Andrew ID:
Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read
your AndrewlD, we won’t easily know who should get credit for this exam. If we can’t read
either your AndrewlD or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Fall 2022 Final Exam - SOLUTION
Friday, December 16, 2022

Instructions:

Make sure that your exam is not missing any sheets (check page numbers at bottom:
there should be 21 pages)

Write your Andrew ID and full name on this page (and we suggest on each and
every page)

This exam is closed book and closed notes (except for 2 double-sided note sheets).
You may not use any electronic devices or anything other than what we provide,
your notes sheets, and writing implements, such as pens and pencils.

e Write your answers in the space provided for the problem.
e |f you make a mess, clearly indicate your final answer.
e The exam has a maximum score of 100 points. The point value of each problem is indicated.
e Good luck!
Problem Scope Max Score
Points
1 Data Representation: “Simple” Scalars: Ints and Floats 10
2 Data Representation: Arrays, Structs, Unions, and Alignment 10
3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15
4 Caching, Locality, Memory Hierarchy, Effective Access Time 15
5 Malloc(), Free(), and User-Level Memory Allocation 10
6 Virtual Memory, Paging, and the TLB 15
7 Process Representation and Lifecycle + Signals and Files 10
8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15
TOTAL Total points across all problems 100

Question 1: Representation: “Simple” Scalars (10 points)
Part A: Integers (5 points, 1 point per blank)

Assume we are running code on a machine using two’s complement arithmetic for signed
integers:

e 5-bit integers

e 2s complement signed representation

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when
impossible. An “Everyday” number or expression has the value it would be understood to have
in middle school arithmetic. A “C expression” has the value it would have if evaluated in a C
Language program running on the machine.

Goal Machine 1: 5-bit True or False
w/2s complement
signed

“Everyday number”

6 11010 x

“Everyday number”

UNABLE
21 X
“Everyday expression”
(-1*(-14 - 2)) UNABLE x
C Expression:
((-1%(-14 - 2)) < -15) X True
Tmin (Most negative number) 1 0000 x

Part B: Floats (5 points, 1 point per blank)
For this problem, please consider a floating point number representation based upon an IEEE-
like floating point format as described below.
e Format:
o There are 7 bits
o Thereis 1 sign bit s.
o There are n = 3 exponent bits.
Fill in the empty (non grayed-out) boxes as instructed.

Answer

Total Number of Bits 7
(Decimal)
Number of Sign Bits (Decimal) 1
Number of Exponent Bits 3
(Decimal)
Number of Fraction Bits 3
(Decimal)
Bias 3
(Decimal)
Bit pattern for -Inf

. . 1111 000
(“Negative Infinity”)
The absolute difference, in
decimal or as a power of 2, P
between any two adjacent
denormalized numbers
1100010 25
(Decimal value, unrounded) ’

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Please consider a “Shark” machine for all parts of this question: 1-byte chars, 2-byte shorts, 4-byte
ints, 8-byte longs.

Part A (2 points): Consider the following struct. How much memory is required? Answer in bytes.

struct {
char c;
long 1;
short s;

} examStructl;

(1B + 7B) + (8B + 0B) + (2B + 6B) = 24B

Part B (2 points): Rewrite the struct to require as little memory as possible:

struct { [Other correct ordering of fields: Ics, csl, scl]
long 1;
short s;
char c;

} examStruct2;

Part C (2 point): How much memory, in bytes, is saved by the reorganization of the struct?

(8B+0B) + (2B +0B) + (1B + 5B) = 16B
24B - 16B = 8B

Part D (2 points): Consider the following array. How far apart are array[2][3] and array[3][2]? Answer
in bytes.

short array([4][4];

&(array[2][3]) = x + 2 rows*(4 elements/row * 2B/element) + 3 cols * 2 bytes/col = x + 22B
&(array[3][2]) = x + 3 rows*(4 elements/row * 2B/element) + 2 cols * 2 bytes/col = x + 28B

abs((x + 22B) - (x + 28B) = 6B

Part E (2 points): Consider the following, what is the address of es1p->17? Please answer in
hexidecimal. This question refers to the structure in Part A.

examStructl array esl[5]; // Assume this starts at address 0x1000
examStructl *eslp = &(array esl[3]);

(0x1000 + 3*0x18) + 8 = 0x1050

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 (15 points)

Assume that all subparts pertain to the “Shark Machine” environment.

