
1

Andrew ID:

Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read

your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read

either your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Fall 2023 Final Exam
Monday, December 11, 2023

Instructions:

● Make sure that your exam is not missing any sheets (check page numbers at bottom)

● Write your Andrew ID and full name on this page (and we suggest on each and

every page)

● This exam is closed book and closed notes.

● You may not use any electronic devices or anything other than what we provide and

writing implements, such as pens and pencils.

● Write your answers in the space provided for the problem.

● If you make a mess, clearly indicate your final answer.

● The exam has a maximum score of 100 points.

● The point value of each problem is indicated.

● Good luck!

Problem

Scope Max
Points

Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

2

Question 1: Representation: “Simple” Scalars (10 points)
Part A: Integers (5 points, 1 point per blank)

Assume we are running code on a machine representing “int” numbers as follows:

● 6-bits
● 2s complement signed representation

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when

impossible. An “Everyday” number or expression has the value it would be understood to

have in middle school arithmetic. A “C expression” has the value it would have if evaluated

in a C Language program.

Goal Machine 1: 6-bit
w/2s complement

signed

True or False

“Everyday number”

5

(Answer should show bits)

“Everyday number”

-13

(Answer should show bits)

“C Expression”
(-31 - 3)

(Answer should be a decimal
number)

C Expression:
(-31 > 3U)

(Answer should be
True or False)

Tmin (Most negative number) +
Tmax (Most positive number)

(Answer should be a decimal
number)

3

Question 1: Representation: “Simple” Scalars (10 points)

Part B: Floats (5 points, 1 point per blank)

For this problem, please consider a floating point number representation based upon an

IEEE- like floating point format as described below.

● Format:

○ There are 6 bits

○ All values are greater than or equal to 0 (A departure from IEEE)

○ There are n = 3 exponent bits.

Fill in the empty (non grayed-out) boxes as instructed.

Answer

Total Number of Bits
(Decimal)

6

Number of Exponent Bits
(Decimal) 3

Number of Fraction Bits
(Decimal)

Bias
(Decimal)

The absolute difference,
represented as a reduced
fraction or as a power of two,
between any two adjacent
denormalized numbers

100 101
(Decimal value, unrounded)

Bit representation of the value
shown below, or the closest
possible representable value to
it. Hint: Round even.

15.5, a.k.a. 15 1/2, a.k.a. 31/2

4

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Please consider a “Shark” machine for all parts of this question: 1-byte chars, 2-byte shorts, 4-byte
ints, 8-byte longs, 8 byte doubles, 4 byte floats, and 8 byte doubles

Part A (3 points): Consider the following struct. How much memory is required? Answer in bytes.

struct {

 double d;

 char c;

 float f;

} examStruct1;

Part B (2 points): How many bytes of padding are contained within examStruct1 ?

Part C (3 points): Consider the following array. How far apart are the addresses of array[0][0] and
array[1][1]? Answer in bytes.

 struct examStruct1 array[3][2];

Part D (2 points): What is the offset in bytes of array[0][1].c within the referenced struct.

 struct examStruct1 array[3][2];

Continued on next page.

5

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 (15 points)
Part A: Calling Convention (4 points)

3(A)(1) (1 points): Consider an instance of struct s being passed into function fun(), as shown

below. Please label each field of the struct with REGISTER if its value is passed into the function via a
register and STACK if its value is passed into the function via the stack.

 struct s {

 int i; // LABEL HERE:

 char c; // LABEL HERE:

 short s; // LABEL HERE:

 char str[10]; // LABEL HERE:

}

void fun (struct s argument);

3(A)(2) (1 points): Consider an instance of an array being passed into function fun(),as shown

below. Assuming the array, itself, is allocated as a local variable by the caller. Are the array elements
found by the callee in one or more REGISTER(S) or on the STACK? (Write REGISTER(S) or write
STACK.)

 typedef int numbers[4];

void fun (numbers nums); // Same as: void fun (int nums[4])

3(A)(3) (2 points): Consider the function below as compiled and linked on one of our shark machines.
How many bytes of the stack are used for parameter passing upon the calling of the function?

 void fun (int a, int b, char c, short d, long e, long f, int g, long h);

Continued on next page.

