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Abstract 
An attractive approach to architecture-based design is 

to structure the development process into two tiers. The 
top tier represents the abstract design (or architecture) of 
a system in terms of abstract components. The bottom tier 
refines that design by making specific implementation 
decisions, such as platform, middleware, and component 
implementations. While attractive in principle, there has 
been relatively little industrial-based experience to shed 
light on problems and solutions involved in such an ap-
proach. In this paper we describe our experience in de-
veloping tools to introduce a two-tiered model-based ap-
proach to the design of Ford Motor Company’s automo-
tive control systems, highlighting the principle chal-
lenges, and evaluating the effectiveness of our solutions 
for them. 

Keywords: Model-driven architecture, architecture-
based design, architecture design tools, software devel-
opment environments. 

1. Introduction  

Over the past decade industry has become increasingly 
aware of the value of architectural models and architec-
ture-based design. Architectural models define a system 
at a high level of abstraction – typically in terms of a sys-
tem’s interacting components – where major design trade-
offs can be analyzed before committing to a particular 
implementation. Architecture-based design typically starts 
with an abstract architecture and then refines that model 
to the point where the system can be directly imple-
mented. 

For many classes of system it is helpful to structure the 
process of architecture-based design into two phases. In 
the first phase system architects design a system in terms 
of abstract capability, postponing implementation deci-
sions, such as execution platforms, communications infra-
structure, and component implementations. In the second 
phase implementation commitments are made in a struc-
tured and systematic way. For example, abstract compo-
nents can be assigned to platforms, middleware can be 

chosen to support distributed interaction between compo-
nents, and component libraries can be used to select im-
plementations for the abstract components. 

While attractive in principle, a two-tiered approach to 
model-based development raises a number of interesting 
issues that have yet to be fully understood. What kinds of 
notations are best used to represent the two levels? What 
kinds of architectural features should be modeled at each 
level? What parts of the refinement process can be auto-
mated? How well does the approach scale to realistic sys-
tems? To what extent does the application domain influ-
ence the process and artifacts? 

In this paper we offer insight into these issues by de-
scribing our experience of developing a tool to support 
two-tiered design methods for automotive control systems 
at Ford Motor Company. Currently, Ford has detailed 
component specifications in the form of Simulink [9] 
models. However, they are currently only able to perform 
component level analyses. Composition of the Simulink 
models is currently performed manually, and even con-
structing small subsystems can take a matter of weeks; 
composing an entire automotive software system is infea-
sible with this approach. Our goal was to provide auto-
mated assistance that introduces a two-tiered modeling 
process and dovetails well with Ford’s current practices. 
In particular, Ford engineers desire to initially design 
their systems at a high level of abstraction in terms of 
abstract entities such as controllers, sensors, and schedul-
ers. These components could then be associated with spe-
cific component implementations and their Simulink 
models, and used to automatically produce a more de-
tailed composition on which detailed design analysis 
could take place. 

As we will illustrate, architecture description lan-
guages and their associated tools can play a central role in 
supporting two-tiered architectural design. However, 
there were a number of difficult technical hurdles that we 
had to surmount – hurdles that we suspect will be charac-
teristic of many other domains in which this kind of sup-
port is required. Section 2 discusses some related work. In 
Section 3 we discuss the approach we used, give an over-
view of our tool (called Synergy), and present an example 
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problem to provide context. Section 4 & 5 discuss the 
notational and technical issues encountered and the solu-
tions we used.  We conclude with a review of the imple-
mentation status and evaluation of results. 

2. Related Work 

The use of two-tiered approaches to software devel-
opment extends back to early specification languages, 
such as Larch [6], which advocated the separation of ab-
stract capability from implementation details. More re-
cently the Object Manage Group has been promoting 
model-based design using a two-tiered approach that they 
refer to as “Model-Driven Architecture.”  (MDA) [10].  
MDA is motivated by similar concerns to ours, but at-
tempts to advance the state of understanding about how to 
carry out such an approach in the context of real systems, 
complementing existing development methods, and lever-
aging special features of a product domain (in our case 
automotive control systems). 

Within the area of architectural design, many people 
have advocated the importance of multi-view approaches 
[3][8].  A two-tiered architectural method can be viewed 
as a specialization of such approaches, focusing on two 
specific architectural views: an abstract and a concrete 
view. The specialization allows one to consider general 
questions of multi-view consistency, and requirements for 
multi-view tools in a more limited, but tractable, context. 

