L1 cache, Main memory)
● L1: 5% miss rate
● Main memory: 100nS access time, 0% miss rate
● The effective memory access time is 10nS
● Memory accesses at different levels of the hierarchy do not overlap

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A SIMPLE
FRACTION

What is the access time for the L1 cache?
L1 + 0.05*100nS = 10nS; L1 = 10nS - 5nS; L1 = 5nS

11

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Considering a malloc implementation as described below:
● Explicit list, ordered smallest-to-largest, allocation via first-fit (not next-fit)
● Headers of size 8 bytes, Footer size of 8-bytes, Allocated blocks have footers
● Blocks must be a multiple of 8-bytes (In order to keep payloads aligned to 8 bytes).
● Minimum block size of 48B
● If there is no unallocated block of a large enough size to service the request, sbrk is called to

grow the heap enough to get a new block of the smallest size that can service the request.
● The heap is unallocated until it grows in response to the first malloc.
● Constant-time coalescing is employed.
● The heap never shrinks

5(A) (10 points, 1 point per line) Please complete the following table with the values after the
requested operation completes. The following definitions may be helpful reminders:

● Total Heap Size is the number of bytes between the base of the heap and the brk point, i.e. top
of the heap.

● Aggregate Request Size is the total number of bytes requested via malloc() and not yet free()d.
● Allocated Internal Fragmentation: The difference between the size of each allocated block and

the size of the request for which it was allocated
● Total Malloc Overhead is the difference, in bytes, between the amount of heap space and the

aggregate request size

Operation Total
Heap
Size

Aggregate
Request
Size

Allocated
Internal
Fragmentation

Total
Malloc
Overhead

5(A)(1)(1 point) ptr1 = malloc (40); 56 40 16 16

5(A)(2)(1 point) ptr2 = malloc (40); 112 80 32 32

5(A)(3)(1 point) free(ptr1); 112 40 16 72

5(A)(4)(1 point) free (ptr2); 112 0 0 112

5(A)(5)(1 point) ptr1 = malloc(96); 112 96 16 16

5(A)(6)(1 point) ptr2 = malloc(28); 160 124 36 36

5(A)(7)(1 point) ptr3 = malloc(20); 208 144 64 64

5(A)(8)(1 point) free (ptr1); 208 48 48 160

5(A)(9)(1 point) free (ptr3); 208 28 20 180

5(A)(10)(1 point) malloc(2); 208 30 66 178

12

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical
addresses. Imagine a system has the following parameters:

● Virtual addresses are 12 bits wide.
● Physical addresses are 10 bits wide.
● The page size is 32 bytes.
● The TLB is 2-way set associative with 4 total entries.
● The TLB may cache invalid entries
● TLB REPLACES THE ENTRY WITH THE LOWEST TAG (NOT LRU)
● A single level page table is used

Part A: Interpreting addresses (3 points)

6(A)(1)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

N N N N N O O O O O

6(A)(2)(1 points): Please label the diagram below showing which bit positions are interpreted
as each of the TLBI and TLBT . Leave any unused entries blank.

Bit 1
1

1
0

9 8 7 6 5 4 3 2 1 0

TLBI/
TLBT

T T T T T T I X X X X X

6(A)(3)(1 points): How many entries exist within each page table?

7-bit virtual page numbers can range from 0x0 - 0x7F for 128 pages.

6(A)(4) (2 points): How many sets are in the TLB?

4 total entries/(2 entries/set) = 2 sets

13

Part B: Hits and Misses (12 points)

Shown below are the initial states of the TLB and partial page table.

TLB (X=INvalid, V=VALID, R=READ, W=WRITE):

Set Tag PPN BITS Scratch space for you

0 000001 1 V-RW Replaced by vpn=6 V-RW on ‘Write 0x0D8’

0 000010 9 V-R

1 000011 3 V-RW VPN=7

1 000100 2 V-R VPN=9

Page Table (X=INvalid V=VALID, R=READ, W=WRITE):

Index/VP
N

PPN BITS Scratch space for you

0 5 V-RW

1 13 V-RW

2 1 V-RW

3 11 V-R

4 9 V-R

5 15 X-R

6 27 V-RW

7 3 V-RW

8 16 V-RW

9 2 V-R

10 12 V-RW

11 23 X-RW

Continued on next page.

14

Part B: Hits and Misses, cont. (12 points, 2 points per line)

Consider the following memory access trace e.g. sequence of memory operations
listed in order of execution, as shown in the first two columns (operation, virtual
address). It begins with the TLB and page table in the state shown above.

Note: N/A or Not knowable means the choices do not apply or there is not enough
information given. If you can not deduce a PPN from the information given, please
write N/A for “PPN If Knowable”

Please complete the remaining columns

Operati
on

Virtual
Address

TLB
Hit or Miss?

Page Table

Hit or Miss?

Page Fault?

Yes or No?

