
Andrew ID:
Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read
your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read either
your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Fall 2021 Final Exam
Friday, December 10th, 2021

Instructions:
● Make sure that your exam is not missing any sheets (check page numbers at bottom)
● Write your Andrew ID and full name on this page (and we suggest on each and every

page)
● This exam is closed book and closed notes (except for 2 double-sided note sheets).
● You may not use any electronic devices or anything other than what we provide, your

notes sheets, and writing implements, such as pens and pencils.
● Write your answers in the space provided for the problem.
● If you make a mess, clearly indicate your final answer.
● The exam has a maximum score of 100 points.
● The point value of each problem is indicated.
● Good luck!

Problem # Scope Max Points Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Page 1 of 26

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Assume we are running code on two machines using two’s complement arithmetic for signed
integers.

● Machine 1 has 5-bit integers
● Machine 2 has 7-bit integers.

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when
impossible.

Machine 1: 5-bit
w/2s complement signed

Machine 2: 7-bit
w/2s complement signed

Binary representation of 18
decimal

Soln: UNABLE Soln: 0010010

Binary representation of -9
decimal

Soln: 1101111

Binary representation of
+Tmax

Soln: 01111

Binary representation of -1
decimal

Soln: 1111111

Page 2 of 26

Part B: Floats (5 points, 1/2 point per blank)
For this problem, please consider a floating point number representation based upon an IEEE-
like floating point format as described below.

● Format A:
○ There are 5 bits
○ There is 1 sign bit s.
○ There are k = 2 exponent bits.
○ You need to determine the number of fraction bits.

● Format B:
○ There are 7 bits
○ There is 1 sign bit s.
○ There are n = 3 fraction bits.

Fill in the empty (non grayed-out) boxes as instructed.

Format A Format B

Total Number of Bits
(Decimal)

5 7

Number of Sign Bits (Decimal) 1 1

Number of Fraction Bits
(Decimal)

Soln: 2 3

Number of Exponent Bits
(Decimal)

2 Soln: 3

Bias
(Decimal)

Soln: 1 Soln: 3

+Infinity

(Binary bit pattern)
Soln: 01100 Soln: 0111000

1000010
(Decimal value, unrounded)

Soln: -1/16
E=(1-3)=-2

-1 * 1/4 x 2-2

11011
(Decimal value, unrounded)

Soln: S = -1
E = (2-1) = 1

M = 1+1/2+1/4 = 7/4
-1*7/4*2^1 = -7/2

0111001
Meaning of the bit pattern

Soln:
NaN

// x,y, and z are floats
(x+1)-((x+2)-1) == 0

Circle one: Soln: Depends
Always equal
Always unequal
It depends

Page 3 of 26

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part A: Arrays (5 points)

Consider the following definitions in an x86-64 system with 8-byte pointers and 4-byte ints:

Definition A Definition B

int numbersA[3][2] =
 {2,4,6,8,10,12};

int **numbersB =
 malloc (3*sizeof(int *));

// ...
// You’ll complete this code in
2(A)(3) below

2(A)(1) (1 point): How many bytes are allocated to numbersA? (Write “UNKNOWN” if not
knowable).
Hint: Think sizeof()

Soln: 24 bytes

2(A)(2) (1 point): How many bytes are allocated to numbersB? (Write “UNKNOWN” if not
knowable).
Hint: Think sizeof()

Soln: 8-bytes

2(A)(3) (3 points) Complete the given C language code for numbersB such that it fully
allocates the array and initializes it such that corresponding elements of numbersB and
numbersA have the same values:

Soln:
for (int row=0; row<3; row++) {
 numbersB[row] = malloc (2*sizeof(int));
}

for (int row=0; row<3; row++) {
 for (int col=0; col<2; col++) {
 numbersB[row][col] = numbersA[row][col];
 }
}

Page 4 of 26

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part B: Structs and Alignment (5 points)

For this question please assume “Natural alignment”, in other words, please assume that each
type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {
 char c; // 1-byte type
 short s1; // 2-byte type
 double d; // 8-byte type
 short s2;
} partB;

2(B)(1) (1 point): What would you expect to be the value of the expression below?
 sizeof(struct partB)

Soln:
cXs1XXXXdddddddds2XXXXXX
24 bytes

2(B)(2) (1 point): Why should a programmer always use the sizeof() operator in code versus
computing the value themselves? Give two (2) reasons.