There has been considerable recent interest in model-
based approaches to embedded control systems, such as 
automotive and avionic. For example, the DARPA-
sponsored MoBIES Project specifically focuses on this 
area, and has developed a number of techniques, nota-
tions, and tools [2]. Our work fits within that general 
category of research, but explores the specific conse-
quences of using architecture description languages as the 
carriers of embedded systems designs. 

The ISIS group at Vanderbilt has been working with 
Ford on a similar project [7].  They have so far focused 
primarily on handling constraint satisfaction within a 
large design space through BDD trees.  Their solution 
uses a single abstract view and presents the acceptable 
solutions to the given constraints.  The single view model, 
however, prevents the user from fine-tuning or validating 
the selections. 

3. Two-tiered Architectural Design 

In this section we describe a motivating example that 
is typical of the work of a Ford engineer designing an 
automotive software system. We cover the architectural 
styles for background.  We describe in general terms a 
scenario of what engineers need to do, and then continue 
with how to think about this example in architectural 

terms. We then briefly introduce an architectural tool, 
AcmeStudio, which is a typical software architecture en-
vironment. Following this, we show how Synergy, an 
augmentation of AcmeStudio, supports the scenario. 

3.1. The Problem 

Ford Motor Company, like many in the automotive in-
dustry, build software systems for all their car models. 
The software used in these systems is life critical, where 
the failure can cause loss of human life. To address this, 
Ford develops Simulink models of their componentry so 
that they can conduct rigorous analyses of these compo-
nents to help ensure reliability. These models are a de-
tailed specification indicating all component interfaces in 
addition to properties supporting simulation. Component 
models are reused and iteratively changed across projects. 

Despite having the ability to analyze individual com-
ponents, producing assemblies of these components to be 
analyzed is problematic and does not scale. Currently, 
these compositions, if they are built at all, are constructed 
manually. Because components typically have dozens of 
interfaces each, manually connecting them is tedious and 
error prone. One of Ford’s main needs is to determine 
whether all input ports in a model are connected. If any 
input port has not been connected the final system will 
not work. However, for a typical six component subsys-
tem, Ford engineers report that construction takes ap-
proximately two weeks. The handful of large (50 compo-
nent) vehicle control subsystems developed have taken 
six months to produce.  

Factor in that there are multiple choices for each com-
ponent (e.g., it is possible to use one of several wind 
shield wiper servos), and the combinatorial explosion of 
possible combinations quickly makes manual construc-
tion absolutely infeasible. 

However, this problem presents an ideal opportunity 
for automated tool support. Typically, engineers think of 
constructing their software in terms of abstract system 
architectures. Detailed compositions, called assemblies, 
are only necessary when performing detailed analysis. 
Thus, we introduced a two-tiered modeling approach that 
reflected this, and allowed assemblies and composed 
Simulink models to be automatically generated.  

3.2. Overview of Approach 

Thinking about a software system in terms of its com-
ponents and interactions can be represented with software 
architectures [1][11][14]. A software architecture repre-
sents a system in such a way, and is amenable to auto-
matic analysis. To model an architecture in a specific do-
main, it is common to use an architectural style [4]. An 
architectural style is a vocabulary of the possible types of 
components, connectors, and interfaces that can be used 
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in a particular domain, in addition to rules governing the 
correct composition of these elements. RootT

To address the problem described above, we intro-
duced two levels of architecture representation to be used 
by Ford: the high-level System Architecture and the low-
level Assemblies. These levels of abstraction are repre-
sented by two related architectural styles, which will be 
discussed in Section 3.3. In this section, we discuss a 
typical scenario for which Ford engineers desire tool sup-
port. 

BaseT ExternalT 

SchedulerT IODriverT DigitalDeviceT

SensorT ControllerT PlantT 
An engineer starts designing the software for a car by 

creating a high level architecture of the system. At this 
level, the engineer is only concerned with the high-level 
vocabulary of Servos, Managers, etc, rather than particu-
lar implementations or specializations of these. For ex-
ample, at this level the engineer may only be concerned 
with putting together a system architecture for the cruise 
control aspect of the car, and not be concerned about the 
low level details such as particular connections, timing 
requirements, or memory footprint of particular imple-
mentations of a cruise control manager for a particular car 
model. At this level, the engineer is concerned with 
whether the system is well-formed and consistent, and 
also which subsystems of the car interact with other sub-
systems. Because the system architecture is abstract, it 
can be reused in other products, both within Ford or its 
subsidiary companies. 