Part A: Calling Convention (3 points)

Consider the following code:

fn:

pushg Srbp

movq %rsp, %rbp
movl %edi, -4 (%rbp)
movl %esi, -8 (%rbp)
movl %edx, -12 (%rbp)
movl -8 (%rbp), %eax
imull -12 (%$rbp), %eax
addl %eax, -4 (%rbp)
movl -4 (5rbp), S%eax
popg Srbp

ret

3(A)(1) (1 points): How many arguments are used by the function? How do you know?

Three (3), %rdi, %rdi, and %rdx are used (read) before being given a value. Since they are, by
convention, used for the first three arguments, their initial value is what is being passed in.

3(A)(2) (1 points): Does the function return a value? How do you know?

Yes. %eax is, by convention, used to return a value and it is being given a value.

3(A)(3) (1 points): For each argument you listed, please indicate either (a) which specific register

was used to pass it in, or (b) that it was sourced from the stack (you don’t need
to give the address). Please leave any extra blanks empty (Hint: You won’t need
all of them).

Argument | Specific register or “Stack”
1st %edi (or %rdi)

2nd %esi (or %rsi)

3rd %edx (or %rdx)

4th

5th

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)

Part B: Conditionals and Loops (6 points)

Hint: It might help to look at your argument table in 3(A)(3) and to recall that $.LCO is read-only data,
such as a printf() format string.

Consider the following code:

main:
.LFB3:
pushg %rl2
pushg Srbp
xorl %ebp, %ebp
pushg Srbx
subqg $64, %rsp
.L2:
movslg %$ebp, %rl2
movl %ebp, %ebx
salg $2, %rl2
.L5:
movslg $%$ebx, %rax
movl $.LCO, %edi
addl $1, %ebx
addg %$rl2, S%rax
movl (%rsp, %rax,4), %esi
xorl %$eax, %eax
call printf
cmpl $4, %ebx
jne .L5
addl $1, %ebp
cmpl $4, %ebp
jne L2
addg $64, %rsp
popg $rbx
popg Srbp
popg %rl2
ret

3(B)(1) (2 points): How many loops are there? How do you know? Count each nested loop
separately.

2. There are two backward conditional jumps.
3(B)(2) (2 points): How many “if statements” are there(do not count any ifs used to control loops)?

How do you know?
0. There are no forward conditional jumps.

3(B)(3) (2 points): How many times is printf() called? Explain your answer.

10 times. The inner loop starts one farther forward each time. 4 + 3+ 2 + 1

Part C: Switch statement (6 points)

Consider the following compiled from C Language code containing a switch statement and no if
statements.

(gdb) disassemble foo
Dump of assembler code for function foo:

0x0000000000400550 <+0>: cmp 50x5, $esi
0x0000000000400553 <+3>: ja 0x400590 <foo+64>
0x0000000000400555 <+5>: mov %esi, %$esi
0x0000000000400557 <+7>: jmpg *0x400640 (,%rsi, 8)
0x000000000040055e <+14>: mov %eax, $eax
0x0000000000400560 <+16>: shl S0x2, $edi
0x0000000000400563 <+19>: add S0x2, $edi
0x0000000000400566 <+22>: lea 0x7 (%$rdi), $edx
0x0000000000400569 <+25>: mov %edx, $eax
0x000000000040056b <+27>: retqg

0x000000000040056c <+28>: nopl 0x0 (%rax)

0x0000000000400570 <+32>: lea 0x3 (%rdi), $edx
0x0000000000400573 <+35>: test $edi, $edi
0x0000000000400575 <+37>: cmovns %edi, $edx

0x0000000000400578 <+40>: sar S0x2, $edx
0x000000000040057b <+43>: mov %edx, $Seax
0x000000000040057d <+45>: retqg

0x000000000040057e <+46>: mov %eax, $eax
0x0000000000400580 <+48>: lea O0x1 (%rdi), $edx
0x0000000000400583 <+51>: mov %edx, $Seax
0x0000000000400585 <+53>: retq

0x0000000000400586 <+54>: nopw %cs:0x0 (%rax, $rax, 1)
0x0000000000400590 <+64>: mov %edi, $Seax
0x0000000000400592 <+66>: mov 50x55555556, $edx
0x0000000000400597 <+71>: sar $0x1f, %$edi
0x000000000040059%9a <+74>: imul sedx
0x000000000040059c <+76>: sub %edi, $Sedx
0x000000000040059%9e <+78>: mov %edx, $Seax
0x00000000004005a0 <+80>: retqg

End of assembler dump.

