
Page 1 of 26

Andrew ID:

Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read

your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read either

your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Spring 2022 Final Exam (SOLUTION)

Monday, May 2, 2022

Instructions:

● Make sure that your exam is not missing any sheets (check page numbers at bottom)

● Write your Andrew ID and full name on this page (and we suggest on each and every

page)

● This exam is closed book and closed notes (except for 2 double-sided note sheets).

● You may not use any electronic devices or anything other than what we provide, your

notes sheets, and writing implements, such as pens and pencils.

● Write your answers in the space provided for the problem.

● If you make a mess, clearly indicate your final answer.

● The exam has a maximum score of 100 points.

● The point value of each problem is indicated.

● Good luck!

Problem # Scope Max Points Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Page 2 of 26

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Assume we are running code on two machines using two’s complement arithmetic for signed

integers.

● Machine 1 has 4-bit integers

● Machine 2 has 6-bit integers.

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when

impossible.

Machine 1: 4-bit
w/2s complement signed

Machine 2: 6-bit
w/2s complement signed

Binary representation of -6
decimal

Soln: 1010 Soln: 111010

Binary representation of 10
decimal

 Soln: UNABLE

Binary representation of
-Tmin

Soln: 1000

Integer (Decimal) value of
(-4 - 6)

 Soln: 6

Page 3 of 26

Part B: Floats (5 points, 1/2 point per blank)

For this problem, please consider a floating point number representation based upon an IEEE-

like floating point format as described below.

● Format A:

○ There are 7 bits

○ There is 1 sign bit s.

○ There are k = 3 exponent bits.

○ You need to determine the number of fraction bits.

● Format B:

○ There are 8 bits

○ There is 1 sign bit s.

○ There are n = 3 fraction bits.

Fill in the empty (non grayed-out) boxes as instructed.

Format A Format B

Total Number of Bits

(Decimal)

7 8

Number of Sign Bits (Decimal) 1 1

Number of Fraction Bits
(Decimal)

Soln: 3 3

Number of Exponent Bits
(Decimal)

3 Soln: 4

Bias
(Decimal)

Soln: 3 Soln: 7

Decimal value or interpretation of

bit pattern: 1111111

Soln: -NaN

Decimal value or interpretation of
bit pattern: 01111000

Soln: Inf

1000010

(Decimal value, unrounded,
use fractions)

Soln: -1/16

00101101

(Decimal value, unrounded,
use fractions)

Soln: 1-5/8

((-1.0*NaN) == -NaN)
Soln:
False

// x and y are negative

floats

((x + y) < 0)

Circle one:
Soln: Always true
Always false
It depends

Page 4 of 26

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part A: Array Sizes (1 points)

Consider the following definitions in an x86-64 system with 8-byte pointers and 4-byte ints:

Definition A Definition B

int numbersA[3][2][2];

int *numbersB = numbersA;

2(A)(1) (0.5 point): How many bytes are allocated to numbersA? (Write “UNKNOWN” if not

knowable).

Hint: Think sizeof()

Soln: 48 bytes

2(A)(2) (0.5 point): How many bytes are allocated to numbersB? (Write “UNKNOWN” if not

knowable).

Hint: Think sizeof()

Soln: 8-bytes

Page 5 of 26

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part B Array Allocation and Initialization (5 points):

numbersC is intended to be used as an array of ints. Please complete the following

code. Please read all of “Part B” before answering any part of “Part B”.

2(B)(1) (0.5 point)

// Complete EXACTLY ONE of the definitions below. Your choice

#define TYPE1 __int **______________

typedef __int **______________ TYPE1;

Soln:

#define TYPE1 int**

typedef int** TYPE1;

2(B)(2) (0.5 point)

// Complete EXACTLY ONE of the definitions below. Your choice

#define TYPE2 ___int *_____________

typedef ____int *____________ TYPE2;

Soln:

#define TYPE2 int*

typedef int* TYPE2;

2(B)(3) (2 points)

// This function should allocate space for intArray

// and initialize the elements of intArray to 0, 1, 2, 3, …

// in a way that allows the array to be used outside of this

// function after this function is called.