Figure 1. The Component Types of the Sys-
tem Architectural Style. 

 After creating the system architecture, the engineer 
associates the abstract components with component mod-
els that are stored in a repository and which may be re-
lated to particular products within the automotive lines. 
They are reused for new abstract architectures.  

In order to manage the complexity of the architecture, 
the engineer may divide the architecture into sub-systems 
and compose them in a hierarchical fashion. In such cases 
the user must associate the deepest components of an ab-
stract component with component characterizations. 

After associating abstract components with characteri-
zations of those components, the engineer needs to pro-
duce an assembly from this abstract design. This assem-
bly is based upon platform-specific information provided 
by the component characterizations, and involves choos-
ing among multiple alternatives for components.  

The final step of the process is translating assemblies 
into Matlab/Simulink models of the entire subsystem. The 
assemblies can then be imported into Matlab, and pre-
existing analyses and simulations of the system can be 
conducted. 

3.3. Architectural styles 

Although each tier of our approach is closely related, 
we developed two architectural styles to allow modeling 
at each level in Acme [5]. When working at the system 
architecture level, Ford engineers use the Ford-System 

Architecture style to create abstract architectural models. 
These models are then translated by the tool into architec-
tural models in the Ford-AssemblyR style. 

To design these styles, we analyzed documents, Mat-
lab models, and papers provided by Ford researchers. We 
then created Acme families based on these artifacts by 
defining element types and creating rules.  The high-level 
vocabularies of these styles consist of component types, 
their expected forms of interaction in the form of connec-
tor and interface types, and a set of constraints (heuristics 
and invariants) on how components should be assembled 
into abstract or low-level systems. 

The Ford System Architectural style consists of the 
following elements: 

- Ten component types organized as depicted in 
. The component type RootT defines a 

property allowing a component characterization 
to be assigned to a component. At this level, the 
components in the architectural style merely in-
teract with other components via input and out-
put ports. These ports are defined in BaseT. Ex-
ternalT represents the point of interaction be-
tween the subsystem being defined and other 
systems. For example, if the cruise control sub-
system must interact with the brake subsystem, it 
does so through this component. 

Figure 1

- One connector type, called CSignalT that all 
components at this level must interact through. 

- Associated port and role types for input and out-
put, representing interaction points between 
components and connectors. 

Figure 2 illustrates the abstract architecture of our ex-
ample cruise control system. At this level, the architec-
tural style is not particularly rich. Ford engineers are only 
concerned about the interconnections between compo-
nents at this level. Rules specify that all ports must be 
attached to roles, and that BaseT’s contain a single ab-
stract input and output port.  

At the Assembly level, engineers are concerned with 
detailed knowledge of the connections between compo-
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nents. Thus, while the component types at this level are 
the same as at the abstract architectural level they may 
have any number of input and output ports showing de-
tailed communication.  Additionally there are two new 
connector types: 

- ManSignalT, indicating a signal connection 
added by the user at the assembly level rather 
than automatically generated from the system ar-
chitecture. 

- Bus, representing a specific publish-subscribe or 
shared data bus connection. 

Because architectures in this style are generated from 
the higher design, this style does not have any new rules 
on its connections. Similar rules to the high level are 
maintained in case engineers manipulate the model at this 
level.  

Figure 2. The System Architecture of the 
Design. 

In this experience we extended AcmeStudio so that it 
supports the two architectural styles that were developed 
for Ford, the ability to read Ford’s Simulink component 
models, and generation of assemblies from high level 
system architectures. This tool is called Synergy. In this 
section we give an example of using Synergy to support 
the scenario described above. In later sections, we discuss 
the issues that we needed to resolve in order to make this 
tool useful to Ford engineers. 

Generation of the Assembly level from the System Ar-
chitecture level involves elaborating connections between 
components in detail. All the possible ports on a compo-
nent are enumerated.  Then all legal connections for those 
ports to other components are made. This detail is pro-
vided through the component characterizations and the 
connections made at the system architecture level. 