6

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)
Part B: Conditionals and Loops (5 points)

Consider the following code:

Dump of assembler code for function loop:

 0x0000000000001149 <+0>: endbr64

 0x000000000000114d <+4>: push %rbp

 0x000000000000114e <+5>: mov %rsp,%rbp

 0x0000000000001151 <+8>: mov %edi,-0x4(%rbp)

 0x0000000000001154 <+11>: mov %esi,-0x8(%rbp)

 0x0000000000001157 <+14>: jmp 0x117c <loop+51>

 0x0000000000001159 <+16>: mov -0x8(%rbp),%eax

 0x000000000000115c <+19>: cmp -0x4(%rbp),%eax

 0x000000000000115f <+22>: jge 0x1172 <loop+41>

 0x0000000000001161 <+24>: mov -0x8(%rbp),%eax

 0x0000000000001164 <+27>: mov %eax,%edx

 0x0000000000001166 <+29>: shr $0x1f,%edx

 0x0000000000001169 <+32>: add %edx,%eax

 0x000000000000116b <+34>: sar %eax

 0x000000000000116d <+36>: mov %eax,-0x4(%rbp)

 0x0000000000001170 <+39>: jmp 0x117c <loop+51>

 0x0000000000001172 <+41>: cmpl $0x64,-0x4(%rbp)

 0x0000000000001176 <+45>: jg 0x1186 <loop+61>

 0x0000000000001178 <+47>: addl $0x1,-0x4(%rbp)

 0x000000000000117c <+51>: mov -0x4(%rbp),%eax

 0x000000000000117f <+54>: cmp -0x8(%rbp),%eax

 0x0000000000001182 <+57>: jle 0x1159 <loop+16>

 0x0000000000001184 <+59>: jmp 0x1187 <loop+62>

 0x0000000000001186 <+61>: nop

 0x0000000000001187 <+62>: nop

 0x0000000000001188 <+63>: pop %rbp

 0x0000000000001189 <+64>: ret

End of assembler dump.

Hint: Please be careful to understand the code. Answering these questions isn’t as simple as
counting forward or backward jumps.

3(B)(1) (2 points): Is the loop shown above most representative of a while () {….} or a do { …

} while()? How do you know?

3(B)(2) (1 points): Are there any ‘break’ statements in the loop? If so, at what line is/are the
associated jump(s)? Give the line number(s) in the form <+23> or <+27> or, more generally,
<+line_no> .

3(B)(3) (1 points): Are there any ‘continue’ statements in the loop? If so, at what line is/are the
associated jump(s)? Give the line number(s) in the form <+23> or <+27> or, more generally,
<+line_no>.

3(B)(4) (1 points): How many ?-operators (ternary operators) are there? Explain your answer.

7

Part C: Switch statement (6 points)

Consider the following compiled from C Language code containing a switch statement and no if
statements. It uses a very common form of the switch statement on the shark machines, but a slightly
different one than some prior exams. Rather than keeping absolute addresses, this jump table keeps
offsets from its own start address. The address of each code block is the address of the
beginning of the jump table plus the value of the code block’s jump table entry. You’ll see this
add before the relevant jump in the assembly. It might make things easier for you to note the address
indicated by the lowest jump table entry and think of the other entries relative to that one.