Consider also the following memory dump, with the address obscured. Assume that it begins with the
Oth entry of the switch statement’s jump table.

(gdb) x/16gx 0xXXXXXX
0x0000000000400580 0x0000000000400590
0x0000000000400560 0x0000000000400563
0x0000000000400566 0x0000000000400570
0x0000003¢c3b031b01 Oxf££££d49000000006
Oxf££££4d000000088 Oxf£f£f££d4£5000000c8
Oxfffffee000000058 Oxf£££££40000000b0
Oxff££££fb0000000e8 Cannot access memory at address 0xYYYYYY

Continued on next page.

Part C: Switch statement, cont. (6 points)

(3)(C)(1) (2 point): At what address does the jump table shown above begin? How do you
know?

0x400640

0x0000000000400557 <+7>: jmpg *0x400640(, %$rsi,8)

[Any explanation that points to this instruction gets full marks.]
(3)(B)(3) (2 points): Is there a default case? If so, at what address does it begin? How do
you know?

Yes. 0x400590

0x0000000000400550 <+0>: cmp $0x5, %es1
0x0000000000400553 <+3>: Jja 0x400590 <foo+64>

[Any explanation that points to these instructions gets full marks.]
(3)(C)(2) (2 points): Which case(s), if any, fall through to the next case after executing some of their
own (non-default) code? How do you know?

Case 2: Starts at 0x400560 and drops through to Case 3 (and Case 4) before returning.
Case 3: Starts at 0x400563 and drops through to Case 4 before returning.

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part A: Caching (9 points)

Given a model described as follows:

Associativity: 2-way set associative

Total size: 32 bytes (not counting meta data)
Block size: 8 bytes/block

Replacement policy: Set-wise LRU

8-bit addresses

4(A)(1) (1 point) How many bits for the block offset? 3 bits

4(A)(2) (1 point) How many bits for the set index? 1 bit

4(A)(3) (1 point) How many bits for the tag? 4 bits

4(A)(4) (6 points, "2 point per row): For each of the following addresses, please indicate
if it hits, or misses, and if it misses, the type of miss:

Address Circle one (per row): | Circle one (per row):
0x22 Hit Miss Capacity Cold Conflict N/A
0xB9 Hit Miss Capacity Cold Conflict N/A
0xA0 Hit Miss Capacity Cold Conflict N/A
0xA3 Hit Miss Capacity Cold Conflict N/A
0x9B Hit Miss Capacity Cold Conflict N/A
0x42 Hit Miss Capacity Cold Conflict N/A
0x23 Hit Miss Capacity Cold Conflict N/A
OxA3 Hit Miss Capacity Cold Conflict N/A
0x9B Hit Miss Capacity Cold Conflict N/A
0x42 Hit Miss Capacity Cold Conflict N/A
OxBA Hit Miss Capacity Cold Conflict N/A
OxA8 Hit Miss Capacity Cold Conflict N/A

Part B: Locality (4 points)

Analyze the cache performance of the following piece of code. Assume that the matrix arr1 is aligned
so that arr1[0][0] is the first element of a cache block, and that arr2 is laid out in memory immediately
after arr1. Assume memory accesses for right operands are done before memory accesses for left

operands. Assume a write-back/write-allocate cache.

int arrl1[4][4];

short arr2[4][4];

for (int rindex=0;
for (int cindex=0;

arrl[rindex] [cindex]

rindex<4; rindex++) {
cindex<4; cindex++) {

= arr2|[rindex] [3-cindex];

B(1)(4 points): Please determine the miss rate for each array under each configuration. Leave your

answer as a reduced fraction

Question Data Item Cache Configuration Miss rate
B(1)(1 point) | arr1 Direct-mapped, 4 sets, 16-byte blocks 7/16
B(2)(1 point) | arr1 2-way set associative, 4 sets, 8 byte blocks 1/2
B(3) (1 point) | arr2 Direct-mapped, 4 sets, 16-byte blocks 3/8
B(4) (1 point) | arr2 2-way set associative, 4 sets, 8 byte blocks 1/4

Part C: Memory Hierarchy and Effective Access Time (2 points)

Imagine a computer system as follows:

2-level memory hierarchy (L1 cache, Main memory)
L1: 10% miss rate
Main memory: 50nS memory access time, 0% miss rate

The effective memory access time, accounting for all accesses, is 10nS

Memory accesses at different levels of the hierarchy do not overlap

What is the access time for the L1 cache?

