Carnegie Mellon

4

VELCOME "‘ ’ |5;ﬁ3" —
. et

T ————

<« AN g s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Cache Memories

18-213/18-613: Introduction to Computer Systems
10th Lecture, February 16, 2023

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Re m i N d e r : A I V PO I i Cy http:/lwww.cs.cmu.edu/~18213/academicintegrity.html

m No unauthorized use of information

Borrowing code: by copying, retyping, looking at a file

Describing: verbal description of code from one person to another
Searching the Web for solutions

Copying code from a previous course or online solution

Reusing your code from a previous semester (here or elsewhere)

m No unauthorized supplying of information

Providing copy: Giving a copy of a file to someone
Providing access:
= Putting material in unprotected directory
= Putting material in unprotected code repository (e.g., Github)

m No collaborations beyond high-level, strategic advice

" Anything more than block diagram or a few words

Start early. Make frequent github commits. Plan for stumbling blocks. Use available help.

Don’t panic: Far better to turn in 25% correct solution than get an AlV.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html

Today

m Cache memory organization and operation
m Performance impact of caches

" The memory mountain

= Rearranging loops to improve spatial locality

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

CSAPP 6.4-6.5

CSAPP 6.6.1
CSAPP 6.6.2
CSAPP 6.6.3

Carnegie Mellon

Recall: General Cache Concepts

Cache

Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 14 3
Data is copied in block-sized
transfer units
0 1 2 3
4 5 6 7
9 10 11
12 13 14 15

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 3 T 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 5 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Working Set, Locality, and Caches

m Working Set: The set of data a program is currently “working on”
= Definition of “currently” depends on context, e.g., in this loop
" |ncludes accesses to data and instructions

m Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently
= Nearby addresses: Spatial Locality
= Equal addresses: Temporal locality

m Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units

" Locality reduces working set sizes
= Caches are most effective when the working set fits in the cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recall: 3 Types of Cache Misses

m Cold (compulsory) miss

= Cold misses occur because the cache starts empty and this is the first
reference to the block.

m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

® QOccurs when the cache is large enough, but too many data objects all
map (by the placement policy) to the same limited set of blocks

= E.g., if the placement policy maps both 0 and 8 to the same block,
then referencing 0, 8, 0, 8, 0, 8, ... would miss every time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

CPU Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—> :>ALU
memory <1,:|
iI System bus Memory bus
11 e N
Bus interface < > I./O <:> ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

What it Really Looks Like

CPU chip

Memory Controller

Register file
Cache <—> |:> ALU
memory (]

| :;VSAh'ar'ed L3 Cécﬁé: :'f : Bus interface

Core.i7- 3960X :

Queue, Uncore B
& I/0

Rl U e S £

BRI

CEITIEOINCTIDOJCCEINNICIISEENENE

Shared &

s Gachie

ROWHE "%
BT

Memory Controller

HyperTransport™ Ph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edltlon 11