PPN
If
Knowable

Write 0x0E5 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 3

Read 0x058 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 1

Write 0x0D8 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 27

Write 0x15B Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 12

Write 0x17A Hit Miss Not
knowable

Hit Miss N/A Yes No Not knowable N/A

Read 0x0C5 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 27

0x0E5 = 0000 1110 0101: VPN-7, TLB_SET-1. Tag-000011, TLB Hit
0x058 = 0000 0101 1000: VPN-2, TLB_SET-0. Tag-000001, TLB Hit
0x0D8 = 0000 1101 1000: VPN-6, TLB_SET-0. Tag-000011, TLB Miss, Part of page table index 6.
0x15B = 0001 0101 1011: VPN-10(0001 010), TLB_SET-0. Tag-0001010, TLB Miss, page table hit on index 10
0x17A = 0001 0111 1010: VPN-11(0001 011), TLB_SET-1. Tag-000101, TLB Miss, part of page table, invalid
entry, page fault.
0x0C5 = 0000 1101 0101: VPN-6(0000 110), TLB_SET-0. Tag-000011, TLB Hit(Previous access to 0x0D8 should
put this tag in TLB, in this case, the entry exists due to lowest tag replacement).

Continued on next page.

15

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (3 points):

Please consider the following code:

void main(){
printf (“A”); fflush(stdout);

if (!fork()) {
printf (“B”); fflush(stdout);

if (fork()) {
printf (“C”); fflush(stdout);

} else {
printf (“D”); fflush(stdout);

}
}

printf (“E”); fflush(stdout);

}

7(A)(1) (1 points): How many times is “E” printed? If it can vary, give the range of possibilities.
3

7(A)(2) (1 points): Give one output string that has the correct output characters (and number of
each character), but in an impossible order.

Answers vary.
ADBCEEE

7(A)(3) (1 points):Why can’t the output you provided in 7(A)(2) be produced? Specifically,
what constraint(s) from the code does it violate?

Answers vary.
For the example above, “B” must come before “D”.

Continued on next page.

16

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)

Part B (4 points):

Please consider the following code:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/wait.h>

int main(int argc, char* argv[]) {
char buffer[7] = "abcdef";
char buffer2[7];

// Assume "file.txt" and "file2.txt" are initially non-existant or empty.
int fd0 = open("file.txt", O_RDWR | O_CREAT, 0666);
int fd1 = -1;

write(fd0, buffer, 3);

if (!fork()) {
write(fd0, buffer+3, 3);

fd1 = open("file.txt", O_RDWR | O_CREAT, 0666);

write(fd1, "X", 1);

dup2 (fd0,fd1); // int dup2(int oldfd, int newfd); copies oldfd over newfd

write(fd0, "A", 1);

} else {

wait(NULL);
write(fd0, "P", 1);

}

return 0;
}

7(B)(1) (2 points):What is the content of the output file after this code completes?
XbcdefAP

7(B)(2) (1 points): If the child process was just about to “return 0”, how many entries are there
in the system-wide open file table related to this code (ignore stdin, stdout, stderr), assuming
open file table garbage collection is done only when program terminates?

2. There are 2 opens. Forks don’t create new file table entries.

7(B)(3) (1 points): If the child process was just about to “return 0”, how many file descriptors
are open in the parent and child (ignore stdin, stdout, stderr)?

3. fd0 in the parent process, fd0 and fd1 in the child process.

Continued on next page.

17

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)
Part C (4 points):

Consider the C code below. Assume that no errors prevent any processes from running to completion.
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <sys/wait.h>

#define MAX_CMDLINE 1024
#define MAX_CHILDREN 100
#define MAX_ARGS ((MAX_CMDLINE/2) + 1)

pid_t children[MAX_CHILDREN];

/*
* SIGCHLD handler
*/
void sigchld_handler(int signum) {
int pid, index;

/* Note: WNOHANG = Don't block, return if nothing waitable */
if ((pid=waitpid (0, NULL, WNOHANG)) <= 0) return;
for (index=0; index < MAX_CHILDREN; index++) {
if (children[index] == pid) {
children[index] = 0;
return;

}
}

}

/*
* Parses a cmdline populating a provided argv array
*
* Returns the number of arguments in the argv[] array,
* not counting argv[0]
*
* argv[] is allocated by caller
*/

int getargs(char *cmdline, char *argv[]) {
int argc = 0;
char *argp;

while (argp = strtok(cmdline, " ")) {
argv[argc++] = argp;
cmdline = NULL;

}

if (!argc) return 0;
return argc;

}

void main(int argc, char *argv[]) {
char cmdline[MAX_CMDLINE];
char *args[MAX_ARGS+1];

int child_index;
pid_t cpid;

signal(SIGCHLD, sigchld_handler);

18

for (child_index = 0; child_index < MAX_CHILDREN; child_index++) {
memset (args, 0, (MAX_ARGS+1) * sizeof(char *));
memset (cmdline, 0, MAX_CMDLINE*sizeof(char));

printf ("Please enter the command line to execute or an empty line to stop.\n");
printf ("cmdprompt> ");
fflush(stdout);
fgets (cmdline, 1024, stdin);
*(strchr(cmdline, '\n')) = '\0';

if (!strlen(cmdline)) break;
if (!getargs(cmdline, args)) break;
if (!(cpid = fork())) { /* Child process */

execv(args[0], args);

perror ("Exec failed :");
continue;

} /* if fork */

/* parent */
children[child_index] = cpid;

} /* for child_index */

printf ("The following children have not been reaped:\n");
for (int child_index=0; child_index < MAX_CHILDREN; child_index++) {
if (children[child_index] > 0) printf ("%d\n", children[child_index]);

}
fflush(stdout);

} /* main() */

7(C)(1)(1 points) Assume that three commands are exec’d. What is the minimum number of times
SIGCHLD might be received by the handler before the program terminates?

