
Andrew ID:
Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read
your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read either
your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Fall 2021 Final Exam
Makeup-Backup

Instructions:
● Make sure that your exam is not missing any sheets (check page numbers at bottom)
● Write your Andrew ID and full name on this page (and we suggest on each and every

page)
● This exam is closed book and closed notes (except for 2 double-sided note sheets).
● You may not use any electronic devices or anything other than what we provide, your

notes sheets, and writing implements, such as pens and pencils.
● Write your answers in the space provided for the problem.
● If you make a mess, clearly indicate your final answer.
● The exam has a maximum score of 100 points.
● The point value of each problem is indicated.
● Good luck!

Problem # Scope Max Points Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Page 1 of 23

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Assume we are running code on two machines using two’s complement arithmetic for signed
integers.

● Machine 1 has 4-bit integers
● Machine 2 has 8-bit integers.

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when
impossible.

Machine 1: 4-bit
w/2s complement signed

Machine 2: 8-bit
w/2s complement signed

Binary representation of 11
decimal

Soln: UNABLE Soln: 0000 1011

Binary representation of -6
decimal

Soln: 1111 1010

Binary representation of -
Tmin

Soln: 1000

Binary representation of -1
decimal

Soln: 1111 1111

Part B: Floats (5 points, 1/2 point per blank)
For this problem, please consider a floating point number representation based upon an IEEE-
like floating point format as described below.

● Format A:
○ There are 6 bits
○ There is 1 sign bit s.
○ There are k = 3 exponent bits.
○ You need to determine the number of fraction bits.

● Format B:
○ There are 6 bits
○ There is 1 sign bit s.
○ There are n = 3 fraction bits.

Fill in the empty (non grayed-out) boxes on the net page as instructed

Page 2 of 23

Format A Format B

Total Number of Bits
(Decimal)

6 6

Number of Sign Bits (Decimal) 1 1

Number of Fraction Bits
(Decimal)

Soln: 2 Soln: 3

Number of Exponent Bits
(Decimal)

3 Soln: 2

Bias
(Decimal)

Soln: 3 Soln: 1

-Infinity
(Binary bit pattern)

Soln: 111100

101010
(Decimal value, unrounded)

Soln:
E=(1-1)=0
-1-1/4 x 20

-5/4 = -1-1/4

000010
(Decimal value, unrounded)

Soln:
E = (1 - 3) = -2
⅛ = 1/2 x 2-2

0
(Binary bit pattern)

Soln:
000000

// x,y, and z are floats
(x*y/z) == (x/z*y)

Circle one: Soln: Depends
Always equal
Always unequal
It depends

Page 3 of 23

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part A: Arrays (5 points)

Consider the following code running in an x86-64 system with 8-byte pointers and 4-byte ints.
Assume it successfully prints each and every element of the numbers array.

void fn(int **numbers) {
 for (int row=0; row < 3; row++)
 for (int col=0; col < 2; col++)
 printf (“numbers[%d][%d]=%d”, row, col, numbers[row][col]);
}

2(A)(1) (1 point): How many bytes are allocated to numbers? (Write “UNKNOWN” if not
knowable).
Hint: Think sizeof()

Soln: 8-Bytes (The size of a pointer)

2(A)(2) (1 point): What is the minimum size of the memory allocation directly referenced by
numbers?

Soln: 24-bytes (The size of 3 pointers, one for each element of the array directly referenced by
numbers).

2(A)(3) (3 points) Write C Language code to free all dynamic memory associated with
numbers. It is not necessary to set the numbers pointer to NULL once done.

void fn(int **numbers) {

 // Soln
 for (int row=0; row < 3; row++)
 free (numbers[row])
 free (numbers)
}

Continued on next page.

Page 4 of 23

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part B: Structs, Unions, and Alignment (5 points)

For this question please assume “Natural alignment”, in other words, please assume that each
type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {
 char c1; // 1-byte type
 int i; // 4-byte type
 char c2;
} partB;

2(B)(1) (1 point): What would you expect to be the value of the expression below?
 sizeof(struct partB)

Soln:
cXXXiiiicXXX
12 bytes

2(B)(2) (1 points): Rewrite the struct above to minimize its size after alignment-mandated
padding:

Soln: Answers may vary but should all be the same size as this:

struct {
 char c1; // 1-byte type
 char c2;
 int i; // 4-byte type
} partB;

2(B)(3) (1 points): How many bytes are required for the struct you designed for 2(B)(2) above?