Carnegie Mellon

a a
o s 0l0 0
R s ") . ~
g g D) t'D _ [% gt b, =
z s) % . - = 1. . |y 5 S35
:7 .m "1‘- .' : 'éi - L"'J' Pime yime - |- xzz‘r‘ >~ = - = = .hi‘k = STl SR 3 - = o N L .
o = |UFPU/ . 5 L | SFPUY e 5 el [FRUY L T oL S 2MiB: L2$/ -CEg ot {7F }ngs
¢ , SIMD | SIMD | f g Aagear T Rt - EmR R i X, SRIC
o ::._ [= . = o TR S0 e 3 2 " By - Eracemont .| Gracemonti | = > . .
1O~ |- ;. Memory T A et T T T ke BERR T, At CPU CoreW="WCPU Core gt)
o ’ O Control Golden Cove "Golden Cove" —Golden Cove': o Feay & B et 3
pey - 3 . CPU Core CPU Core 3 SPL! Core: CPU Core bees - = 1. Media® 1. A8x/TMUs;
@ L 2% T - 4 S8 |2 & é ¢, 8 LAY " s “Enai - AL1/Texs$
% 1 . — = —= | = — s — ; [Gracemont =3 Gracemons : 'Englne_-, 3 i..’ SEM- :
0NN #3 o | -125MmiB 1725MiB; 1.25MiB;; |-1asMiB; e FCRUCorer = CPUCOie) e e L B
Q) E -L2$/MLC| = | [=L2$/MLC:y| ‘L2$/MLC = | =28y MEC . Rl RS | . ; -
© e X e R [PR ST SR T CRRICARS e B P S SRR S - EERO RS e 4
@ g iq. 3MiB. | | . 3MiB 3MIB. T 3MiB [~ 3MiB = Celfl B 3 ¢
g 2 System Agent L3$/LLC L3$/_LLC L3$/LLC | L3$/L.LC _L3$/'LL.C - et =k
@1 _: 3 AS o S s o ——— - - " !
I ‘: Al . 2x. - 2X. : 2x Lobi] e I5o2% 2x 4 % lGpU Front/‘Backend,
g = 0 W =" Ring;Agent Ring;Agent Ring Agent Ring Agent Rlng Agent e <GPU/L3$%; -
o & b v iy e e s e — - s Leget) . ‘other Logices
- , 4 " '
4 o 3 : 3MiB 3MiB 3MiB -, 3MiB e B
=0 | - 3 - L3$/LLC < L3$/LLC L3$/LLC . L3s/LLC L3$/LLC F £ -
:g.gxﬁ. - - . - R S (2 L A ot B = T ~‘%‘“_‘—’.1 + .“
002 7 PRI oY LR iE 1. 25M|B Z| (2 ‘~1 25M|B = RE = -~1 25MiB*- - 1.25MiB = ¢ o 0
- s L2$/MLC E2%/MLC L2$/MLC L2$/MLC -A'*L’;,/TTMU;
: T S SR B : b U, ST] [l e T : k' T8 A L17Texs$;
rt DISplay 7 o a3l P 3 _‘. _;; o .' : ':.——__{_ ol Media ;;.. SLM"
5 -: st ~)“ i e i o e '- ¢ ol . Z < > | e .7 ' 3
LE] f COI.‘ItI'OI R B Golden Cove! Golden Cove ~Golden Cove LT Golden/Cove? Engine -~
- YO0 H &= «CPU C o CPU (¢] v «CPU C = CPU .C = : 7 g 3
E Logxl.c i R B Uicorsie FranBUicorelS SRS : L, i
'; : TS| AR T e NPT RYT 4 sy T i A R
F i J ; & S SR T H :7 ! : 3;16_E.Us
. =T N - 2 ,‘I_=PU/ i : (FPU/ DO ok it ‘FPU/ 1 H~FPU/ 3 e Yazssorsy
e Displ ,PHY ,: Jo we s y " -;'_v": p o g 'y y 7: - AT LA
3 jx .lls;I)'ay Ty ; SI_.MD - ’smo g SJI‘M'D 4 _._‘SAIAN‘ID‘ £ - 2MiB. ,_2$/M,_c =, -> Ak
10nm ESF/InteI 7 Alder Lake die shot (~209mm2) from Intel via Andreas Schilling on Twitter:
https:/ /twitter.com/aschilling/status/1453391035577495553
Die shot interpretation by Locuza, October 2021
- S per P-Core » on & 48KB Dats
: DAIAE - : (] . PS DE ore: 64KB 0 X B Data
3 P-core 3 Ore
s s UIVIE ared among ¢ ore
d O'Hallaro ompute e A Progra e Perspe e d O

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set

AL
'd N\

4 «—
eooe —
eooe

S=ZSSEtS< eoceoe

o000
\.

Cache size
=S x E x B data bytes

v tag 01112 ¢cceee B-1

T N— 7

- v

valid bit B = 2* bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o0 00

Address of word:
t bits s bits | b bits
= 25 WM
S = 25 sets < R tag set block
index offset

data begins at this offset

Vv tag 0112 cccc-- B-1

N— 7

valid bit B = 2® bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

4 - Tilalalal=1cl5 Address of int:
i a8 tbits | 0..01 | 100

\'} ta 0|l1|2)13|4]|5]|6]7 -
g find set

S=2°5 sets<

v tag 0]1]12)1314]|5]|6]7

'} tag 01112|314]|5]6]7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0|1]12|314]|5]|6]7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0]1]12)1314]|5]|6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss (cold)
1 [0001,], hit
7 [0111,], miss (cold)
8 [1000,], miss (cold)
0 [0000,] miss (conflict)
v Tag Block