Soln: Doing the computation statically isn’t portable and it is too easy to make a mistake.
(Answers may vary)

2(B)(1) (2 points): Rewrite the struct above to minimize its size after alignment-mandated
padding:

Soln: Answers may vary but should all be the same size as this:
struct {
 char c; // 1-byte type
 short s1; // 2-byte type
 short s2;
 double d; // 8-byte type
} partB;
cXs1s2XXdddddddd
16 bytes

Page 5 of 26

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 ISA

Part A: Loops and Calling Convention (7 points)

Consider the following code:

function:
.LFB0:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movl %edi, -20(%rbp)
 movl %esi, -24(%rbp)
 movl -20(%rbp), %eax
 movl %eax, -4(%rbp)
 jmp .L2
.L5:
 movl $0, -8(%rbp)
 jmp .L3
.L4:
 addl $1, -8(%rbp)
.L3:
 movl -8(%rbp), %eax
 cmpl -4(%rbp), %eax
 jl .L4
 movl $88, %edi # 88 is ASCII for ‘X”
 call putchar
 movl $10, %edi # 10 is ASCII for ‘\n’
 call putchar
 addl $1, -4(%rbp)
.L2:
 movl -4(%rbp), %eax
 cmpl -24(%rbp), %eax
 jl .L5
 nop
 leave
 ret

3(A)(1) (2 points): How many loops does this function have? How do you know?

Soln: 2. There are two backward jumps.

3(A)(2) (1 points): How many arguments does this function receive (and use)?

Soln: 2

Continued on next page.

Page 6 of 26

3(A)(3) (2 points): For each argument you listed, please indicate either (a) which specific
register was used to pass it in, or (b) that it was sourced from the stack (you don’t need to give
the address). Please leave any extra blanks empty (Hint: You won’t need all of them).

Argument Specific register or “Stack”

1st Soln: %edi

2nd Soln: %esi

3rd Soln: Unused

4th Soln Unused

5th Soln: Unused

Consider the following function activation. Consistent with your answer to the question above, it
includes more arguments that the function actually requires. Please ignore any extra arguments.

 function(10, 9, 8, 7, 6);

3(A)(2) (2 points): How many times does the inner-most loop run?
Hint: If the inner-most loop is nested, you may need to consider the loops in which it is nested.

Solution: 0. None. Since 10 is greater than 9, the outer-most loop never runs.

Continued on next page.

Page 7 of 26

Part B: Conditionals (8 points)

Consider the following code:

(gdb) disassemble function
Dump of assembler code for function function:
 0x0000000000400533 <+0>: cmp %esi,%edi
 0x0000000000400535 <+2>: jg 0x400561 <function+46>
 0x0000000000400537 <+4>: cmp $0x5,%edi
 0x000000000040053a <+7>: ja 0x400557 <function+36>
 0x000000000040053c <+9>: mov %edi,%eax
 0x000000000040053e <+11>: jmpq *0x400630(,%rax,8)
 0x0000000000400545 <+18>: mov $0x1,%edi
 0x000000000040054a <+23>: mov %edi,%eax
 0x000000000040054c <+25>: imul %edi,%eax
 0x000000000040054f <+28>: add %edi,%eax
 0x0000000000400551 <+30>: retq
 0x0000000000400552 <+31>: mov $0xffffffec,%edi
 0x0000000000400557 <+36>: mov %edi,%eax
 0x0000000000400559 <+38>: shr $0x1f,%eax
 0x000000000040055c <+41>: add %edi,%eax
 0x000000000040055e <+43>: sar %eax
 0x0000000000400560 <+45>: retq
 0x0000000000400561 <+46>: mov $0xffffffff,%eax
 0x0000000000400566 <+51>: retq
 0x0000000000400567 <+52>: mov $0x8,%eax
 0x000000000040056c <+57>: retq
End of assembler dump.