Soln: 8-bytes

Continued on next page.

Page 5 of 23

2(B)(3) (1 points): How many bytes are required for the following union?
Hint: Think sizeof()

union {
 int i; // 4-byte type
 short s; // 2-byte type
 long l; // 8-byte type
} u;

Soln: 8-bytes, the size of the largest type

2(B)(4) (1 points): Given the definition above and the code below, and assuming an x86-64
host, is the code below guaranteed to print the same value twice? Why or why not?

union u;

scanf(“%d”, &u.i);

printf (“%d\n”, u.i);
printf (“%ld\n”, u.l);

Soln: Yes. Both int and long use the same binary/2s-complement number representation which
means that values can be truncated to the left as long as all truncated values are 1s or 0s.

Page 6 of 23

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 ISA

Part A: Loops and Calling Convention (7 points)

Consider the following code:

function:
.LFB0:

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -20(%rbp), %eax
movl %eax, -4(%rbp)
jmp .L2

.L5:
movl $0, -8(%rbp)
jmp .L3

.L4:
addl $1, -8(%rbp)

.L3:
movl -8(%rbp), %eax
cmpl -4(%rbp), %eax
jl .L4
movl $88, %edi # 88 is ASCII for ‘X”
call putchar
movl $10, %edi # 10 is ASCII for ‘\n’
call putchar
addl $1, -4(%rbp)

.L2:
movl -4(%rbp), %eax
cmpl -24(%rbp), %eax
jl .L5
nop
leave
ret

3(A)(1) (2 points): How many loops does this function have? How do you know?

Soln: 2. There are two backward jumps.

3(A)(2) (1 points): How many arguments does this function receive (and use)?

Soln: 2

Continued on next page.

Page 7 of 23

3(A)(3) (2 points): For each argument you listed, please indicate either (a) which specific
register was used to pass it in, or (b) that it was sourced from the stack (you don’t need to give
the address). Please leave any extra blanks empty (Hint: You won’t need all of them).

Argument Specific register or “Stack”

1st Soln: %edi

2nd Soln: %esi

3rd Soln: Unused

4th Soln Unused

5th Soln: Unused

Consider the following function activation. Consistent with your answer to the question above, it
includes more arguments that the function actually requires. Please ignore any extra arguments.

 function(10, 9, 8, 7, 6);

3(A)(2) (2 points): How many times does the inner-most loop run?
Hint: If the inner-most loop is nested, you may need to consider the loops in which it is nested.

Solution: 0. None. Since 10 is greater than 9, the outer-most loop never runs.

Continued on next page.

Page 8 of 23

Part B: Conditionals (8 points)

Consider the following code:

(gdb) disassemble function
Dump of assembler code for function function:
 0x0000000000400533 <+0>: cmp %esi,%edi
 0x0000000000400535 <+2>: jg 0x400561 <function+46>
 0x0000000000400537 <+4>: cmp $0x5,%edi
 0x000000000040053a <+7>: ja 0x400557 <function+36>
 0x000000000040053c <+9>: mov %edi,%eax
 0x000000000040053e <+11>: jmpq *0x400630(,%rax,8)
 0x0000000000400545 <+18>: mov $0x1,%edi
 0x000000000040054a <+23>: mov %edi,%eax
 0x000000000040054c <+25>: imul %edi,%eax

 0x000000000040054f <+28>: add %edi,%eax
 0x0000000000400551 <+30>: retq
 0x0000000000400552 <+31>: mov $0xffffffec,%edi
 0x0000000000400557 <+36>: mov %edi,%eax
 0x0000000000400559 <+38>: shr $0x1f,%eax
 0x000000000040055c <+41>: add %edi,%eax
 0x000000000040055e <+43>: sar %eax
 0x0000000000400560 <+45>: retq
 0x0000000000400561 <+46>: mov $0xffffffff,%eax
 0x0000000000400566 <+51>: retq
 0x0000000000400567 <+52>: mov $0x8,%eax
 0x000000000040056c <+57>: retq
End of assembler dump.