Set0 | 1 0 M[0-1]

Setl1| O

Set2 | O

Set3 | 1 0 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100
A
' N\
(
v tag 0[1|2|3]14]|5]|6]|7 v tag 0[1|2|3]14]|5]|6]|7
vl [tag | [o[2][2]3Tals[e[7 1 |[v] [tag | [o[2][2]3]a[5[6[7]| — find set
< vl [tag | [o[1]23Tals[6[7]|l |[V] [tag | [o[z[2]3Ta[5[6]7
O 0000000000 0000000000000 00000 OCOOCO®O®O®EOOLOLOEOEOOOOOIOO
vl [tag | [o[2]2]3Tals[e[7ll I[v] [tag | [o[2][2]3[a[5]6[7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

vV tag 0]1]12)3]4]|5]|6]|7 v tag 01112]|3]|4]|5]|6]|7|| —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

vV tag 0]1]12]13]14]5]6]|7 v tag 01112]|3]|4]|5]|6]|7|| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

ceto LL_[00 [Mm[0-1]
1 [10 [M[8-9]
ses [1]01 M[6-7)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

What about writes?

m Multiple copies of data exist: va ‘F tag |]0]1]2] " 5
= |1, L2, L3, Main Memory, Disk L ~ ~ d
y valid bit dirty bit B = 2" bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bits indexing
4 Address of int:
v | tee | [O]1]2]3]4]5]6]7 tbits | 0..01 | 100
v tag 0]1]12)1314]|5]|6]7 -
find set /
S=2s sets<
v tag 0]1f2]3)4]5]6]7 /Alternative Method: \
High bits indexing
OO0 0000000 OGDEOGEOGOEOOEOONOONOSOOO
Address of int:
\'} tag 0111213415167 1...11 t bits 100
\.)
find set

_ J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

lllustration of Indexing 0000xx
Approaches DoR
0010xx

m 64-byte memory 001 Lxcx
= 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 010 L3cx
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 011lxx
1000xx

1001xx

Set0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Middle Bits Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

Set O

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

26

Carnegie Mellon

High Bits Indexing

m Addresses of form SSTTBB

= SS Set index bits
= TT Tag bits
= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

Set O

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

27

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache .
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Example: Core i7 L1 Data Cache

»
>
RS
N
. . E = 2¢ lines per set \e\d‘. 000 %\0
32 KB 8-way set associative e o 0 [0 [0000
64 bytes/block I | Jeeee [é é 88%
47 bit address range | I |+« - [2 2 82(1)(1)
S=2sets< | I Jeeee] 5[5 0101
= 6 | 6 | 0110
_ S_ LB B B O B B B B B B NN BB AN I BN BN N NN N W] 7 l7 0111
= oo D 8 | 8 [1000
= ,e=s - | J | 9 |9 1001
A [10] 1010
C= Cache size: B |11 1011
" — 1. C =S x E x B data bytes C |12] 1100
I T Y EV Y D [13 | 1101
I_{L o — E |14 [1110
valanl F [15] 1111
Address of word:
| thits | sbits | b bits |
—
tag set block
. . 27
index offset Stack Address: BIoc.k offset: 0x?7
0x00007£7262al1le010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
E = 2¢ lines per set \e\d‘. 006\2\0@6
32 kB 8-way set associative o N 0 [0 [0000
64 bytes/block I | Jeeee [é é 88%
47 bit address range | I |+« - [2 2 82(1)(1)
_ S=2sets | | eeee[1] 5 [5 | 0101
B =64 6 | 6 | 0110
S=64’S=6 LB B B O B B B B B B NN BB AN I BN BN N NN N W] 7 -7 0111
8 | 8 | 1000
E=8,e=3 9) Qg — 9 [9 [1001
A 101010
C=64x64x8=32,768 Cache size: B 11111011
I_V_rl [T | [o]1][2]~]51] C =S x E x B data bytes g 1% iigg
valicll bit H/_/ E |14|1110
F |15 1111
Address of word:
| thits | sbits | b bits |
e
tag set block S
index offset Stack Address: Block offset: 0x?7
0x00007£7262ale010 Set index: 0x??
Block offset: 6 bits Tag: 0x??