3.4.1 Creating the abstract design 
3.4. Overview of Synergy To illustrate the use of Synergy, and to give an impres-

sion of its capabilities, we follow the design of a simple 
and generic cruise control system. The demo system dis-
cussed further in the paper is rather simple. 

A typical architectural development environment pro-
vides support for producing architectural models, and 
conducting architectural analysis to determine properties 
of the model, such as performance, quality, and correct-
ness.  

The system represents a cruise control system that con-
sists of  the following components: 
- “ExternalIO”. This ExternalT component provides a 

bridge between this system and other outside sys-
tems. This component sends parameters to “Sched-
uler” and “Manager” components such as scheduling 
periods and cruise settings respectively. 

Many architectural design tools are written to work 
with a particular architectural style, and making them 
work with other or customized architectural styles is dif-
ficult. More recently, architectural tools have been devel-
oped that allow users to customize the environment based 
on particular architectural styles. Among these include 
Unicon [15], Mae [12], and AcmeStudio [13].  

- “Scheduler”. This SchedulerT component manages 
usage of hardware resources of the system and sched-
ules all the components. 

We used AcmeStudio as a basis for this project. 
AcmeStudio is a style-neutral architecture development 
environment that can use any style written in Acme and 
tailor the environment for that style.  It provides access to 
the element types in the style, style-specific depictions of 
elements in the architectural diagram, and support for 
analysis of rules. Quite recently, AcmeStudio has been 
retargeted to the Eclipse platform, which enables exten-
sion through the notion of plugins. AcmeStudio takes 
advantage of this feature to allow style-specific analysis 
to be integrated and used by designers. These extensions 
allow customization of the user interface, specialized 
views of the architecture, and access to extra analyses. 
This meant that it was possible to reuse a large body of 
code, and concentrate only on the areas specific to Ford. 

- “Manager”. This ControllerT component is responsi-
ble for controlling the Servo component. 

- “Servo”.  The ActuatorT component manipulates 
physical devices.  The physical devices are not in-
cluded in this example, but can be modeled with 
PlantT components. 

- “Monitor” is a SensorT type which reads data about 
the hardware from the servo and sends results to the 
manager. 

The user creates an abstract architecture of the demo sys-
tem without any platform specific details (see Figure 2).  

At this abstract level a component of the architecture is 
represented with two ports (input and output). These in-
put and output ports are interfaces to other components of 
the design. Connectors are represented as buses that con-
nect interfaces of the architecture’s components.  
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After creating the abstract architecture Ford engineers 
must either associate each component to existing Simu-
link models or refine the component as a subsystem.  
Synergy allows the user to browse and select a Simulink 
model to associate with a component in the project, as 
depicted in Fi . In this version of Synergy, there is 
currently no check that the right kind of Simulink model 
is assigned to a component. For example, a scheduler 
model could be assigned to an Actuator component. An 
error of this sort only becomes apparent in later stages of 
the design. 

gure 3

Design choices between alternative Simulink models 
or subsystems can be specified through AcmeStudio’s 
support for multiple representations. For each possible 
choice, a new representation of a component is created, 
with subcomponents. A component characterization rep-
resenting the particular alternative is then assigned to 
subcomponents.  

3.4.2 Creating the assemblies 
After the user creates the abstract architecture and as-

sociates its components with component characteriza-
tions, Synergy allows the user to generate low-level archi-
tecture alternatives or “Assemblies”. The low-level archi-
tecture elaborates details of the abstract architecture and 
they are described as follows: 
- The set of input and output ports are completely 

enumerated. These sets are detailed refinements of 
the abstract input and output ports shown in System 
Architecture.  

- Connectors of the design at the assembly level are 
detailed representations of the buses used at the ab-

stract level. These buses are refined as end-to-end 
connectors, each having only two roles connecting 
two neighboring components.  

At this time legal connections are defined by a match 
of input port name and output port name.  The buses cre-
ated in the system architecture are first represented as 
hashtables. The name of output ports connected to the 
high level bus is added to the table. Then, for every input 
port connected to the bus, the corresponding output port 
is found in the table and a point-to-point connector is 
added to the assembly. Subsystems are handled recur-
sively, built from the bottom up.  Though no data have 
been collected, this solution should scale linearly with the 
total number of ports in the system – an important feature 
as a large system could contain thousands of ports.  