Consider also the following memory dump:

(gdb) x/10gx 0x400620
0x400620: 0x0000000000020001 0x0000000000000000
0x400630: 0x0000000000400545 0x000000000040054a
0x400640: 0x0000000000400557 0x000000000040054a
0x400650: 0x0000000000400567 0x0000000000400552
0x400660: 0x000000443b031b01 0xfffffda000000007

Continued on next page.

Page 9 of 23

(3)(B)(1) (1 points): How many “if statements” are likely present in the C Language code from
which this assembly was compiled? At what address of the assembly code shown above does
each occur?

This code was compiled from C Language code containing a switch statement. Please do not
include any “if statement” present in the assembly that is likely part of the switch
statement in the original C code, i.e. do not count any “if statement” that is used to manage one
or more “cases” of a “switch statement”.

Soln:
1
There are two forward jumps, which are candidates 0x400535 and 0x40053A. But, the second
one is considering the switch control variable, comparing it to a bound, and jumps into code
listed in the jump table. So, the one at 0x400535 is likely an “if statement” in the C code,
whereas the other is likely handing a “case” of the switch, specifically the default case.

(3)(B)(2) (2 points): What integer input values are managed by non-default cases of the switch
statement? How do you know?

Soln: 0,1,3,4,5
Negative values and values above 5 are managed by the default case. Note that negatives look
like large integers when compared using unsigned “ja”.

(3)(B)(3) (1 point): Is there a default case? If so, at what address does it begin? How do you
know?

Soln: Yes. 0x400557. It is used for both the 2 case and any case larger than 5.

Note that 2s entry in the jump table is the same as the default case’s entry, as shown by the
initial if statement.

(3)(B)(4) (2 points): Which case(s), if any, share exactly the same code? How do you know?

Soln: Cases 1 and 3. They have the same pointer in the jump table.

Continued on next page.

Page 10 of 23

(3)(B)(5) (2 points): Which case(s), if any, fall through to the next case after executing some of
their own code? How do you know?

Soln: Cases 0 and 5.

If we look at the code block beginning with where the 0th entry in the jump table points, it
overlaps the code block pointed to by the next entry (and the entry after that) in the jump table
without a jump or return to prevent it from falling through.

The same is true if we look at the code beginning with the 5th entry in the jump table and the 6th
entry, the default case, that follows.

Page 11 of 23

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part A: Caching (8 points)

Given a model described as follows:
● Number of sets: 2
● Total size: 48 bytes (not counting meta data)
● Block size: 8 bytes/block
● Replacement policy: Set-wise LRU
● 8-bit addresses

4(A)(1) (1 point) How many bits for the block offset?

Soln: 8 bytes = 3 bits to index

4(A)(2) (1 point) How many blocks per set?

Soln: 6 blocks (48 bytes)/(8 bytes/block). (6 blocks) / (2 sets) = 3 blocks/set

4(A)(3) (1 point) How many bits for the tag?

Soln: (8 bit address) - (3 bits for block offset) - (1 bit for set index) = 4 bits left over for tag

4(A)(4) (5 points, ½ point each): For each of the following addresses, please indicate if it hits,
or misses, and if it misses, if it suffers from a capacity miss, a conflict miss, or a cold miss:

Address Circle one
(per row):

Circle one
(per row):

0xF1 Hit Miss Capacity Cold Conflict N/A

0xA2 Hit Miss Capacity Cold Conflict N/A

0xAB Hit Miss Capacity Cold Conflict N/A

0XF7 Hit Miss Capacity Cold Conflict N/A

0X5C Hit Miss Capacity Cold Conflict N/A

0XF9 Hit Miss Capacity Cold Conflict N/A

0X00 Hit Miss Capacity Cold Conflict N/A

0X87 Hit Miss Capacity Cold Conflict N/A

0XA1 Hit Miss Capacity Cold Conflict N/A

0XA2 Hit Miss Capacity Cold Conflict N/A

Page 12 of 23

Part B: Locality (4 points)

4(B)(1) (2 points): Consider the following code:

int array[SIZE1][SIZE2];
int sum=0;
for (int outer=0; outer<SIZE1; outer+=STEP)
 for (int inner=0; inner<(SIZE2-1); inner++)
 sum += array[inner][outer] + 2*array[inner][outer+1];

Considering only access to “array”, as “step” increases (significantly), please mark how each
type of locality would be impacted. Please also explain why in the space provided.