Set index: 6 bits
Tag: 35 bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
&
E = 2¢ lines per set \e\d‘. 000\6\0@
32 kB 8-way set associative o ~ 0 T0 10000
64 bytes/block | | X I > loan
47 bit address range | I |+« - [2 2 82(1)(1)
_ SEmeEEL | oo e | 5 |5 | 0101
B =64 6 | 6 | 0110
S=64,s=6 | ceeeeeeeee cesecsecscecenes 77 ToLiT
8 | 8 | 1000
E=8,e=3 . I e 9 [9 [1001
10 | 1010
C=64x64x8=32,768 Cache size: 1T
I—‘T—' [we | [o]1]2] —]51] C =S x E x B data bytes C [12| 1100
| D [13 1101
valid bit T E |14 11110
F |15 | 1111
Address of word:
| thits | sbits | b bits |
e
=L i:de:x ::fsilfc Stack Address: Block offset: 0x10
0x00007£7262al1le010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory accesses not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (as %):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a cached block to the processor
= includes time to determine whether line is in cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

How Bad Can a Few Cache Misses Be?

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 10 — Cache Memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

& array '"data" with stride of "stride", Call test () with many
& using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO = 0, acel = 0, acec2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */
for (1 = 0; i < limit; i += sx4) {

1. Call test() once to

Sl = feEl 4 Al - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and

acc3 = acc3 + data[i+sx3]; measure the read

: throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + data[i];

}

return ((accO0 + accl) + (acc2 + acec3));

} mountain/mountain.c

38

Carnegie Mellon

Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

Aggress{ve 8 MB L3 cache
prefetchmic{3 - 64 B block size

__ 14000

I

S 12000

§ 10000

S

2 8000 k Ridges

- = of temporal

§ 6000 - locality

4000

2000 %

Slopes
of spatial
locality

s3 128k

s5

512k
2m

7N
en B

s/
Stride (x8 bytes)

Size (bytes)
s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Closer Look at Stride Effects

Throughput for size = 128K

35000
4\/\
30000
Wiss rate = stride/8

\ Miss rate = 1.0
k

N

=(=|\]easured

5000 8 elems per
cache block

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
stride

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Matrix Multiplication Example

m Description:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; j++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[j];
c[i] [J] = sum;

matmult/mm.c

42

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1i++)
sum += a[0] [i];
" accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition L

Carnegie Mellon

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (3=0; j<n; j++) { *
sum = 0.0; E;;; - Qﬂ
for (k=0; k<n; k++) (%)
A B

C

Inner loop:

sum += a[i][k] * b[k][3j];

c[il[j] = sum; ‘ ‘ ‘
}

} matmult/mm.c

Row-wise Column- Fixed
wise

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { *
sum = 0.0; L;;;J. ﬁ]i&: (ﬁn
for (k=0; k<n; k++) (i,*)
sum += a[i] [k] * b[k][j]; A B C

c[i][§] = sum | | |
}

Inner loop:

matmult/mm. c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B C
0.25 1.0 0.0
Same analysis as ijk Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i.k) E(k'*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][j] += r * b[k][]]’ ‘ |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B c
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*,j)
for (k=0; k<n; k++) { (k,j)
r = b[k][3]; ” " [
for (i=0; i<n; i++) A B C
c[i] [j] += al[il[k] * r; | ‘
s Bl e Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Summary of Matrix Multiplication

for (i=0; i<n; i++) {
for (94=0; j<n; j++
cmz oo 13k (& jik):
for (k=0; k<n; k++) ¢ 2 |loads, O stores
sum += a[i][k] * b[k][j]; * avg misses/iter = 1.25
c[i][J] = sum;
}
}
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { kij (& ikj):
r = a[i] [k]; e 2 |loads, 1 store
Eo TR OS ab) * avg misses/iter = 0.5
c[i][]j] += xr * Db[k][]];
}
}
for (j=0; j<n; j++) {
for (k=0; k<n; k++) { jki (& kji):
r = b[k][j]; ¢ 2 loads, 1 store
e G R) e avg misses/iter = 2.0
c[i] [J] += a[il[k] * r;
}
Bryant and O’Hallaron, [} 49