Consider also the following memory dump:

(gdb) x/10gx 0x400620
0x400620: 0x0000000000020001 0x0000000000000000
0x400630: 0x0000000000400545 0x000000000040054a
0x400640: 0x0000000000400557 0x000000000040054a
0x400650: 0x0000000000400567 0x0000000000400552
0x400660: 0x000000443b031b01 0xfffffda000000007

Continued on next page

Page 8 of 26

(3)(B)(1) (1 points): How many “if statements” are likely present in the C Language code from
which this assembly was compiled? At what address of the assembly code shown above does
each occur?

This code was compiled from C Language code containing a switch statement. Please do not
include any “if statement” present in the assembly that is likely part of the switch
statement in the original C code, i.e. do not count any “if statement” that is used to manage one
or more “cases” of a “switch statement”.

Soln:
1
There are two forward jumps, which are candidates 0x400535 and 0x40053A. But, the second
one is considering the switch control variable, comparing it to a bound, and jumps into code
listed in the jump table. So, the one at 0x400535 is likely an “if statement” in the C code,
whereas the other is likely handing a “case” of the switch, specifically the default case.

(3)(B)(2) (2 points): What integer input values are managed by non-default cases of the switch
statement? How do you know?

Soln: 0,1,3,4,5
Negative values and values above 5 are managed by the default case. Note that negatives look
like large integers when compared using unsigned “ja”.

(3)(B)(3) (1 point): Is there a default case? If so, at what address does it begin? How do you
know?

Soln: Yes. 0x400557. It is used for both the 2 case and any case larger than 5.

Note that 2s entry in the jump table is the same as the default case’s entry, as shown by the
initial if statement.

(3)(B)(4) (2 points): Which case(s), if any, share exactly the same code? How do you know?

Soln: Cases 1 and 3. They have the same pointer in the jump table.

Continued on next page.

Page 9 of 26

(3)(B)(5) (2 points): Which case(s), if any, fall through to the next case after executing some of
their own code? How do you know?

Soln: Cases 0 and 5.

If we look at the code block beginning with where the 0th entry in the jump table points, it
overlaps the code block pointed to by the next entry (and the entry after that) in the jump table
without a jump or return to prevent it from falling through.

The same is true if we look at the code beginning with the 5th entry in the jump table and the 6th
entry, the default case, that follows.

Page 10 of 26

 Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part A: Caching (8 points)

Given a model described as follows:

● Associativity: 2-way set associative
● Total size: 512 bytes (not counting meta data)
● Block size: 32 bytes/block
● Replacement policy: Set-wise LRU
● 12-bit addresses

4(A)(1) (1 point) How many bits for the block offset?
Soln: 32 bytes = 5 bits to index

4(A)(2) (1 point) How many bits for the set index?
Soln: (512 bytes) / (32 bytes/block) / (2 blocks/set) = 8 sets; 3 bit indexes 8 sets.

4(A)(3) (1 point) How many bits for the tag?
Soln: (12 bit address) - (5 bits for block offset) - (3 bit for set index) = 4 bits left over for tag

4(A)(4) (5 points, ½ point each): For each of the following addresses, please indicate if it hits,
or misses, and if it misses, if it suffers from a capacity miss, a conflict miss, or a cold miss:

Address Circle one
(per row):

Circle one
(per row):