// It should return 0 upon success and non-zero upon failure

int initArray(TYPE1 intArray, size_t length) {

 // Soln:

 *intArray = (int *) malloc (length * sizeof(int));

 if (!intArray) return -1;

 for (int index=0; index < length; index++)

 (*intArray)[index] = index;

 return 0;

}

Page 6 of 26

2(B)(4) (2 points)

// This function should free the allocation(s) made in initArray(…) above.

// It should return 0 upon success and non-zero upon failure

int freeArray(TYPE2 intArray) {

 // Soln:

 if (!intArray) return -1;

 free (intArray);

 return 0;

}

Part C: Structs and Alignment (4 points)

For this question please assume “Natural alignment”, in other words, please assume that each

type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {

short s1; // 2-byte type

double d; // 8-byte type

short s2;

} partB;

2(C)(1) (2 point): What would you expect to be the value of the expression below?

sizeof(struct partB)

Soln:

 ssXXXXXXddddddddssXXXXXX

 24 bytes

2(C)(1) (2 points): Rewrite the struct above to minimize its size after alignment-mandated

padding:

Soln: Answers may vary but should all be the same size as this:

struct {

short s1; // 2-byte type

short s2;

double d; // 8-byte type

} partB;

ssssXXXXdddddddd

16 bytes

Page 7 of 26

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 ISA

Part A: Loops and Calling Convention (7 points)

Consider the following code:
.LC0:

 .string "count: %d\n"

 .text

function:

 pushq %r14

 movl %edx, %r14d

 pushq %r13

 movl %esi, %r13d

 pushq %r12

 xorl %r12d, %r12d

 pushq %rbp

 movl %edi, %ebp

 pushq %rbx

 cmpl %edx, %edi

 jge .L3

.L2:

 movl %r13d, %ebx

 testl %r13d, %r13d

 jns .L6

 jmp .L7

.L16:

 subl $1, %ebx

 addl $1, %r12d

 cmpl $-1, %ebx

 je .L7

.L6:

 testb $1, %bl

 je .L16

 movl $88, %edi

 subl $1, %ebx

 call putchar@PLT

 cmpl $-1, %ebx

 jne .L6

.L7:

 addl $1, %ebp

 cmpl %ebp, %r14d

 jne .L2

.L3:

 movl %r12d, %edx

 leaq .LC0(%rip), %rsi

 movl $1, %edi

 xorl %eax, %eax

 call __printf_chk@PLT

 popq %rbx

 movl %r12d, %eax

 popq %rbp

 popq %r12

 popq %r13

 popq %r14

 ret

Page 8 of 26

3(A)(1) (2 points): How many loops does this function have? How do you know?

Soln: 2. There are two backward jumps.

3(A)(2) (2 points): Which of the following exist among the loops in the code. Circle all that apply:
 Sequential loops (one loop after another loop)
 Soln: Nested loops (one loop within another loop)
 Staggard loops (one loop overlapping another loop without being nested)
 None of the above

3(A)(3) (1 points): How many arguments does this function receive (and use)?

Soln: 3

3(A)(4) (2 points): For each argument you listed, please indicate either (a) which specific

register was used to pass it in, or (b) that it was sourced from the stack (you don’t need to give

the address). Please leave any extra blanks empty (Hint: You won’t need all of them).

Argument Specific register or “Stack”

1st Soln: %edi

2nd Soln: %esi

3rd Soln: %edx

4th Soln: {blank}

5th Soln: {blank}

Consider the following function activation. Consistent with your answer to the question above, it

includes more arguments that the function actually requires. Please ignore any extra arguments.

function(0, 10, 10, 10, 10, 1);

3(A)(2) (2 points): How many times does the inner-most loop run?