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration
100

jki/kji (2.0)

ki
~-kji
——ijk
—7ik

ijk/jik (1.25)

10

_——r
kij/ikj (0.5)
1 T T T T T T T T T T T T]

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration: r N

" n/8 +n=9n/8 misses

I
X

= Afterwards in cache:
(schematic) . S

Il
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _ X

8 wide

m Total misses:
= 9n/8 n?=(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=L)

for (J = 0; jJ < n; j+=L)
for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (i1l = i; il < i+L; il++)
for (j1 = j; jl < j+L; jl++)
for (kl = k; kl < k+L; kl++)
c[il*n+jl] += a[il*n + kl1l]*b[kl*n + jl];

} matmult/bmm. c

jl
o] a b o]
= X +
N By | | []|
1
Block size L x L 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cacheline =8 doubles. Blocking size L> 8
® Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3L2< C

. . . n/L blocks
m First (block) iteration: A
= Misses per block: L°/8] BEEEE B
= Blocks per Iteration: 2n/L O
= x &
(omitting matrix c) [
= Misses per lteration: T

2/Q —
2n/Lx L?/8 = nL/4 Block size L x L

= Afterwards in cache
(schematic)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cacheline =8 doubles. Blocking size L> 8

® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L?< C

. . n/L blocks
m Second (block) iteration: A

' N\
" Same misses as L] BEREE

first iteration
= 2n/Lx L2%/8 =nlL/4

Block size Lx L
m Total misses:

" nlL/4 misses per iteration x (n/L)? iterations = n3/(4L) misses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n* misses
m Blocking: (1/(4L)) n® misses

m Use largest block size L, such that L satisfies 3L2< C

® Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

The Memory Mountain

Carnegie Mellon

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache

Aggressive 256 KB L2 cache
prefetching 8 MB L3 cache
64 B block size
32000
28000 — | 4 .,
g 24000) N
=
= 20000 k
cg» 16000 \ ’ Ridges
§ 12000 of temporal
E A / locality
£ 8000 A
4000 % -
Slopes / i
: 32k
of spatial 128K
locality s5 512k

So8m

_ s7
Stride (x8 bytes) s9 Size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

61

Cache Capacity Effects from Core i7 Haswell

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size

25000 -
ézoooo -
‘%15000 Main L3 L2 1
= | | By 4
3 Memory Slice through
= memory
©
§ 10000 mountain with

stride=8
5000
0 .

Working set size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Modeling Block Size Effects Core i7 Haswell

2.26 GHz
from Memory Mountain 32KB L1 d-cache
8 MB L3 cache
Throughput for size = 128K 64 B block size

35000

6
30000 /\\ Throughput 10
25000 / 8.0s+24.3

9 20000
§ =¢=Measured
= 15000 ==Model
10000
5000
0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Core 2 Duo

2008 Memory Mountain 2.4 Gh:z

32 KB L1 d-cache

No 6MB L2 cache
20000 prefetching

\ 64 B block size
\
18000 —
% 16000 ’—
m
S 14000
2 12000
S
(@)
S 10000 —
< 8000 ’
©
o
£ 6000
4000
2000
0
32k
1
g 128k
2m
s7
Stride (x8 bytes i
(x8 bytes) 3om Size (bytes)
s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) Ii(k'*)gl
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * Db[k][]]: ‘ | |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { * k) *
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

. . A B
c[i1[3] += a[il[k] * r; | ‘ C|
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Recap: Stack and instruction pointers

Shared
m The stack pointer (%rsp) QLEEES
points to the top of the stack Stack — rsp
m The instruction pointer (%rip)
points to the next instruction
to be executed
m They are independent
= But linked by call and ret
instructions
Heap
Data
Text +«— rip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Recap: stack operations

m push %rax =

more stuff

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

rax

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=

rax

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
AL

rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
AL

m ret=
rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

m call func= ”)

= sub %rsp, 8

" mov %rip, (%rsp) rax

" jmp func \ < rsp
m ret=

" mov (%rsp), %rip
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

73

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

m call func= ”)
= sub %rsp, 8
" mov %rip, (%rsp) rax
= jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Carnegie Mellon