Dump of assembler code for function foo:

 0x00000000004017c0 <+0>: endbr64

 0x00000000004017c4 <+4>: push %rbp

 0x00000000004017c5 <+5>: mov %edi,%ebp

 0x00000000004017c7 <+7>: lea 0x96836(%rip),%rdi

 0x00000000004017ce <+14>: push %rbx

 0x00000000004017cf <+15>: mov %esi,%ebx

 0x00000000004017d1 <+17>: sub $0x8,%rsp

 0x00000000004017d5 <+21>: call 0x40c7c0 <puts>

 0x00000000004017da <+26>: mov 0xc3f0f(%rip),%rdi

 0x00000000004017e1 <+33>: call 0x40c470 <fflush>

 0x00000000004017e6 <+38>: lea 0x2(%rbx),%esi

 0x00000000004017e9 <+41>: cmp $0xc,%esi

 0x00000000004017ec <+44>: ja 0x401818 <foo+88>

 0x00000000004017ee <+46>: lea 0x96823(%rip),%rdx # %rdx = 0x498018

 0x00000000004017f5 <+53>: movslq (%rdx,%rsi,4),%rax

 0x00000000004017f9 <+57>: add %rdx,%rax

 0x00000000004017fc <+60>: jmp *%rax

 0x00000000004017ff <+63>: nop

 0x0000000000401800 <+64>: lea 0x0(,%rbp,8),%eax

 0x0000000000401807 <+71>: sub %ebp,%eax

 0x0000000000401809 <+73>: mov %eax,%ebp

 0x000000000040180b <+75>: add $0x8,%rsp

 0x000000000040180f <+79>: lea 0x2(%rbp),%eax

 0x0000000000401812 <+82>: pop %rbx

 0x0000000000401813 <+83>: pop %rbp

 0x0000000000401814 <+84>: ret

 0x0000000000401815 <+85>: nopl (%rax)

 0x0000000000401818 <+88>: movslq %ebp,%rax

 0x000000000040181b <+91>: add $0x8,%rsp

 0x000000000040181f <+95>: sar $0x1f,%ebp

 0x0000000000401822 <+98>: imul $0x55555556,%rax,%rax

 0x0000000000401829 <+105>: pop %rbx

 0x000000000040182a <+106>: shr $0x20,%rax

 0x000000000040182e <+110>: sub %ebp,%eax

 0x0000000000401830 <+112>: pop %rbp

 0x0000000000401831 <+113>: ret

 0x0000000000401832 <+114>: nopw 0x0(%rax,%rax,1)

 0x0000000000401838 <+120>: mov %ebp,%eax

 0x000000000040183a <+122>: add $0x8,%rsp

 0x000000000040183e <+126>: shr $0x1f,%eax

 0x0000000000401841 <+129>: pop %rbx

 0x0000000000401842 <+130>: add %ebp,%eax

 0x0000000000401844 <+132>: pop %rbp

 0x0000000000401845 <+133>: sar %eax

 0x0000000000401847 <+135>: ret

 0x0000000000401848 <+136>: nopl 0x0(%rax,%rax,1)

 0x0000000000401850 <+144>: add $0x8,%rsp

 0x0000000000401854 <+148>: lea 0x9(%rbp),%eax

 0x0000000000401857 <+151>: pop %rbx

 0x0000000000401858 <+152>: pop %rbp

 0x0000000000401859 <+153>: ret

 0x000000000040185a <+154>: nopw 0x0(%rax,%rax,1)

 0x0000000000401860 <+160>: add $0x8,%rsp

 0x0000000000401864 <+164>: lea -0x2(%rbp),%eax

 0x0000000000401867 <+167>: pop %rbx

 0x0000000000401868 <+168>: pop %rbp

 0x0000000000401869 <+169>: ret

End of assembler dump.

8

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)

Part C: Switch statement, cont. (6 points)

Consider also the following memory dump.

(gdb) x/20dw 0x498008

0x498008: 1952673397 544108393 560951142 0

0x498018: -616376 -616448 -616448 -616448

0x498028: -616472 -616448 -616461 -616448

0x498038: -616392 -616448 -616416 -616448

0x498048: -616416 0 0 0

(gdb) x/20xw 0x498008

0x498008: 0x74636e75 0x206e6f69 0x216f6f66 0x00000000

0x498018: 0xfff69848 0xfff69800 0xfff69800 0xfff69800

0x498028: 0xfff697e8 0xfff69800 0xfff697f3 0xfff69800

0x498038: 0xfff69838 0xfff69800 0xfff69820 0xfff69800

0x498048: 0xfff69820 0x00000000 0x00000000 0x00000000

(3)(C)(1) (2 point): At what address does the jump table shown above begin? How do you

know?