Spatial Decrease Increase Unaffected

Temporal Decrease Increase Unaffected

Soln: Spatial locality is likely unaffected because the hits from outer vs outer+1 are unaffected
and the column-oriented stride is unhelpful for arrays which have a row-major projection. The
hits from outer vs outer+1 are unaffected. Temporal locality is likely unaffected, because the
element is still getting re-used from one pass through the loop to the next.

4(B)(2) (2 points): Consider the following code:

int array[ROWS][COLS];
int array2[ROWS][COLS];
int sum=0;

 for (int row=0; index<ROWS; row ++)
 for (int col=0; col<(COLS-1); col ++)
 sum += array[col][row] + array2[row][col+1];

Imagine arrays extremely large in all dimensions, an int size of 4 bytes, and a cache block size
of 16 bytes. To the nearest whole percent or simple fraction, what would you expect the
combined miss rate for accesses to “array” and “array2” within the inner loop to be? Why?

Continued on next page.

Page 13 of 23

Soln:

The access to array[col][row] is likely a miss each time. Walking across the column is
going to hurt. Access to array2 is likely to have a MHHH pattern, except for the beginning
of each row which will be _MHH, because the 0th element is not accessed, and the end of
each row, which may very with length. But, assuming the row is large, the MHHH will
dominate, so together, and neglecting the edge cases, we have MMMM MHHHH

Miss rate: 5/8

Part C: Memory Hierarchy and Effective Access Time (3 points)

Imagine a system with a main memory layered beneath a cache:

● The cache has a 10nS access time.
● The overall effective access time is 11nS.
● The cache miss rate is 1%.
● In the event of a miss, memory access time and cache access time do not overlap: They

occur 100% sequentially, one after the other.

What is the main memory access time? FOR SIMPLICITY, AVOID COMPLEX CALCULATION
AND LEAVE YOUR ANSWER AS A SIMPLE FRACTION

MEMORY_ACCESS_TIME=

Soln:
EFFECTIVE_ACCESS_TIME = CACHE_ACCESS_TIME + MISS_RATE*MISS_PENALTY
EFFECTIVE_ACCESS_TIME = CACHE_ACCESS_TIME +

MISS_RATE*(MEMORY_ACCESS_TIME
11nS = 10nS + 0.01*MEMORY_ACCESS_TIME
11nS = 10nS + 0.01*MEMORY_ACCESS_TIME
1nS = 0.01*MEMORY_ACCESS_TIME
100nS = MEMORY_ACCESS_TIME
MEMORY_ACCESS_TIME=100ns

Page 14 of 23

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Consider the following code:

#define N 4
void *pointers[N];
int i;

for (i = 0; i < N; i++) {
 pointers[i] = malloc(6);
}

for (i = 0; i < N; i++) {
 free(pointers[i]);
}

for (i = 0; i < N; i++) {
 pointers[i] = malloc(42);
}

And a malloc implementation as below:

● Implicit list
● Headers of size 8 bytes
● No footers.
● Every block is always constrained to have a size a multiple of 8 (In order to keep

payloads aligned to 8 bytes).
● The header of each block stores the size of the block, and since the 3 lowest order bits

are guaranteed to be 0, the lowest order bit is used to store whether the block is
allocated or free.

● A first-fit allocation policy is used.
● If no unallocated block of a large enough size to service the request is found, sbrk is

called for the smallest multiple of 8 that can service the request.
● The heap is unallocated until it grows in response to the first malloc.
● No coalescing or block splitting is done.

NOTE: You do NOT need to simplify any mathematical expressions. Your final answer may
include multiplications, additions, and divisions.

4(A) (2 points) After the given code sample is run, how many total bytes have been requested
via sbrk? In other words, how many bytes are allocated to the heap?