10nS = L1 _access + 0.1*50nS

L1 a

ccess = 5nS

10

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Considering a malloc implementation as described below:

Explicit list, ordered by address smallest-to-largest, allocation via first-fit (not next-fit)
Headers of size 8 bytes, Footer size of 8-bytes (both free and allocated blocks have footers)
Blocks must be a multiple of 8-bytes (In order to keep payloads aligned to 8 bytes).

8 byte pointers. Minimum block size: 32 bytes

If there is no unallocated block of a large enough size to service the request, sbrk is called to

grow the heap enough to get a new block of the smallest size that can service the request
(after coalescing).

e The heap is unallocated until it grows in response to the first malloc call. There are no dummy
headers or footers.

Constant-time coalescing, as discussed in lecture, is used.
The heap never shrinks.

5(A) (10 points, 1 point per line) Please complete the following table with the values after the
requested operation completes. The following definitions may be helpful reminders:
e Total Heap Size is the number of bytes between the base of the heap and the brk point, i.e. top

of the heap.

e Aggregate Request Size is the total number of bytes requested via malloc() and not yet free()d.
e Total Internal Fragmentation is the difference, in bytes, between the total size of all allocated
blocks and the sum of all of the corresponding requests. Hint: Unallocated blocks do not

contribute to internal fragmentation.

Operation Total Aggregate | Total
Heap Request Internal
Size Size Fragmentation
5(A)(1)(1 point) ptrl = malloc (6); 32B 6B 26B
5(A)(2)(1 point) ptr2 = malloc (2); 64B 8B 568
5(A)(3)(1 point) free(ptrl); 64B 2B 308
5(A)(4)(1 point) free (ptr2); 648 0B OB
5(A)(5)(1 point) ptrl = malloc(32); 80B* 32B 16B
5(A)(6)(1 point) ptr2 = malloc(l); 80B 33B 47B
5(A)(7)(1 point) ptr3 = malloc(24); 120B 57B 63B
5(A)(8)(1 point) free (ptrl); 120B 25B 478
5(A)(9)(1 point) free (ptr3); 120B 1B 31B
5(A)(10)(1 point) | malloc(2); 120B 3B 61B

1

* We will also give full marks for 64B here.

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical
addresses. Imagine a system has the following parameters:
e Virtual addresses are 10 bits wide.
Physical addresses are 12 bits wide.
The page size is 128 bytes.
The TLB is 2-way set associative with 4 total entries.
The TLB may cache invalid entries
TLB REPLACES THE ENTRY WITH THE LOWEST TAG (NOT LRU).
A single level page table is used.

Part A: Interpreting addresses (3 points)

6(A)(1)(1 point): Please label the diagram below showing which bit positions are interpreted
as each of the PPO and PPN. Leave any unused entries blank.

Bit 1] 10(9 | 8 716 |5 (43 (2|1 0

PPN/ |N| N|N|N|N|O|O|]O|O|O|O]|O
PPO

6(A)(2)(1 point): Please label the diagram below showing which bit positions are interpreted
as each of the VPO and VPN (top line) and each of the TLBI and TLBT (bottom line). Leave
any unused entries blank.

Bit 9 (8|7 |6 |5 (4|3 |21 0
VPO/ NIN|N[O|lO[O|O|O| O] O
VPN

TLBI/

TLBT Ty

6(A)(3)(1 point): How many entries exist within each page table? Hint: This is the same as
the total number of pages within each virtual address space.

8 entries: 000, 001, 010, 011, 100, 101, 110, 111

12

Part B: Hits and Misses (12 points)

Shown below are the initial states of the TLB and partial page table.

TLB (I=INVALID, V=VALID, R=READ, W=WRITE, N=Not Resident, e.g. swapped):

Set Tag PPN BITS Scratch space for you

0 00 5 V-RW Replaced by page 6, 27/V-RW
} Replaced by page 2, ??/V-R

0 10 12 IR Then by page 0, 5/V-R

1 00 7 V-RN

1 11 2 V-RW

Page Table (I=INVALID, V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Index/VPN PPN BITS Scratch space for you

0 5 V-RW

1 7 V-RN

2 9 I-RW Replaced by ??/V-R
3 11 V-R

4 13 V-R

5 15 I-R

6 27 V-RW

7 2 V-RW

Continued on next page.

13

Part B: Hits and Misses, cont. (12 points, 2 points per line)

Consider the following memory access trace e.g. sequence of memory operations
listed in order of execution, as shown in the first two columns (operation, virtual
address). It begins with the TLB and page table in the state shown above.