Hint: If the inner-most loop is nested, you may need to consider the loops in which it is nested.

Solution: 110 times (10x outer, 11x inner)

Page 9 of 26

Part B: Conditionals (8 points)

Consider the following code:

Dump of assembler code for function foo:

 0x000000000040052d <+0>: cmp $0x5,%esi

 0x0000000000400530 <+3>: ja 0x400558 <foo+43>

 0x0000000000400532 <+5>: mov %esi,%eax

 0x0000000000400534 <+7>: jmpq *0x400620(,%rax,8)

 0x000000000040053b <+14>: lea 0xa(%rdi),%eax

 0x000000000040053e <+17>: retq

 0x000000000040053f <+18>: mov $0x2,%edi

 0x0000000000400544 <+23>: mov $0x55555556,%edx

 0x0000000000400549 <+28>: mov %edi,%eax

 0x000000000040054b <+30>: imul %edx

 0x000000000040054d <+32>: sar $0x1f,%edi

 0x0000000000400550 <+35>: mov %edx,%eax

 0x0000000000400552 <+37>: sub %edi,%eax

 0x0000000000400554 <+39>: retq

 0x0000000000400555 <+40>: and $0x1,%edi

 0x0000000000400558 <+43>: lea (%rdi,%rsi,1),%eax

 0x000000000040055b <+46>: retq

End of assembler dump.

Consider also the following memory dump:

(gdb) x/14gx 0x400610

0x400610: 0x0000000000020001 0x0000000000000000

0x400620: 0x0000000000400555 0x000000000040053b

0x400630: 0x000000000040053f 0x000000000040053f

0x400640: 0x0000000000400558 0x0000000000400544

0x400650: 0x0000003c3b031b01 0xfffffdb000000006

0x400660: 0xfffffdf000000088 0xfffffedd00000058

0x400670: 0xffffff0c000000b0 0xffffff40000000c8

(3)(B)(1) (1 points): How many “if statements” are likely present in the C Language code from

which this assembly was compiled? At what address of the assembly code shown above does

each occur?

This code was compiled from C Language code containing a switch statement. Please do not

include any “if statement” present in the assembly that is likely part of the switch

statement in the original C code, i.e. do not count any “if statement” that is used to manage one

or more “cases” of a “switch statement”.

Soln:

0

There is one forward jump, which is a candidates 0x400530. But, it is considering the switch

control variable, comparing it to a bound, and jumps to the default case. So it is likely handing a

“case” of the switch, specifically the default case.

Page 10 of 26

(3)(B)(2) (2 points): What integer input values are managed by non-default cases of the switch

statement? How do you know?

Soln: 0,1,3,5

Negative values and values above 5 are managed by the default case. Note that negatives look

like large integers when compared using unsigned “ja”.

(3)(B)(3) (1 point): Is there a default case? If so, at what address does it begin? How do you

know?

Soln: Yes. 0x400558. It is used cases larger than 4 and larger than (but not) 5.

(3)(B)(4) (2 points): Which case(s), if any, share exactly the same code? How do you know?

Soln: Cases 2 and 3. They have the same pointer in the jump table.

(3)(B)(5) (2 points): Which case(s), if any, fall through to the next case after executing some of

their own code? How do you know?

Soln: Cases 2/3 and 5, and cases 0 and default.

If we look at the code block beginning with where the 3rd entry in the jump table points, it

overlaps the code block pointed to by the 5th entry in the jump table without a jump or return to

prevent it from falling through.

The same is true if we look at the code beginning with the 0th entry in the jump table and the the

default case, that follows.

Page 11 of 26

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part A: Caching (8 points)

Given a model described as follows:

● Associativity: 4-way set associative

● Total size: 128 bytes (not counting meta data)

● Block size: 8 bytes/block

● Replacement policy: Set-wise LRU

● 8-bit addresses

4(A)(1) (1 point) How many bits for the block offset?

Soln: 8 bytes = 3 bits to index

4(A)(2) (1 point) How many bits for the set index?