Recap: stack operations

m push %rax =
= sub %rsp, 8
" mov %rax, (%rsp)
m call func=
= sub %rsp, 8
" mov %rip, (%rsp)
= jmp func
m ret=
" mov (%rsp), %rip
= add %rsp, 8
m pop %rax =
" mov (%rsp), %rax
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

more stuff

rsp

75

	Slide 1
	Slide 2: Cache Memories 18-213/18-613: Introduction to Computer Systems 10th Lecture, February 16, 2023
	Slide 3: Reminder: AIV Policy
	Slide 4: Today
	Slide 5: Recall: General Cache Concepts
	Slide 6: General Cache Concepts: Hit
	Slide 7: General Cache Concepts: Miss
	Slide 8: Working Set, Locality, and Caches
	Slide 9: Recall: 3 Types of Cache Misses
	Slide 10: CPU Cache Memories
	Slide 11: What it Really Looks Like
	Slide 12: What it Really Looks Like (Cont.)
	Slide 13: General Cache Organization (S, E, B)
	Slide 14: Cache Read
	Slide 15: Example: Direct Mapped Cache (E = 1)
	Slide 16: Example: Direct Mapped Cache (E = 1)
	Slide 17: Example: Direct Mapped Cache (E = 1)
	Slide 18: Direct-Mapped Cache Simulation
	Slide 19: E-way Set Associative Cache (Here: E = 2)
	Slide 20: E-way Set Associative Cache (Here: E = 2)
	Slide 21: E-way Set Associative Cache (Here: E = 2)
	Slide 22: 2-Way Set Associative Cache Simulation
	Slide 23: What about writes?
	Slide 24: Why Index Using Middle Bits?
	Slide 25: Illustration of Indexing Approaches
	Slide 26: Middle Bits Indexing
	Slide 27: High Bits Indexing
	Slide 28: Intel Core i7 Cache Hierarchy
	Slide 29: Example: Core i7 L1 Data Cache
	Slide 30: Example: Core i7 L1 Data Cache
	Slide 31: Example: Core i7 L1 Data Cache
	Slide 32: Cache Performance Metrics
	Slide 33: How Bad Can a Few Cache Misses Be?
	Slide 34: Writing Cache Friendly Code
	Slide 35: Quiz Time!
	Slide 36: Today
	Slide 37: The Memory Mountain
	Slide 38: Memory Mountain Test Function
	Slide 39: The Memory Mountain
	Slide 40: Closer Look at Stride Effects
	Slide 41: Today
	Slide 42: Matrix Multiplication Example
	Slide 43: Miss Rate Analysis for Matrix Multiply
	Slide 44: Layout of C Arrays in Memory (review)
	Slide 45: Matrix Multiplication (ijk)
	Slide 46: Matrix Multiplication (jik)
	Slide 47: Matrix Multiplication (kij)
	Slide 48: Matrix Multiplication (jki)
	Slide 49: Summary of Matrix Multiplication
	Slide 50: Core i7 Matrix Multiply Performance
	Slide 51: Today
	Slide 52: Example: Matrix Multiplication
	Slide 53: Cache Miss Analysis
	Slide 54: Cache Miss Analysis
	Slide 55: Blocked Matrix Multiplication
	Slide 56: Cache Miss Analysis
	Slide 57: Cache Miss Analysis
	Slide 58: Blocking Summary
	Slide 59: Cache Summary
	Slide 60: Supplemental slides
	Slide 61: The Memory Mountain
	Slide 62: Cache Capacity Effects from Memory Mountain
	Slide 63: Modeling Block Size Effects from Memory Mountain
	Slide 64: 2008 Memory Mountain
	Slide 65: Matrix Multiplication (ikj)
	Slide 66: Matrix Multiplication (kji)
	Slide 67: Recap: Stack and instruction pointers
	Slide 68: Recap: stack operations
	Slide 69: Recap: stack operations
	Slide 70: Recap: stack operations
	Slide 71: Recap: stack operations
	Slide 72: Recap: stack operations
	Slide 73: Recap: stack operations
	Slide 74: Recap: stack operations
	Slide 75: Recap: stack operations