0

7(C)(2)(1 points) Assume that three commands are exec’d. What is the maximum number of times
SIGCHLD might be received by the handler before the program terminates?

3

7(C)(3)(2 points) If the SIGCHLD handler is correct for its intended purpose, write “Correct”.
Otherwise, correct it below:

while ((pid=waitpid (0, NULL, WNOHANG)) > 0) {
for (index=0; index < MAX_CHILDREN; index++) {
if (children[index] == pid) {
children[index] = 0;

}
}

}

Continued on next page

19

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)
Part A (5 points): Deadlock

Consider the following C code:
8(A)(2) 8(A)(3) Code

1. /* Initialize semaphores */
2. mutex1 = 1;
3. mutex2 = 1;
4. mutex3 = 1;
5. mutex4 = 1;
6
7. void thread1() {
8. P(mutex2);
9. P(mutex3);
10. P(mutex4);
11
12. /* Access Data */
13. V(mutex4);
14. V(mutex2);
15. V(mutex3);
16. }
17
18. void thread2() {
19. P(mutex1);
20. P(mutex2);
21. P(mutex3);
22
23. /* Access Data */
24
25. V(mutex1);
26. V(mutex2);
27. V(mutex3);
28. }

8(A)(1) (2 points) Is it possible for the code above to deadlock? Yes No

8(A)(2) (3 points) Consider your answer to (A) above. If you answered “No”, explain why deadlock is
impossible. If you answered “Yes”, then please provide a schedule that results in deadlock. Do this by
numbering, i.e. 1, 2, 3, etc, the semaphore operations (Ps and Vs, only) in the code above with an
execution order that results in deadlock. Use the 8(A)(2) column to record your answer.

There is no circular wait. Resources are acquired in increasing order by each thread.

20

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 points)
Part B (7 points): Concurrency Control

This question asks you to synchronize exactly two threads, one of which prints “A” and the other of
which prints “B” such that the output is ABBBABBBABBB…and so on. In other words, one A is printed,
and then three Bs are printed, and then that pattern repeats indefinitely.

Please modify, as instructed by the comments in the code, the code provided below by declaring and
initializing any semaphores or mutexes that are needed, and then using them within the PrintA() and
PrintB() threads.

You may assume that the threads are created and joined elsewhere in the code. Please do not concern
yourself with this code.

// Declare any needed shared, global variables here.
// Hint: Semaphores may be declared as sem_t, e.g. “sem_t someSemaphore;”

sem_t semA;
sem_t semB;

// Do any initialization here. This runs before any thread.
// Hint: Semaphores may be initialized with sem_init, e.g. sem_init(sem, num)

sem_init(semA, 3);
sem_init(semB, 0);

Continued on next page.

21

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 points)
Part B (7 points), cont.: Concurrency Control

void *PrintA(void *) {

while (true){

// Add code here, as needed

P(semA);
P(semA);
P(semA);

write(STDOUT_FILENO, ‘A’, 1);

// Add code here as needed
V(semB);
V(semB);
V(semB);

}
}

void *PrintB(void *) {

while (true){

// Add code here, as needed

P(semB);

write(STDOUT_FILENO, ‘B’, 1);

// Add code here as needed

V(semA);

}
}

Continued on next page.

Part C

22

8(C)(1) (1.5 points) The question above asked you to consider the case where there is exactly one instance
of each of TheadA() and ThreadB(). This question asks you to consider the applicability of your solution to a
different scenario: Assume that there can be exactly one instance of ThreadA(), at most, how many
instance of ThreadB() can exist without breaking correctness? Why?

Any number of instance of ThreadB() can exist.

PrintA is creating slots for threadB, where each threadB only needs to consume one slot to operate.

8(C)(2) (1.5 points) The question above asked you to consider the case where there is exactly one instance
of each of TheadA() and ThreadB(). This question asks you to consider the applicability of your solution to a
different scenario: Assume that there can be exactly one instance of ThreadB(), at most, how many
instance of ThreadA() can exist without breaking correctness? Why?

Only 1 instance of ThreadA() can exist.

semA is initialized to 3 and each instance of ThreadA() requires all three to make progress. Should
more than one instance of ThreadA() run concurrently, they could split the semA resources, such
that neither can make progress.

The End (of the whole exam!)! You made it!

23