(3)(C)(2) (2 points): Is there a default case? If so, at what address does it begin? How do

you know?

(3)(C)(3) (2 points): Which case(s), if any, fall through to the next case after executing some of their
own code? How do you know?

Hint: Give the case number not the address.

Continued on next page.

9

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)
Part A: Caching (12 points)

Given a model described as follows:

● Associativity: 4-way set associative

● Total size: 128 bytes (not counting metadata)

● Block size: 16 bytes/block

● Replacement policy: Set-wise LRU

● 8-bit addresses

4(A)(1) (1 point) How many bits for the block offset?

4(A)(2) (1 point) How many bits for the set index?

4(A)(3) (1 point) How many bits for the tag?

4(A)(4) (9 points): For each of the following addresses, please indicate if it hits, or misses, and if

it misses, the type of miss:

Address Circle one (per
row):

Circle one (per
row):

0x2A Hit Miss Capacity Compulsory/Cold Conflict N/A

0x80 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x28 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xF7 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x0A Hit Miss Capacity Compulsory/Cold Conflict N/A

0xEA Hit Miss Capacity Compulsory/Cold Conflict N/A

0xA8 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xF0 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xD5 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xBA Hit Miss Capacity Compulsory/Cold Conflict N/A

0x9A Hit Miss Capacity Compulsory/Cold Conflict N/A

0x8F Hit Miss Capacity Compulsory/Cold Conflict N/A

Continued on next page

10

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part B: Memory Hierarchy and Effective Access Time (3 points)

Imagine a computer system as follows:

● 2-level memory hierarchy (L1 cache, Main memory)
● L1: 10% miss rate
● Main memory: 50nS access time, 0% miss rate
● Memory accesses at different levels of the hierarchy do not overlap

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A

SIMPLE FRACTION

What L1 cache access time is required for the overall effective memory access time to be

10nS?

Continued on next page.

11

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Part A (2 points): Please identify one check, i.e. invariant that can be verified, that can be performed
by the heap checker within an implicit list free block. This check should only consider a single block at a
time. Assume that all blocks have headers and footers and that constant-time coalesce is possible.

Part B (2 points): Please identify one additional check, i.e. invariant that can be verified, that can be
performed by the heap checker within an implicit list allocator. You may compare across adjacent
blocks. And, you should assume that allocated blocks are footerless.

Part C (2 points): Please identify one additional check, i.e. invariant that can be verified, that can be
performed by the heap checker within an explicit list allocated. You may compare across adjacent
blocks.

Part D (2 points): Please identify one additional check, i.e. invariant that can be verified, that can be
performed by the heap checker within a segregated list allocator. This check should only consider a
single block at a time.

Part E (2 points): Is a best-fit policy more likely to be worth the cost in a segregated list allocator or a
simple explicit list allocator? Why?

Continued on next page.

12

Question 6: Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical

addresses. Imagine a system has the following parameters:

● Virtual addresses are 8 bits wide.

● Physical addresses are 8 bits wide.

● The page size is 32 bytes.

● The TLB is 2-way set associative with 4 total entries.

● The TLB may cache invalid entries

● TLB REPLACES THE ENTRY WITH THE LOWEST TAG (NOT LRU)

● A single level page table is used

Part A: Interpreting addresses (3 points)

6(A)(1)(1 points): Please label the diagram below showing which bit positions are

interpreted as each of the VPO and VPN. Leave any unused entries blank.

Bit 7 6 5 4 3 2 1 0

VPN/
VPO

6(A)(2)(1 points): Please label the diagram below showing which bit positions are interpreted

as each of the TLBI and TLBT . Leave any unused entries blank.