0xA10 Hit Miss Capacity Cold Conflict N/A

0X804 Hit Miss Capacity Cold Conflict N/A

0X898 Hit Miss Capacity Cold Conflict N/A

0XFDF Hit Miss Capacity Cold Conflict N/A

0XA00 Hit Miss Capacity Cold Conflict N/A

0X806 Hit Miss Capacity Cold Conflict N/A

0XCD5 Hit Miss Capacity Cold Conflict N/A

0XA10 Hit Miss Capacity Cold Conflict N/A

0X3DD Hit Miss Capacity Cold Conflict N/A

0XFC7 Hit Miss Capacity Cold Conflict N/A

Page 11 of 26

Part B: Locality (4 points)

4(B)(1) (2 points): Consider the following code:

int array[SIZE1][SIZE2];
int sum=0;
for (int outer=0; outer<SIZE1; outer+=STEP)
 for (int inner=0; inner<(SIZE2-1); inner++)
 sum += array[outer][inner] + 2*array[outer][inner+1];

Considering only access to “array”, as “step” increases (significantly), please mark how each
type of locality would be impacted. Please also explain why in the space provided.

Spatial Decrease Increase Unaffected

Temporal Decrease Increase Unaffected

Soln: Spatial locality is likely unaffected because the step is affecting the column movement, not
the row movement which is what aligns with the row-major ordering and provides for the cache
hits. The hits from inner vs inner+1 are unaffected. Temporal locality is likely unaffected,
because the element is still getting re-used from one pass through the loop to the next.

4(B)(2) (2 points): Consider the following code:

int array[ROWS][COLS];
int sum=0;
for (int row=0; index<ROWS; row ++)
 for (int col=0; col<(COLS-1); col ++)
 sum += array[row][col]+ array[row][col+1];

Imagine an array extremely large in all dimensions, an int size of 4 bytes, and a cache block
size of 16 bytes. To the nearest whole percent or simple fraction, what would you expect the
miss rate for accesses to “array” to be? Why?

Continued on next page.

Page 12 of 26

Soln: 1/6. 4 ints fit per block. The first access misses, but its “+1” hits. The next access
hits, as does its +1

Part C: Memory Hierarchy and Effective Access Time (3 points)

Imagine a system with a DRAM-based main memory layered beneath an super-fast cache.
● The DRAM has a 100nS access time.
● The effective access time is 15nS.
● The miss rate is 10%.
● In the event of a miss, memory access time and cache access time do not overlap: They

occur 100% sequentially, one after the other.

What is the super-fast cache access time?

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A
SIMPLE FRACTION

CACHE_ACCESS_TIME=

Soln:
EFFECTIVE_ACCESS_TIME = CACHE_ACCESS_TIME + MISS_RATE*MISS_PENALTY
15nS = CACHE_ACCESS_TIME + 0.1*DRAM_ACCESS_TIME
15nS = CACHE_ACCESS_TIME + 0.1*100nS
15nS = CACHE_ACCESS_TIME + 10nS
5nS = CACHE_ACCESS_TIME
CACHE_ACCESS_TIME = 5nS
CACHE_ACCESS_TIME = 1.25nS

Page 13 of 26

Soln: 1/8. 4 ints fit per block. The first access misses, but its “+1” hits. The
next access hits, as does its +1

M H _ _
_ H H _
_ _ H H
_ _ _ H M _ _ _
 H H _ _
 _ H H _
 _ _ H H
 _ _ _ H M _ _ _
 H H _ _
 _ H H _
 _ _ H H
 _ _ _ H M _ _ _
 Repeats….

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Consider the following code series of malloc’s and free’s:

 ptr1 = malloc(4);
 ptr2 = malloc(8);
 ptr3 = malloc(4);
 free(ptr1);
 free(ptr3);
 ptr4 = malloc(8);
 ptr5 = malloc(12);
 free (ptr4);
 free (ptr2)
 ptr6 = malloc(32);

And a malloc implementation as below:

● Explicit list
● First-fit (search starts at head each time)
● Headers of size 8 bytes
● Footer size of 8-bytes
● Every block is always constrained to have a size a multiple of 8 (In order to keep

payloads aligned to 8 bytes).
● A first-fit allocation policy is used.
● If no unallocated block of a large enough size to service the request is found, sbrk is

called for the smallest multiple of 8 that can service the request.
● The heap is unallocated until it grows in response to the first malloc.
● Constant-time coalescing is employed.