Please complete the remaining columns

Oper- Virtual TLB Page Table Page Fault? PPN

ation Address Hit or Miss? Hit or Miss? Yes or No? If Knowable
Read 0x326 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 27
Write Ox3EF Hit Miss Not knowable Hit Miss N/A Yes No Notknowable 2
Read 0x3ED Hit Miss Not knowable Hit Miss N/A Yes No Notknowable 2
Read 0x17A Hit Miss Not knowable Hit Miss N/A Yes No Not knowable -
Read 0x02F Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 5
Write 0x326 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 27

14

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)
Part A (3 points):
Please consider the following code:

void main () {
printf (“A”); fflush(stdout):;

if (fork()) {

printf (“B”); fflush(stdout);
} else {

printf (“C”); fflush(stdout):;

14

if (fork()) {
wait (NULL)

}
printf (“E”); fflush (stdout);

7(A)(1) (1 point): Give one possible output string.

Any of the following get full marks: ABCEE, ACBEE, ACEBE, ACEEB

7(A)(2) (1 point): Give one output string starting with AB that has the correct output characters

(and number of each character), but in an impossible order.

Two possible answers: ABECE or ABEEC

7(A)(3) (1 point): Why can’t the output you provided in 7(A)(2) be produced? Specifically,
what constraint(s) from the code does it violate?

The child needs to be forked() by second fork before either E can be printed, which happens only

after C is printed. (This answer holds for either of the possible answers to 7(A)(2).)

15

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)

Part B (3 points):
Please consider the following code:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
int main(int argc, char* argv[]) {
char buffer[7] = "abcdef";
char buffer2[7];
// Assume "file.txt" is initially non-existant or empty.
int fd0 = open("file.txt", O RDWR | O CREAT, 0666);
int fdl = -1;
write (£d0, buffer, 3);

if (!fork()) {
write (£d0, buffer+3, 3);

fdl = open("file.txt", O RDWR | O CREAT, 0666);
write (fdl, “Xyz”, 3);
dup2 (fdl, £fd0); // int dup2(int oldfd, int newfd);

write (£d0, “UvW”, 3);
}

return 0;

}

7(B)(1) (2 points): What is the content of the output file after this code completes?

XYZuvw
7(B)(2) (1 point): If each process (parent and child) were just about to “return 0”, how many
entries are there in the system-wide open file table related to this code?

Two (2)

16

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)
Part C (4 points):

Consider the C code below. Assume that no errors prevent any processes from running to completion.

int count = 0;
sigset t newset, oldsetl, oldset2;

void inthandler (int sig) {
sigprocmask (SIG BLOCK, &newset, &oldsetl);

Sio printf ("SIGINT received\n");
sigprocmask (SIG BLOCK, &oldsetl, NULL);

return;

}

void childhandler (int sig) {
int status;

sigprocmask (SIG BLOCK, &newset, &oldset2);
wait (&status);

//Assume a process terminated by an uncaught signal has an exit status of O.
count += WEXITSTATUS (status) ;

sigprocmask (SIG BLOCK, &oldset2, NULL);

return;

}

void main () {
int 1i; // for loop iterator
pid t pid[3]; // pids of child processes

sigemptyset (&oldsetl) ;
sigemptyset (&newset) ;
sigaddset (&newset, SIGCHLD) ;
sigaddset (&newset, SIGINT) ;

Signal (SIGINT, inthandler);
Signal (SIGCHLD, childhandler);

for (i=0; i<3; i++){ // Fork 3 child processes
pid[i] = fork();

if (!'pid[i]){ // If child process
do _work(); // Don’t be concerned with the detail.
exit (5);

}

// Parent process only
for (i=0; i<3; i++) {
kill (pid[i], SIGINT);
}
sleep(5);
printf ("count = %d\n", count);
exit (0);
}

Continued on next page.

17

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)
Part C, cont. (4 points):

7(C)(1)(2 points) What is the minimum number of times “SIGKILL received” could be printed? Why?

Zero times. The three children could all have exited before the parent signals them.

7(C)(2)(2 points) List all possible values of count that could be printed:
5, 10, 15. (Regardless of whether or not a child receives the SIGINT signal, the child will exit

with exit code 5. The parent will be sent three SIGCHLD signals. Because signals do not queue, it will
receive at least one SIGCHLD signal, and can receive up to all three.)