For example, onsider the bus in between the ‘Sched-
uler’ and ‘Monitor’ in Figure 2. That bus becomes a 
hashtable of all the output ports from the scheduler com-
ponent. The Manager, Monitor, and Servo components all 
have input ports attached to the bus and thus may search 
that hashtable for connections. For the ‘Monitor’, the port 
named ‘trig_etc_monitor_fast’ will match with the output 
port of the same name on the ‘Scheduler’ component as 
shown in Figure 4. 

Figure 3. The user links Acme components to 
Matlab/Simulink models. 

Such detailed representations of components and con-
nectors empower the user with the ability to conduct com-
plex analyses using heuristics and constraints of Acme 
architecture description language and/or custom-
developed analyses that could be plugged into Synergy. 

We added two analyses that demonstrate this plug-in 
feature.  The first takes a numerical property (CPU usage 
in our case) and sums across all components, checking if 
the final total is less than the system wide constraint 
specified by the user.  The second gives a suggested 
scheduling order, by creating a dependency graph using 
Apache’s Commons project graph code.  Cycles are iden-
tified and reported, then a possible ordering suggested. 

3.4.3 Generating Simulink Models 
Ford’s primary model analysis tool is Mat-

lab/Simulink. Thus it was vital that Synergy produce 
Simulink models from the designs.  As noted above, all 
the atomic components are linked to Simulink models.  
Additionally, all the ports in the assembly view map di-
rectly to ports in the Simulink model.  Using those map-
pings Synergy generates a model using the Simulink 
scripting language.  An example of the Simulink model 
generated by Synergy is presented in Figure 4. Once run 
through Simulink the model can be re-imported into Syn-
ergy as a single component, allowing for iterative devel-
opment of ever larger models.  
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Figure 4.The Assembly for the Design.

Summarizing this example – we have given Ford ar-
chitectural styles tailored to their domain modeling prob-
lems.  AcmeStudio provides an effective tool for develop-
ing abstract architectures of vehicle control systems. The 
Synergy extension to AcmeStudio automatically gener-
ates a more detailed view of the ‘assembly’. The user is 
then able to review, analyze, and modify the details of the 
design. Finally the entire assembly can be converted to 
Simulink for further analyses. 

 

4. Representation of component architec-
tures 

Although in the example above, the use of Synergy 
seems straightforward (because it was designed that way), 
we had to deal with a number of representational issues.  
Other architectural approaches to multilevel design are 
likely to encounter similar issues.     

4.1. Styles of multiple representations 

The most obvious issue in multilevel design is how to 
represent each level.  We needed two design levels, the 
more abstract System Architecture, and the detailed As-
sembly. As our intent was to simplify component compo-

sitions, the abstract level needed to be easily created by 
the user. We also wanted the ability to do some analysis 
at the abstract level before generating detailed assemblies. 
The detailed level had to support the many ports and con-
nections present in the system as well as the properties to 
be analyzed. In our case we used the Acme ADL for both 
levels. To better represent the features of the two levels, 
we used different architectural families for the two levels. 
The family provides and requires the attributes and design 
restrictions appropriate to that level. While it would be 
possible to use different languages for each level, using 
the same one as in our case means that engineers don’t 
have to learn to two different tools. And since both views 
and manipulations are architectural, it made sense to use 
the same language.  

4.2. Hierarchy 

Ford’s vehicle control models are likely to include one 
hundred different components. Managing that scale re-
quires breaking the system into modules and subsystems 
via architectural hierarchy. In fact, Ford engineers gener-
ally work with only five or six components at a time, con-
structing large systems from these subsystems. Addition-
ally, hierarchy provides a mechanism for re-using assem-
blies. Thus large architectures can be built in a bottom-up 
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Figure 5. The Simulink Model generated by Synergy 

approach from previously built assemblies. In our case 
hierarchical design was supported through Acme repre-
sentations. In representations, the abstract component is a 
place-holder for the underlying sub-structure, a scheme 
which matched our intended use of hierarchy.   