NOTE: You do NOT need to simplify any mathematical expressions. Your final answer may
include multiplications, additions, and divisions.

4(A) (2 points) After the given code sample is run, how many total bytes have been requested
via sbrk? In other words, how many bytes are allocated to the heap? Draw a figure showing the
heap and where each ptr is located.

Soln: 80B: 48B (ptr6)+ 32B (ptr5)

Page 14 of 26

4(B) (2 points) How many of those bytes are used for currently allocated blocks (vs currently
free blocks), including internal fragmentation and header information?

Soln: All currently allocated

4(C)(2 points) How much internal fragmentation is there due to padding (Answer in bytes)?
(Hint: Free blocks have no internal fragmentation).

Soln: 4B

4(D)(2 points) How much internal fragmentation is there due to headers and footers (Answer in
bytes)? (Hint: Free blocks have no internal fragmentation).

Soln: 32B

4(E)(2 points) Imagine that the user wrote a 14-character string to the buffer allocated ptr5.
What would be the most likely result? And why? Circle the most likely result and then explain
below.

A. It would be correct
B. It would be incorrect code, but would likely work correctly in this environment
C. In this environment, it will likely compile and run, but die of a SEGV or similar runtime

memory error
D. In this environment, it will likely compile and run, but could generate incorrect results or

crash later on

Soln:

(B) Because the request is rounded up to a multiple of 8, there is room. But, if linked
against a different malloc implementation or run elsewhere the results could be bad.

Page 15 of 26

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical
addresses. Imagine a system has the following parameters:

● Virtual addresses are 16 bits wide.
● Physical addresses are 16 bits wide.
● The page size is 256 bytes.
● The TLB is 2-way set associative with 16 total entries.
● A single level page table is used

Part A: Interpreting addresses

6(A)(1)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

N N N N N N N N O O O O O O O O

6(A)(2)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the VPO and VPN (top line) and each of the TLBI and TLBT
(bottom line). Leave any unused entries blank.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO/
VPN

N N N N N N N N O O O O O O O O

TLBI/
TLBT

T T T T T I I I

6(A)(3) (1 points): How many entries exist within each page table? Hint: This is the
same as the total number of pages within each virtual address space.

Soln: One entry per page. 8 bits per page number means 256 pages.

Page 16 of 26

Part B: Hits and Misses (12 points)

Shown below are a partial TLB and partial page table.
TLB:

Index Tag PPN Valid Scratch space for you

0 0x0A 0x42 1 VPN = 0101 0000 0x60 ***

0 0x1B 0x23 1

1 0x14 0X12 1

1 0x11 0X45 0

2 0x05 0xA3 0 VPN = 0 010 1010 0x2A ***

2 0x0A 0X78 1

3 0x09 0X56 1 VPN = 0 000 0011 0x03 ***

3 0x02 0X24 0 VPN = 0 001 0 111 0x17

4 0x08 0x25 0

4 0x10 0x26 1

Page Table:
Index/VPN PPN Valid Scratch space for you

3 0X56 1 TLB Hit

23 0xA3 1 TLB Miss, No fault

96 0X42 1 TLB Hit

140 0X12 0 TLB Miss, Page Fault

For each address shown below, please indicate if it is a TLB Hit or Miss, whether or not
it is a page fault, or if either can’t be determined from the information provided.
Additionally, if knowable from the information provided, please provide the valid PPN

Virtual
Address

TLB
Hit or Miss?