Soln: (128 bytes) / (8 bytes/block) / (4 blocks/set) = 4 sets; 2 bit indexes 4 sets.

4(A)(3) (1 point) How many bits for the tag?

Soln: (8 bit address) - (3 bits for block offset) - (2 bit for set index) = 3 bits left over for tag

4(A)(4) (5 points, ½ point each): For each of the following addresses, please indicate if it hits,

or misses, and if it misses, if it suffers from a capacity miss, a conflict miss, or a cold miss:

Address Circle one
(per row):

Circle one
(per row):

0XC1 Hit Miss Capacity Cold Conflict N/A

0X65 Hit Miss Capacity Cold Conflict N/A

0XE5 Hit Miss Capacity Cold Conflict N/A

0X45 Hit Miss Capacity Cold Conflict N/A

0X61 Hit Miss Capacity Cold Conflict N/A

0XC1 Hit Miss Capacity Cold Conflict N/A

0XD7 Hit Miss Capacity Cold Conflict N/A

0X27 Hit Miss Capacity Cold Conflict N/A

0XE1 Hit Miss Capacity Cold Conflict N/A

0XC1 Hit Miss Capacity Cold Conflict N/A

Page 12 of 26

Part B: Locality (4 points)

4(B)(1): Consider the following code running on a host with 4-byte integers and 32-byte cache

blocks. Further assume that SIZE1 and SIZE2 are extremely large.

int array[SIZE1][SIZE2];

int sum=0;

for (int outer=0; outer<SIZE1; outer++)

 for (int inner=0; inner<(SIZE2-OFFSET); inner+=STEP)

sum += array[outer][inner] + array[outer][inner+OFFSET];

4(B)(1)(a) (2 points)

 Consider the impact upon locality of increasing STEP from 1 to 2 and of increasing OFFSET from 1 to 2.

 If either would likely have less impact upon locality, please explain which it is and why. If the impact upon

 locality is likely the same, please explain why.

Soln: I’d expect that changing STEP would be worse. It affects both array accesses, vs just the

2nd one.

4(B)(2) (2 points): Consider the following code:

short array[ROWS][COLS];

int sum=0;

for (int col=0; col<COLS; col++)

for (int row=0; row<(ROWS-1); row++)

sum += array[row][col]+ array[row][col+1];

Imagine an array extremely large in all dimensions, a short size of 2 bytes, and a cache

block size of 16 bytes. To the nearest whole percent or simple fraction, what would you

expect the miss rate for accesses to “array” to be? Why?

Soln: 50%. There is no locality across accesses to the inner loop as the outer loop is

skipping around. The 1st access misses, but the 2nd access hits since they are next to

each other and cache aligned.

Page 13 of 26

Part C: Memory Hierarchy and Effective Access Time (3 points)

Imagine a computer system as follows:

• 3-level memory hierarchy (L1 cache, L2 cache, Main memory)

• 3.5nS effective memory access time

• L1: 1nS access time, 10% miss rate

• L2: 20nS access time

• Main memory: 100nS access time, 0% miss rate

• Memory accesses at different levels of the hierarchy do not overlap

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A

SIMPLE FRACTION

What is the miss rate for the L2 cache?

3.5nS = 1nS + (0.1)20nS + (0.1)(MRL2)(100ns)

0.5nS = 0.1*MRL2*100nS

0.5nS = MRL2 * 10nS

MRL2 = 0.5nS / 10nS = 5/100 =5%

MRL2=5%

Page 14 of 26

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Consider the following code series of malloc’s and free’s:

ptr1 = malloc(2);

free (ptr1);

ptr2 = malloc(24);

ptr3 = malloc(8);

free(ptr2);

free(ptr3)

ptr4 =

malloc(40);

ptr5 =

malloc(8);

free (ptr4);

ptr6 = malloc(16);

And a malloc implementation as below:

● Explicit list

● Best-fit

● Headers of size 8 bytes

● Footer size of 8-bytes

● Every block is always constrained to have a size a multiple of 8 (In order to keep

payloads aligned to 8 bytes).