The interface to the subsystem must be clear for the 
engineer to make use of the subsystem. At the system 
architecture level a single input and output port is suffi-
cient, however the details must be identified somewhere. 
This interface must also be mapped to ports within the 
sub-structure. In some cases the mapping from external 
port or ports to internal structure will have higher than 1:1 
cardinality – for example an internal source ‘A’ may sup-
ply data to two components outside the subsystem. In 
these cases a mechanism for one to many mapping is 
needed which can distinguish the different possible mean-
ings applicable to the domain. One to many mappings 
could be fan-in, fan-out, a priority arrangement, a rotation 
of usage, or some other meaning depending on the do-
main. Some method is required to indicate this choice in 
the model (so that it can be used in analysis, for example). 
Unfortunately, no mechanism currently exists in Acme to 
make this possible, and so handling different kinds of one 
to many mappings was not supported.   

4.3. External interfaces 

Any design will need to interface with other systems, 
requiring that the system representation includes facilities 
for identifying that interface. The interface is also crucial 

to using hierarchy and building progressively larger archi-
tectures. The question becomes how that interface is de-
termined. Options include explicit specification by the 
designer, automatic generation from the available ports of 
the system, or leaving unbound ports. Explicit specifica-
tion enables the system to check for completeness, but 
requires a lot of extra work for complicated interfaces. 
Automatic generation is easier on the user, but could 
mask incompleteness by generating additional inputs. 
Leaving unbound ports allows the user to review the in-
complete system to pick needed inputs, but prevents full 
analysis. One of Ford’s main needs is to determine 
whether all input ports in a model are connected. If any 
input port has not been connected the final system will 
not work.  Thus we chose to have the interfaces be ex-
plicit. Having explicit interfaces allows us to check and 
verify the completeness of the system, both for inputs and 
expected outputs. 

However, within hand built sub-systems, we generated 
the interface from unsatisfied input (or required) ports, 
and any output ports used by the rest of the system. We 
did not allow the user to specify or restrict which compo-
nents (or ports) within a sub-system would map to its 
interface. For the highest level of the System Architecture 
the user must specify the interface through the use of spe-
cial components representing external systems. This is not 
an especially intuitive mechanism.  A more intuitive 
model would make a single choice between generated and 
specified interfaces. However, the method does allow for 
a designer to maintain control of the interface to be ex-



Submitted for publication. 

posed to other systems, while making modularization 
within the system easy. 

4.4. Expression of alternatives 

For Ford, exploration of design alternatives is an im-
portant feature. With a large collection of components 
there are often multiple choices which fulfill the required 
interface yet still have different properties. Ford often 
uses a single architecture across several car makes and 
models, the differences coming in the choice of compo-
nents to fill in that architecture. The abstract component 
representation must be able to express these alternatives. 
Since the number of alternatives grows exponentially, the 
scalability of constraint checking across the possibilities 
may be heavily dependant on representation. Even after 
constraint checking, a single system architecture can gen-
erate a large number of assemblies. Each of these will 
need to be stored and presented in some navigable man-
ner. The user may also wish to review how constraint 
checks eliminated certain alternatives, requiring the soft-
ware to present easily searched reports on the fate of all 
choices.  

Vanderbilt used a special alternative component type 
to indicate choices. We used Acme’s allowance for mul-
tiple representations to express choice points.  Each rep-
resentation for a component represents a potential choice. 
This mechanism is fairly heavy for a choice between two 
components. However, it does allow for choice points 
between entire subsystems – which may contain their own 
choice points.   

4.5. Component linking 

When the design must link to an existing set of com-
ponents or models, the architecture description needs to 
support that link. Component linking is especially impor-
tant when the architecture must integrate with external 
tools as discussed in 4.6. We used a property on each 
component to indicate which model to link to the archi-
tectural component. Every component to be used is 
placed within the project directory making selection via a 
browser easy.  Unfortunately we did not find a way to 
prevent erroneous linkages – such as mechanical models 
with software models. Using a property rather than nam-
ing, allows the user to construct the architecture using a 
naming scheme appropriate for that design while linking 
to models named with a different scheme. 

4.6. Analysis support 

Additionally various properties are needed to support 
analysis of the system. We supported analysis on three 
different kinds of properties. The first kind is checked by 
AcmeStudio and includes architectural constraints, as 

well as properties added by the user directly to the archi-
tecture description. The second set of properties is pulled 
from the Simulink models – either analyzed through 
Simulink directly or added to the architectural description 
automatically. The component linking mentioned above 
enables Ford to take full advantage of Simulink’s power 
on assemblies generated by Synergy. Lastly, our tool uses 
its own component characterization file.  Properties added 
to the characterization can be analyzed through an analy-
sis plug-in framework in Synergy. 