Page Fault?
Yes or No

PPN
If Knowable

0x0344 Hit Miss Not knowable Yes No Not knowable 0x56

0x1744 Hit Miss Not knowable Yes No Not knowable 0xA3

0x8022 Hit Miss Not knowable Yes No Not knowable Not knowable

0x8C42 Hit Miss Not knowable Yes No Not knowable Not knowable

Page 17 of 26

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (3 points):

Please consider the following code:

 void main(){
 fork()
 printf (“A”); fflush(stdout);
 if (!fork()) {
 printf (“C”); fflush(stdout);
 } else {
 wait(NULL);
 printf (“E”); fflush(stdout);
 }
 printf (“F”); fflush(stdout);

}

7(A)(1) (1 points): Give one possible output string

 Soln: Many are possible, e.g AACFCFEEFF

7(A)(2) (1 points): Give one output string that has the correct output characters (and number of
each character), but in an impossible order.

Soln: Many possible, e.g. anything without an A first, or without an F last, or an F before
an E, etc.

7(A)(3) (1 points): Why can’t the output you provided in 7(A)(2) be produced? Specifically,
what constraint(s) from the code does it violate?

See above.

Continued on next page.

Page 18 of 26

Part B (3 points):

Please consider the following code:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int main(int argc, char* argv[]){
 char buffer[4] = "abc";

 // Assume "file.txt" exists but is initially empty

 int fd0 = open("file.txt", O_RDWR);
 int fd1 = 0;
 int fd2 = open("file.txt", O_RDWR);

 read(fd0, buffer, 1);
 dup2(fd0, fd1);

 read(fd2, buffer+1, 2);
 write(fd0, buffer, 3);

 read(fd2, buffer, 1);
 write(fd1, buffer, 1);

 return 0;
}

7(B)(1) (1 points): What is the content of the output file after this code completes?

 Soln: abca

7(B)(2) (1 points): How many entries are there in the system-wide open file table related to this
code?

 Soln: 2, one from each open

Continued on next page.

Page 19 of 26

7(B)(3) (1 points): For each listed file descriptor variable, identify the file descriptor table entry
pointed to by each file descriptor variable. Name the file descriptor entries FT1, FT2, FT3, FT4,
etc.

File descriptor variable File table entry, e.g. FT1, FT2, FT3, FT4

fd0 Soln: FT1

fd1 Soln: FT1

fd2 Soln: FT2

Continued on next page

Page 20 of 26

Part C (4 points):

Please consider the following code:

#include <stdio.h>
#include <wait.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>

int count = 0;

void inthandler(int sig){
 count = 0;

 printf("SIGINT received\n");
 return;
}

void childhandler(int sig) {
 int status;

 wait(&status);
 count += WEXITSTATUS(status);

 return;
}

void main() {
 pid_t pid; // pid of child process

 signal(SIGINT, inthandler);
 signal(SIGCHLD, childhandler);

 pid = fork();
 if(!pid){
 kill(getppid(), SIGINT);
 exit(5); // Exit status is 5
 }

 sleep(5);

 printf("count = %d\n", count);
 exit(0); // Exit status is 0
}

Page 21 of 26

7(C)(1) (2 points): What are the possible output(s) of the program?

Soln: 0 or 5, depending upon the race condition

7(C)(2) (1 points): There a critical (problematic shared) resource (variable)? What is it?

Soln: count

7(C)(3) (1 points): What is the critical resource shared between or among?

Soln: Signal activations and the main program.

Page 22 of 26

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

Consider the goal of writing a concurrent program to achieve the following

● The main thread creates 100 threads, waits for each thread to terminate
● One the main program terminates, it prints the value of global variable sum.
● Each thread increments the value of global variable cnt by 1, and adds the value of cnt

to sum.
● Both sum and cnt have the initial value of 0.

Each of the following 5 programs represent an attempt at a correct solution, but some suffer
from concurrency-related problem(s).

● Please write CORRECT for each correct solution.
● Please write INCORRECT and describe the CONCURRENCY problem(s) for each

incorrect attempt at a solution.