● No minimum block size (beyond what is structurally needed)

● If no unallocated block of a large enough size to service the request is found,

sbrk is called to grow the heap enough to get a new block of the smallest size

that can viably service the request

● The heap is unallocated until it grows in response to the first malloc.

● Constant-time coalescing is employed.

● The heap never shrinks

NOTE: You do NOT need to simplify any mathematical expressions. Your final answer may

include multiplications, additions, and divisions.

4(A) (2 points) After the given code sample is run, how many total bytes have been requested

via sbrk? In other words, how many bytes are allocated to the heap? Draw a figure showing the

heap and where each ptr is located.

Page 15 of 26

Soln:

ptr1 = malloc(2); // 8+8+8, HS=24

free (ptr1); // HS=24, FL=24

ptr2 = malloc(24); // 8+24+8, HS=64, FL=24

ptr3 = malloc(8); // 8+8+8, HS=64, FL=x

free(ptr2); // HS=64, FL=40

free(ptr3); // HS=64, FL=64

ptr4 = malloc(40); // 8+40+8, HS=64, FL=x

ptr5 = malloc(8); // 8+8+8, HS=88, FL=x

free (ptr4); // HS=88, FL=64

ptr6 = malloc(16); // 8+16+8 HS=88, FL=32

88 bytes requested via sbrk

Heap: {ptr6:8+16+8}{free:32}{ptr5:8+8+8)

Page 16 of 26

5(B) (2 points) How many of those bytes are used for currently allocated blocks (vs currently

free blocks), including internal fragmentation and header information?

Soln: 56 bytes for allocated blocks

5(C)(2 points) How much internal fragmentation is there due to padding (Answer in bytes)?

(Hint: Free blocks have no internal fragmentation).

Soln: 0B

5(D)(2 points) How much internal fragmentation is there due to headers and footers (Answer in

bytes)? (Hint: Free blocks have no internal fragmentation).

Soln: 32B

5(E)(2 points) Imagine that the user wrote a 20-character string to the buffer allocated ptr6.

What would be the most likely result? And why? Circle the most likely result and then explain

below.

A. It would be correct

B. It would be incorrect code, but would likely work correctly in this environment
C. It would likely work until the next huge allocation.

D. It would likely work until the next coalesce or very small allocation.

Soln:

(D) It would likely over-write the footer. This wouldn’t necessarily be noticed until a

coalesce or until an allocation of the next block. The next block is a small 8-byte block.

Page 17 of 26

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical

addresses. Imagine a system has the following parameters:

● Virtual addresses are 16 bits wide.

● Physical addresses are 12 bits wide.

● The page size is 256 bytes.

● The TLB is 4-way set associative with 8 total entries.

● The TLB may cache invalid entries

● A single level page table is used

Part A: Interpreting addresses

6(A)(1)(1 points): Please label the diagram below showing which bit positions are

interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

 N N N N O O O O O O O O

6(A)(2)(1 points): Please label the diagram below showing which bit positions are

interpreted as each of the VPO and VPN (top line) and each of the TLBI and TLBT

(bottom line). Leave any unused entries blank.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO/
VPN

N N N N N N N N O O O O O O O O

TLBI/
TLBT

T T T T T T T I

6(A)(3) (1 points): How many entries exist within each page table? Hint: This is the

same as the total number of pages within each virtual address space.

Soln: One entry per page. 8 bits per page number means 256 pages.

6(A)(4) (1 points): How many sets are in the TLB?

Soln: 2. 8 total entries, 4 entries/set = 2 sets.

Page 18 of 26

Part B: Hits and Misses (12 points)

Shown below are the initial states of the TLB and partial page table.