6(A)(3)(1 points): How many entries exist within each page table?

6(A)(4) (2 points): How many sets are in the TLB?

Continued on next page.

Bit 7 6 5 4 3 2 1 0

TLBI/
TLBT

13

 Question 6: Virtual Memory, Paging, and the TLB (15 points)

 Part B: Hits and Misses (12 points)

Shown below are the initial states of the TLB and page table.

TLB

X=Invalid (for read or write, regardless of those bits), V=VALID, R=READ, W=WRITE:

Set Tag PPN BITS Scratch space for you

0 00 1 X-RW

0 10 5 X-R

1 01 3 X-RW

1 11 2 X-R

Page Table

X=Invalid (for read or write, regardless of those bits), V=VALID, R=READ, W=WRITE:

Index/VPN PPN BITS Scratch space for you

0 5 X-RW

1 13 X-RW

2 1 V-RW

3 11 V-RW

4 9 V-R

5 15 V-R

6 27 V-RW

7 3 V-R

Continued on next page.

14

 Question 6: Virtual Memory, Paging, and the TLB (15 points)
Part B: Hits and Misses, cont. (12 points)

Consider the following memory access trace e.g. sequence of memory operations

listed in order of execution, as shown in the first two columns (operation, virtual

address). It begins with the TLB and page table in the state shown above.

Note: N/A or Not knowable means the choices do not apply or there is not enough

information given. If you can not deduce a PPN from the information given, please

write N/A for “PPN If Knowable”

Please complete the remaining columns

Subpart Operati
on

Virtual
Address

TLB
Hit or Miss?

Page Fault?

Yes or No?

PPN
If
Knowable

1 Write 0x40 Hit Miss Not knowable Yes No Not knowable

2 Write 0x82 Hit Miss Not knowable Yes No Not knowable

3 Read 0x24 Hit Miss Not knowable Yes No Not knowable

4 Read 0xA1 Hit Miss Not knowable Yes No Not knowable

5 Read 0x22 Hit Miss Not knowable Yes No Not knowable

6 Write 0xA8 Hit Miss Not knowable Yes No Not knowable

7 Read 0xA5 Hit Miss Not knowable Yes No Not knowable

8 Write 0x43 Hit Miss Not knowable Yes No Not knowable

Continued on next page.

15

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)
Part A (4 points):

Please consider the following code:

void main(){

 printf ("A"); fflush(stdout);

 if (fork()) {

 printf ("B"); fflush(stdout);

 if (!fork()) {

 printf ("C"); fflush(stdout);

 } else {

 printf ("D"); fflush(stdout);

 }

 }

 printf ("E"); fflush(stdout);

}

7(A)(1) (2 points): Draw the process graph, using the same notation we did in class, for the code
above.

7(A)(2) (1 points): Give one valid output for the program above.

7(A)(3) (1 points): Give one invalid output for the program above that has an ordering problem
involving B, C, and/or D.

Continued on next page.

16

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)

Part B (6 points):

Please consider the following code:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/wait.h>

int main(int argc, char* argv[]) {

 char buffer[7] = "abcdef";

 char buffer2[7];

 // Assume "file.txt" is initially non-existent or empty.

 int fd0 = open("file.txt", O_RDWR | O_CREAT, 0666);

 int fd1 = -1;

 write(fd0, buffer, 2);

 if (fork()) {

 wait(NULL);

 write(fd0, "P", 1);

 write(fd0, buffer+3, 3);

 fd1 = open("file.txt", O_RDWR | O_CREAT, 0666);

 write(fd1, "X", 1);

 dup2 (fd0,fd1); // int dup2(int oldfd, int newfd); copies oldfd over newfd

 write(fd0, "A", 1);

 } else {

 write(fd0, "C", 1);

 write(fd0, buffer, 3);

 }

 return 0;

}

7(B)(1) (2 points): What is the content of the output file after this code completes?