 
We presented a number of questions at the beginning 

of the section. The solutions we chose to these issues 
heavily influenced the development of Synergy. Similar 
but separate styles make automatic conversion easy, while 
supporting the difference in detail. We used AcmeStu-
dio’s built in representations to support hierarchy and 
thus enable generation of large modules in an understand-
able fashion. The external interface for a design is speci-
fied by the user through use of a special component.  In-
ternally, Synergy automatically generates the interface 
between hierarchical levels. Design space is also sup-
ported by Acme representations, considering them to be 
mutually exclusive alternatives. Linking to existing mod-
els is provided by Acme properties and a convenient 
browser dialog. Lastly, an analysis plug-in framework is 
part of both Synergy and AcmeStudio.  We felt that our 
architectural representation is rich enough to support 
many more analyses than we could develop. Thus we 
built Synergy to make it simple for the customer to add 
more without having to address representational issues. 

5. Tooling Issues 

Usable multilevel design software requires more than 
just appropriate representation solutions. The user needs 
to be able to construct architectures easily, view them, 
and analyze them – often using other software.  In par-
ticular the developer must provide tool support for 
graphical editing, layout of generated views, and integra-
tion with other analysis tools. Lastly, as there are multiple 
views representing the same design, consistency checking 
is also important. 

5.1. Visualization & usability 

Software architectures can be described using an archi-
tectural description language, but a textual description 
may be difficult for users to read and understand. It is 
more natural to deal with the architecture graphically, 
where relationships between components can be made 
clear. Since we had adopted the Acme architectural de-
scription language, we could utilize the AcmeStudio de-
sign tool to provide a graphical visualization of the 
model. AcmeStudio also provides a way for users to 
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compose models visually. To create a new model, users 
simply drag-and-drop new components from a palette of 
pre-defined types. Beginning users will likely stick to the 
graphical user interface, however, advanced users may 
still edit the underlying Acme architectural description 
directly. 

5.2. Layout Tools 

Rather than generating source-code from a model, our 
modeling tool generates one model from another. Once 
generated, the user must be able to visually inspect the 
new model.  The newly generated model contains signifi-
cantly more detail than the source model, and care must 
be taken to keep the model readable. Components should 
be laid out intelligently so that connections between com-
ponents remain clear. Clarity remains a challenge within 
these highly detailed models, where each component may 
involve twenty to thirty individual connections.   

The right layout algorithm can help reduce the visual 
complexity of the generated diagram. Existing graph lay-
out algorithms generally try to optimize a particular aes-
thetic quality of the diagram, for example, minimizing the 
number of connection bends and overlaps. Choosing an 
algorithm is generally a tradeoff between these different 
aesthetics, as well as running time and development ef-
fort. In the end, the team settled for a heuristic-based ap-
proach. The layout algorithm used here takes the original 
system architecture as a starting point, adjusting the posi-
tions of components to meet a minimum acceptable level 
of readability. This helps promote some correspondence 
between the system architecture and generated assembly. 
It provides the user some influence over the generated 
layout, but it relies on the user to place components intel-
ligently within the system architecture. 

5.3. Integration with analysis tools 

The tool fills a small but critical niche in the model-
based development cycle, so it should not be considered a 
stand-alone tool. Rather, it must work in cooperation with 
the other tools at the modeler's disposal. Foremost among 
these is the Mathwork's Simulink modeling and analysis 
package. Simulink provides the individual component 
models that serve as building blocks within our tool. 
Simulink also provides advanced analysis capabilities for 
verifying completed assemblies. Our tool must therefore 
be able to translate models to and from Simulink. 

Unlike in the object-oriented world, the embedded sys-
tems community has yet to adopt a standard format for 
exchanging models between tools. In the meantime, tool 
developers must choose from one of several candidate 
formats. Acme's roots as a generic description language 
makes it a suitable candidate for model interchange. 

Translating the models between Simulink and Acme was 
fairly straightforward. 