TLB (V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Index Tag PPN BITS Scratch space for you

0 66 2 V-R

0 28 1 V-RW

0 7D 3 V-R

0 2D C NR

1 79 4 NR

Page Table (V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Index/VPN PPN BITS Scratch space for you

50 1 V-RW

5A C NR

AA A V-RW

CC 2 V-R

F0 B V-RW

F3 4 NR

FC 3 V-READ

Page 19 of 26

Consider the following memory access trace e.g. sequence of memory operations

listed in order of execution, as shown in the first two columns (operation, virtual

address). It begins with the TLB and page table in the state shown above.

Please complete the remaining columns.

Operation Virtual
Address

TLB

Hit or Miss?

Page Table

Hit or Miss?

Page Fault?

Yes or No?

PPN

If Knowable

Read CC01 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 2

Read F301 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable

Read 5010 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 1

Read 5011 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 1

Write F0AC Hit Miss Not knowable Yes No Not applicable Yes No Not knowable B

Write FCBC Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 3

Read 5A56 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable

Write CC23 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 2

Write 5045 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 1

Read FC12 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable 3

Write AACC Hit Miss Not knowable Yes No Not applicable Yes No Not knowable A

Read F001 Hit Miss Not knowable Yes No Not applicable Yes No Not knowable B

Page 20 of 26

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (3 points):

Please consider the following code:

void main(){

 int pid1,

 printf (“A”); fflush(stdout);

 if (pid1=fork()) {

 printf (“B”); fflush(stdout);

 wait(NULL);

 printf (“C”); fflush(stdout);

} else {

 printf (“D”); fflush(stdout);

 if (fork()) {

 printf (“E”); fflush(stdout);

 } else {

 printf (“F”); fflush(stdout);

 }

}

 }

7(A)(1) (1 points): Give one possible output string

Soln: Many are possible, e.g ABDEFC

7(A)(2) (1 points): Give one output string that has the correct output characters (and number of

each character), but in an impossible order.

Soln: Many possible, e.g. ABFEDC

7(A)(3) (1 points): Why can’t the output you provided in 7(A)(2) be produced? Specifically,

what constraint(s) from the code does it violate?

 Soln: They need to describe a violated ordering constraint.

Continued on next page.

Page 21 of 26

Part B (3 points):

Please consider the following code:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

int main(int argc, char* argv[]){

char buffer[4] = "abc";

// Assume "file.txt" exists but is initially empty

int fd0 = open("file.txt", O_RDWR);

int fd1 = open("file.txt", O_RDWR);

int fd2 = 0;

write(fd0, buffer+1, 2);

read(fd1, buffer, 1);

dup2 (fd1,fd2); // int dup2(int oldfd, int newfd);

read(fd2, buffer, 1);

write(fd0, buffer, 3);

read(fd2, buffer, 1);

return 0;

}

7(B)(1) (1 points): What is the content of the output file after this code completes?

Soln: bccbc

7(B)(2) (1 points): How many entries are there in the system-wide open file table related to this

code?

Soln: 2, one from each open

Continued on next page.

Page 22 of 26

7(B)(3) (1 points): For each listed file descriptor variable, identify the file descriptor table entry

pointed to by each file descriptor variable. Name the file descriptor entries FT1, FT2, FT3, FT4,

etc.

File descriptor variable File table entry, e.g. FT0, FT1, FT2, FT3

fd0 Soln: FT0

fd1 Soln: FT2

fd2 Soln: FT2

Continued on next page

Page 23 of 26

Part C (4 points):

Please consider the following code:

#include <stdio.h>

#include <wait.h>

#include <unistd.h>

#include <signal.h>

#include <stdlib.h>

int count = 0;

void inthandler(int sig){

 count++;

printf("SIGINT received. Sig count = %d\n", count);

return;

}

void childhandler(int sig) {

int status;

 count++;

printf("SIGCHLD received. Sig count = %d\n", count);

while (waitpid(0, &status, WNOHANG)>0))

;

return;

}

void main() {

pid_t pid; // pid of child process

signal(SIGINT, inthandler);

signal(SIGCHLD, childhandler);

pid = fork();

if(!pid){

kill(getppid(), SIGINT);

exit(5); // Exit status is 5

}

sleep(5);

printf("count = %d\n", count);

exit(0); // Exit status is 0

}

Page 24 of 26

7(C)(1) (2 points): Is it possible for this code to deadlock? If so, how?