All the programs have the following global variable definitions:
volatile int sum = 0;
volatile int cnt = 0;
sem_t mutex1, mutex2;

8(A)(1) Attempt #1 (3 points)

void *foo_1(void *vargp) {
 cnt += 1;
 sum += cnt;
}
int main() {
 pthread_t threads[100];
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&threads[i], NULL, foo_1, NULL);
 for (i = 0; i < 100; i++)
 pthread_join(threads[i], NULL);
 printf("%d", sum);
}

Write your response below:

Soln: This is broken. Cnt and sum are critical resource and no attempt is made to
control the load, mutate, update sequence within the critical section.

Page 23 of 26

8(A)(2) Attempt #2 (3 points)

void foo_2(void *vargp) {
 sem_wait(&mutex1);
 cnt += 1;
 sum += cnt;
 sem_post(&mutex1);
}
int main() {
 sem_init(&mutex1, 0, 1);
 pthread_t threads[100];
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&threads[i], NULL, foo_2, NULL);
 for (i = 0; i < 100; i++)
 pthread_join(threads[i], NULL);
 printf("%d", sum);
}

Write your response below:
Soln: Correct. This simply creates a mutually exclusive critical section containing
the manipulation of both critical resources using a single mutex.

8(A)(2) Attempt #3 (3 points)

void foo_3(void *vargp) {
 sem_wait(&mutex1);
 cnt += 1;
 sem_post(&mutex1);
 sem_wait(&mutex2);
 sum += cnt;
 sem_post(&mutex2);
}
int main() {
 sem_init(&mutex1, 0, 1);
 sem_init(&mutex2, 0, 1);
 pthread_t threads[100];
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&threads[i], NULL, foo_3, NULL);
 for (i = 0; i < 100; i++)
 pthread_join(threads[i], NULL);
 printf("%d", sum);
}
Continued on next page.

Page 24 of 26

Write your response below:

Soln: This is broken because sum and count are managed independently and the
addition to sum needs to be of the associated cnt, not some potentially future
instance from a different thread.

8(A)(2) Attempt #4 (3 points)

void foo_4(void *vargp) {
 sem_wait(&mutex1);
 cnt += 1;
 sem_wait(&mutex2);
 sem_post(&mutex1);
 sum += cnt;
 sem_post(&mutex2);
}
int main() {
 sem_init(&mutex1, 0, 1);
 sem_init(&mutex2, 0, 1);
 pthread_t threads[100];
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&threads[i], NULL, foo_4, NULL);
 for (i = 0; i < 100; i++)
 pthread_join(threads[i], NULL);
 printf("%d", sum);
}

Write your response below:

Soln: This is just a mess. It acquires mutex2 before releasing mutex1, but this
doesn’t prevent mutex1 from being released before cnt is updated, so the
consistency problem isn’t fixed.

Continued on next page.

Page 25 of 26

8(A)(2) Attempt #5 (3 points)

void foo_5(void *vargp) {
cnt += 1;
sum += cnt;
sem_post(&mutex1);

}
int main() {

sem_init(&mutex1, 0, 1);
pthread_t threads[100];
int i;
for (i = 0; i < 100; i++) {

sem_wait(&mutex1);
pthread_create(&threads[i], NULL, foo_5, NULL);

}
for (i = 0; i < 100; i++)

pthread_join(threads[i], NULL);
printf("%d", sum);

}

Write your response below:

Soln: This isn’t a very pretty solution. But, it works. It forces each thread to only
be created after its predecessor is done with the critical section.

Page 26 of 26

	Cover Page
	Question #1-C
	Question #2-A
	Question #3-B
	Question #4-B
	Question #5-C
	Question #6-A
	Question #7-C
	Question #8-A
	8(A)(1) Attempt #1 (3 points)
	8(A)(2) Attempt #2 (3 points)
	8(A)(2) Attempt #3 (3 points)
	8(A)(2) Attempt #4 (3 points)
	Continued on next page.
	8(A)(2) Attempt #5 (3 points)