 7(B)(2) (2 points): If the child process was just about to “return 0”, how many entries are there in the
system-wide open file table related to this code (ignore stdin, stdout, stderr), assuming open file table
garbage collection is done only when program terminates?

7(B)(3) (2 points): If the child process was just about to “return 0”, how many inode

entries associated with regular files in the file system are in use by these two processes?

Continued on next page.

17

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)
Part A (6 points): Deadlock

Consider the following C code. Assume that both threads have been spawned and are running
concurrently.
8(A)(2) Code

 1. /* Initialize semaphores */

 2. sem_init(mutex1, 1);

 3. sem_init(mutex2, 1);

 4. sem_init(mutex3, 1);

 5. sem_init(mutex4, 1);

 6

 7. void thread1() {

 8. P(mutex2);

 9. P(mutex3);

 10. P(mutex4);

 11

 12. /* Access Data */

 13. V(mutex4);

 14. V(mutex2);

 15. V(mutex3);

 16. }

 17

 18. void thread2() {

 19. P(mutex4);

 20. P(mutex2);

 21. P(mutex3);

 22

 23. /* Access Data */

 24

 25. V(mutex4);

 26. V(mutex2);

 27. V(mutex3);

 28. }

8(A)(1) (3 points) Is it possible for the code above to deadlock? Yes No

8(A)(2) (3 points) Consider your answer to 8(A)(1) above. If you answered “No”, explain why
deadlock is impossible. If you answered “Yes”, then please provide a schedule that results in
deadlock. Do this by numbering, i.e. 1, 2, 3, etc, the semaphore operations (Ps and Vs, only) in the
code above with an execution order that results in deadlock. Use the 8(A)(2) column to record your
answer.

Continued on next page.

18

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

Part B (9 points): Concurrency Control

Consider a situation where you and your partner are working on an embedded systems project.

● Your partner assembles two (2) SMALL_PARTS into an ASSEMBLY.

● Your job is to test each assembly.

● Because of the shape of the parts, the desk can hold:

o Three (3) SMALL_PARTS, OR

o One (1) completed ASSEMBLY and one (1) SMALL_PART

● There is a bin for parts that pass the testing and another for parts that do not pass the
testing. These bins are, for practical purposes, infinite in size.

Below and on the next two pages is C-like pseudocode for threads implementing your role and
your partner’s role, as well as for global declaration and initialization. This is just pseudocode.
Don’t let details unrelated to the concurrency control problem distract you. Read the provided
comments: They are important.

Your task is to add proper concurrency control to the provide code. The only concurrency control
primitives you can use are via the semaphore type and functions shown below:

● sem_t // The data type for a semaphore

● sem_init (sem_t, unsigned int initial_value)

● sem_p(sem_t)

● sem_v(sem_t)

// The space below should be used to declare and initialize any shared

variables.

Continued on next page.

19

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

Part B (7 points): Concurrency Control, cont.

void *partnerThread (void *args) {

 part_t part1, part2;

 assembly_t assembly;

 while (1) {

 part1 = getPartOne(); // No one gets parts, except your partner

 part2 = getPartTwo(); // No one gets parts, except your partner

 placePartOnDesk(part1); // You and your partner share the desk

 placePartOnDesk(part2); // as described above

 assembly = assembleParts(part1, part2);

 placeAssemblyOnDesk (assembly); // This is the same desk as above

 }

}

Continued on next page.

20

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 pts)

Part B (7 points): Concurrency Control, cont.

void *yourThread (void *args) {

 assembly_t assembly1;

 while (1) {

 assembly = getAssemblyFromDesk(); // You and your partner share the desk

 // No one conducts inspections or places parts in bins, except you

 if (PASSES_INSPECTION == inspectAssembly(assembly)) {

 storeAssembly(SELLABLE_BIN, assembly);

 } else {

 storeAssembly(REJECT_BIN, assembly)

 }

}

The End (of the whole exam!)! You made it! Hurray!