18

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)
Part A (8 points): Deadlock

Consider the following C code:

8(A)(2) 8(A)(3) Code
1. /* Initialize semaphores */
2. mutexl = 1;
3. mutex2 = 1;
4. mutex3 = 1;
5. mutex4 =1
6
7. void threadl () {
1 1 8. P (mutexl);
2 9. P (mutex?2) ;
waiting... 3 10. P (mutex4);
11
12. /* Access Data */
4 13. V(mutex4);
5 14. V(mutex2);
6 15. V(mutexl);
16. 1}
17
18. void thread2() {
3 7 19. P (mutex4) ;
4 8 20. P (mutex3) ;
waiting... 9 21. P (mutex?2) ;
22
23. /* Access Data */
24
10 25. V(mutex2);
11 26. V (mutex3) ;
12 27. V(mutex4) ;
28. }

8(A)(1) (2 points) Is it possible for the code above to deadlock? Yes No

8(A)(2) (3 points) Consider your answer to (A) above. If you answered “No”, explain why not. If you
answered “Yes”, then please provide a schedule that results in deadlock. Do this by numbering, i.e. 1,
2, 3, etc, the semaphore operations (Ps and Vs, only) in the code above with an execution order that
results in deadlock. Use the 8(A)(2) column to record your answer.

One of several possible answers is shown above.

8(A)(3) (3 points) Is it possible for the code above to execute without deadlocking? If not, explain why
not. If it is possible, please provide a schedule that does not results in deadlock. Do this by numbering,
i.e. 1, 2, 3, etc, the semaphore operations (Ps and Vs, only) in the code above with an order in which
they execute without deadlock. Use the 8(A)(3) column to record your answer.

Yes. One of several possible answers is shown above.

19

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 points)
Part B (7 points): Concurrency Control

Imagine a situation such that
e Widgets are made in a mold, four (4) at a time.
e After manufacture, widgets are placed on a shelf that can hold up to twelve (12) at a time.
e Widgets are shipped in boxes 6 at a time.
e The shelving and boxing of widgets occur in multiple independent threads which call the
functions below.

Please complete the following code for the shelving and boxing of widgets by adding semaphores
and semaphore operations as needed.

#define SHELF SIZE 12
#define MOLD_SIZE 4
#define BOX SIZE 6

widget shelf[SHELF SIZE];
sem t mutex;

// Hint: Declare any additional needed shared, global variables here.
// Hint: Semaphores may be declared as sem t, e.g. “sem_t someSemaphore;”

sem_t shelfSpaceAvailable;
sem_t widgetAvailable,

// This function is called everytime a new batch of widgets is produced.
// The function finds a place on the shelf for each widget in the batch.

void ShelveNewWidgetBatch () {
int shelfSpaceNeeded = MOLD SIZE; // Widgets are always produced in groups of MOLD SIZE.

while (shelfSpaceNeeded > 0) {
// Hint: Add code here

P (shelfSpaceAvailable) ;
P (mutex) ,;

for (unsigned int index=0; index < SHELF SIZE; index++) {

if (shelf[index] == NULL) {
shelf[index] = getWidgetFromBatch(); // Don’t worry about internals of this function
shelfSpaceNeeded--;

// Hint: Add code here

V(widgetAvailable) ,
V(mutex),; // One possible place for V (mutex)

break;
}
}
// Another possible place for V(mutex), although there was no Hint here.

}
// Hint: Add code here

// We are giving full marks for putting V(mutex) here, even though it’s not correct,
// to be generous since the hint was misleading.

20

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 points)
Part B (7 points), cont.: Concurrency Control

// As widgets are placed on the shelf, this function takes widgets from the shelf
// and packs them into a box for shipping.

void PackBoxOfWidgets (box t *box) {
int widgetsNeededForBox = BOX SIZE;
while (widgetsNeededForBox > 0) {
// Hint: Add code here

P (widgetAvailable) ;
P (mutex) ,;

for (unsigned int index=0; index < SHELF SIZE; index++) {

if (shelf[index] != NULL) {
addWidgetToBox (box, shelf[index]);
shelf[index] = NULL;
widgetsNeededForBox—-;

// Hint: Add code here
V(shelfSpaceAvailable),

// Here is another possible place for the V(mutex) given below.

break;
}

}
// Hint: Add code here

// Here is another possible place for the V(shelfSpaceAvailable) given above.

V(mutex) ;

The End (of the whole exam!)! You made it!

21