Once settling on the Acme ADL, the team was able to 
make advantageous use of the existing Acme toolset. 
Foremost among these was AcmeStudio, a tool for com-
posing and analyzing Acme models. AcmeStudio is itself 
built upon the Eclipse open-source development envi-
ronment. Eclipse provides a ready-made framework for 
integrating individual development tools under a common 
user interface. The cornerstone of this framework is a 
well-developed plug-in mechanism for expanding a tool's 
capabilities. The Eclipse framework allowed the team to 
deliver the core functionality in one plug-in, saving ad-
vanced forms of analysis for a later plug-in. Several more 
plug-ins supporting additional data formats and analyses 
will expand the tool's usefulness and reach. 

5.4. Consistency Issues 

With multiple models involved in the development 
process, consistency between models becomes an impor-
tant issue. The tool gives the developer free-reign to 
tinker with the design at both the high and low levels of 
abstraction, so keeping everything synchronized remains 
a challenge. Changes to the system architecture or indi-
vidual component models must be carried forward into 
the generated assemblies. Today, this is accomplished 
automatically by regenerating the assemblies. Reverse 
engineering is not supported, because developers are ex-
pected to make at most minor targeted changes to the as-
semblies.  

 
We used AcmeStudio to provide graphical editing of 

architectures as well as the previously mentioned repre-
sentational facilities.  Automatic layout will always be 
difficult for larger, more complicated systems.  To sim-
plify the problem we took advantage of the user con-
structed system architecture as a starting point.  Integra-
tion with other tools was a major requirement from Ford, 
which led us to select Eclipse and AcmeStudio as a base 
for plug-in development.  Ford is focused on the architec-
ture and pushing for automatic generation, thus Synergy 
maintains consistency in a feed-forward mechanism, re-
generating the detailed model when requested. 

6. Implementation status 

Synergy has been built and delivered to Ford.  Synergy 
is best considered a prototype at an alpha or beta devel-
opment status.  Ford is currently evaluating the tool, and 
has expressed interest in further development. 

Synergy was created by five students in the Master of 
Software Engineering program at Carnegie Mellon Uni-
versity.  Our experience report comes from one calendar 
year of work as part of the masters program.  Synergy is 
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an augmentation of AcmeStudio and uses AcmeLib, both 
developed by the ABLE group at Carnegie Mellon.  As of 
writing, Synergy contains about 160 source files using 
Eclipse, AcmeStudio and AcmeLib. To support Ford’s 
interest in further development, another group of masters 
students will be working on Synergy over the next year.  
Areas for future work include:  
- Improving support for hierarchy through interface 

specification or restriction. 
- Development of more architectural design rules and 

heuristics. 
- Improved component layout generation. 
- Integration with Ford’s enterprise wide repository of 

components, possibly including automated search. 
 

7. Evaluation 

While Ford has had considerable success in simulating 
individual software components, the complexity of build-
ing assemblies of components has prevented larger scale 
model development.  We took a two-tiered approach to 
solving the problem.  The user is able to work with 
enough abstraction to design a large system.  Synergy 
then automates the time consuming process of connecting 
the components and checking constraints across alterna-
tives.  As discussed earlier, Synergy also handles issues 
such as component linking, consistency, and hierarchy.  

The initial reaction from Ford has been very positive.  
In a demo we were able to build a system in twenty min-
utes that would have previously taken two weeks.  They 
estimate that large systems which took six months previ-
ously, would now take about two weeks.   

The Synergy project illustrates a number of lessons. 
There are several notational and tool support issues which 
any similar endeavor will encounter. To be useful the tool 
must support graphical construction of architectures and 
layout of any generated diagrams. If editing is allowed at 
all levels, consistency becomes a particularly difficult 
problem. The notation of the solution must contain repre-
sentations for hierarchy or else the designs will be too 
complex to be understood. A means of specifying the 
system’s interface is needed as well as a way of linking to 
existing component characterizations. For domains where 
a large number of components exist, expression of design 
choices and constraint satisfaction are particularly impor-
tant issues. An extensible analysis framework will greatly 
enhance the system’s value. For example, Ford and Volvo 
have similar design and architecture needs. However, the 
components and analyses they use are different. Synergy 
allows both companies to capitalize on the same tool by 
adding analyses specific to their needs rather than build-
ing separate tools. 

Not all of these issues are challenging, but a successful 
project must have considered and decided upon a solution 

for them.  The more challenging issues will be difficult to 
solve if they are not considered upfront.   
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