Soln: 288B = 4*(8B +8B) + 4*(8B + 48B)

Page 15 of 23

4(B) (2 points) After the given code sample is run, how many of those bytes are used for
currently allocated blocks (vs currently free blocks), including internal fragmentation and header
information?

Soln: 224B = 4*(8B + 48B)

4(C) (2 points) After the given code sample is run, how many of those bytes are used to store
free blocks (versus currently allocated blocks), including header information?

Soln: 64B=4*(8B+8B)

4(D)(2 points) After the given code sample is run, how much internal fragmentation is there
(Answer in bytes)? (Hint: Free blocks have no internal fragmentation).

Soln: 56B = 4*(8B + 6B)

4(E)(2 points) After the given code sample is run, how many bytes smaller would the heap be if
constant-time (immediate) coalescing were employed?

Soln: 56B. See 4(C) above

Page 16 of 23

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical
addresses. Imagine a system has the following parameters:

● Virtual addresses are 16 bits wide.
● Physical addresses are 12 bits wide.
● The page size is 128 bytes.
● The TLB is 2-way set associative with 16 total entries.
● A single level page table is used

Part A: Interpreting addresses

6(A)(1)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 11 10 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

N N N N N O O O O O O O

6(A)(2)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the VPO and VPN (top line) and each of the TLBI and TLBT
(bottom line). Leave any unused entries blank.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO/
VPN

N N N N N N N N N O O O O O O O

TLBI/
TLBT

T T T T T T I I I

6(A)(3) (1 points): How many entries exist within each page table? Hint: This is the
same as the total number of pages within each virtual address space.

Soln: One entry per page. 9 bits per page number means 512 pages.

Continued on next page.

Page 17 of 23

Part B: Hits and Misses (12 points)

Shown below are a partial TLB and partial page table.
TLB:

Index Tag PPN Valid Scratch space for you

0 0x0A 6 1 VPN = 00 1010 000 = 0 1010 0000 = 0x180 = 384

0 0x1B 2 0 VPN = 01 1011 000 = 0 1101 1000 = 0x0D0 = 208

1 0x24 11 0 VPN = 10 0100 001 = 1 0010 0001 = 0x121 = 289

1 0x31 5 0

2 0x35 7 0

2 0x2A 10 0

3 0x19 12 0

3 0x02 16 0

4 0x18 13 0

4 0x20 15 0

Page Table:
Index/VPN PPN Valid Scratch space for you

96 3 1 Miss, No Fault, VPN=0x60, 0 011 0000 0000 1000

208 12 1 Miss, No fault , VPN=0xD0

289 4 0 Miss, Fault

384 6 1 Hit,VPN=180

For each address shown below, please indicate if it is a TLB Hit or Miss, whether or not
it is a page fault, or if either can’t be determined from the information provided.
Additionally, if knowable from the information provided, please provide the valid PPN

Virtual
Address

TLB
Hit or Miss?

Page Fault?
Yes or No

PPN
If Knowable

0x6008 Hit Miss Not knowable Yes No Not knowable 3

0xD010 Hit Miss Not knowable Yes No Not knowable 12

0x1800 Hit Miss Not knowable Yes No Not knowable 6

0x9080 Hit Miss Not knowable Yes No Not knowable Not knowable

Page 18 of 23

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (3 points):

Please consider the following code:

 void main(){
 printf (“A”); fflush(stdout);
 fork();
 printf (“C”); fflush(stdout);
 if (!fork()) {
 printf (“D”); fflush(stdout);
 } else {
 printf (“B”); fflush(stdout);
 }

}

7(A)(1) (1 points): Give one possible output string

 Soln: Many are possible, e.g ACCDBDB

7(A)(2) (1 points): Give one output string that has the correct output characters (and number of
each character), but in an impossible order.

 Soln: Many are possible, e.g. ABBCDCD

7(A)(3) (1 points): Why can’t the output you provided in 7(A)(2) be produced? Specifically,
what constraint(s) from the code does it violate?

Soln: Within any process C need come before D and B. It is therefore impossible for both
Bs to come before both Cs. Similarly, within any process, A needs to come before C, so
outputs that violate this constraint are also not possible.