Soln: Yes. printf() is not async-signal safe.

7(C)(2) (1 points): There a critical (problematic shared) resource (variable)? What is it?

Soln: count

7(C)(3) (1 points): Assuming that deadlock is either impossible or doesn’t happen, is it possible for the
critical resource you identified above to suffer from concurrency, i.e. hold a wrong or inconsistent value,
etc? If so, how could that happen?

Soln: Yes. The handlers could read the same value, update it, and lose the update upon writing. The
value could also change between the time main puts it into the buffer and the time that buffer is
printed.

Page 25 of 26

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

In the crazy world in which we live, CMU decides to adopt two different salad and toppings bars, one for
people wearing masks and one for unmasked people as follows:

● CMU expects that fewer people will be wearing masks at lunch time than otherwise, so they arrange:

○ Space for three (3) people at the “masked bar”

○ Space for five (5) people at the “unmasked bar”

● Because of the usual grocery store confusion, customers can’t really tell how long the lines are for

either area, so people won’t put on or take off their masks to eat faster.

● Each customer may choose to wait for whichever area they wish

● Managers want to be able to check to see how long each line is at any time, so that they can

potentially adjust the sizes of each bar later.

Please model this situation as C-like pseudo-code with proper concurrency control via semaphores. Legal
semaphore operations are as follows:

● sem_init (sem_t, count)

● sem_p (sem_t)

● sem_v (sem_t)

● where sem_t is a semaphore variable type.

Specifically, please write the pseudocode for the following methods:

// Constants to let us name/identify each area

// These could just as easily be an enum or #defined.

// These aren’t counts or precedence/priority. They are just identifiers

const int MASKED = 0;

const int UNMASKED = 1;

// Declare and initialize any needed semaphores

// and/or shared variables here.

// You can assume they are global and shared.

void initialize() {

 // Hint: Think about what the type(s) of resources are and how

 // many instances of each type there are. Find a way to account

 // for each of those pool(s) of resources

 // these declarations are given

 // See the print_line_lengths() function for one example of their use

 // they track the number of people waiting for each area.

 int masked_line = unmasked_line = 0;

 sem_p maskedSem, unmakedSem, countMutex;

 sem_init(maskedSem, 3);

 sem_init (unmaksedSem, 5);

 sem_init (countMutex,1);

}

Page 26 of 26

// Customers call this to wait for the salad bar area of their choice
void waitForSaladBar(int maskedOrUnmasked) { // Remember MASKED and UNMASKED?

 P(count_mutex);

 if (MASKED == maskedOrUnmasked)

 masked_line++;

 else

 unmasked_line++

 V(count_mutex)

 if (MASKED == maskedOrUnmasked)

 P(maskedSem);

 else

 P(unmaskedSem);

 P(count_mutex);

 if (MASKED == maskedOrUnmasked)

 masked_line--;

 else

 unmasked_line--;

 V(count_mutex)

}

// Customers call this when done with the salad bar

void doneWithSaladBar(int maskedOrUnmasked) { // Remember MASKED and UNMASKED?

 // Hint: Which pool(s) of resources are being given up here?

 // What needs to happen to make them available?

 if (MASKED == maskedOrUnmasked)

 V(maskedSem);

 else

 V(unmaskedSem);

}

// Managers call this to print line lengths.

void print_line_lengths() {

 // Your code here

 P(count_mutex)

 printf (“Masked line: %d\n”, masked_line);

 printf (“Unmasked line: %d\n”, unmasked_line);

 fflush(sdout);

 // Your code here

 V(count_mutex)

}