Continued on next page.

Page 19 of 23

Part B (3 points):

Please consider the following code and an input file that consists of “ABCDEFGHIJKLMNOP”:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

void main() {
 int fd1, fd2;
 char c;

 fd1=open("files.txt", O_RDONLY);
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);

 if (!fork()) {
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);
 sleep(1);
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);
 } else {
 fd2=5;
 dup2(fd1, fd2);
 close (fd1);
 c='X';
 read (fd2, &c, 1); printf ("%c", c); fflush(stdout);
 }
}

7(B)(1) (1 points): Give one possible output string:

 Soln: ABCDE

7(B)(2) (1 points): How many possible output strings are there?

 Soln: 1

7(B)(3) (1 points): Please explain your answer to 7(B)(2) above

 Soln: All of the fd entries here are created from the same original one and aliased.

They all point to the same system-wide open file table entry.

Continued on next page

Page 20 of 23

Part C (4 points):

Please consider the following code:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>

int i = 4;
void handler(int s) {
 i--; // Decrement max call counter
 write (1, "X", 1);
 if (i) {
 kill(getpid(), SIGUSR1); // Note that this is a system call
 // kill(getpid(), SIGUSR1); *** UNCOMMENT FOR PART C(3) ***
 }
}

int main() {
 signal(SIGUSR1, handler);
 kill(getpid(), SIGUSR1); // Note that this is a system call

 printf("%d\n", i);

 return 0;
}

7(C)(1) (1 points): What is the fewest number of times “X” might get printed? Why?

Soln: 4. The critical section, i–, can’t be interrupted, so the count back works fine.

7(C)(2) (1 points): What is the greatest number of times “X” might get printed? Why?

Soln: 4. The critical sectioni– can’t be interrupted, so the count back works fine.

7(C)(3) (1 points): If the commented line is uncommented, what is the maximum number of
times “C” might get printed? Why?

Soln: This is a disaster. The critical section, i–, could get interrupted, not update, and
generate “infinite signal handling”.

Page 21 of 23

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15
points)

Consider a grocery store as follows:

● Four (4) cash registers in the self-checkout area
● An additional three (3) cash registers in the traditional cashier-staffed checkout

area.
● Each area (not each register) has its own line.
● Because of the usual grocery store confusion, no one can really tell how long the

lines are.
● Each customer may choose to wait in the cashier-supported line, or the self-

checkout line, but may not switch lines.

Please model this situation as C-like pseudo-code with proper concurrency control via
semaphores. Legal semaphore operations are as follows:

● sem_init (sem_t, count)
● sem_p (sem_t)
● sem_v (sem_t)
● where sem_t is a semaphore variable type.

Specifically, please write the pseudocode for the following methods:

// Constants to let us name/identify a check-out lane’s
// configuration as self-service or cashier-service and
// compare a lane’s configuration to see which it is
// These could just as easily be an enum or #defined.
const int SELF = 0;
const int CASHIER = 1;

// Declare and initialize any needed semaphores
// and/or shared variables here.
// You can assume they are global and shared.
void initialize() {
 // Hint: Think about what the type(s) of resources are and how
 // many instances of each type there are. Find a way to account
 // for each of those pool(s) of resources
 sem_p cashierSem, selfSem;
 sem_init(cashierSem, 3);
 sem_init (selfSem, 4);
}

Continued on next page.

Page 22 of 23

// Customers call this to wait for a cash register
void waitForCashRegister(int selfOrCashier) {
 // Hint: Which pool(s) of resources are used here?
 // What needs to happen for this to occur safely?
 if (SELF == selfOrCashier)
 P(selfSem);
 else
 P(cashierSem);
}

// Customers call this when done with the cash register
void doneWithCashRegister(int selfOrCashier) {
 // Hint: Which pool(s) of resources are being given up here?
 // What needs to happen to make them available?
 if (SELF == selfOrCashier)

 V(selfSem);
 else
 V(cashierSem);
}

Page 23 of 23

	Cover Page
	Question #1-A
	Question #2-C
	Question #3-B
	Question #4-C
	Question #5-A
	Question #6-B
	Question #7-B
	Question #8-B

