From Computers Everywhere to Tasks Anywhere:
The AuraApproach

Jodo Pedro Sousa and David Garlan

School of Computer Science
Carnegie Méellon University
Pittsburgh, PA 15213 USA
{jpsousalgarlan@cs.cmu.edu}
http://www.cs.cmu.edu/~aura/

Abstract

A critical problem for ubiquitous systems engineering is to exploit resource-rich environments
without burdening the user with their configuration and management. A particularly important
aspect of this problem is to support continuity in the face of mobility and dynamically varying
resources. In this paper we argue that a solution to this problem requires new system-level com-
ponents and architectures. Specifically, we describe our design of a personal “Aura” component
that acts on behalf of a user to manage resources, provide continuity, and support high-level user
tasks.

Key words: ubiquitous computing, software architecture, task modeling, task-oriented comput-
ing, fidelity-aware computing, context-aware computing.

Submitted for publication 20 April 2001

1 Introduction

Ubiquitous computing presents both an opportunity for users and a challenge for system engi-
neers. For users, a wealth of computing, informational, and communication resources available
everywhere should allow them to work more effectively. For system engineers, however, there is
the challenge of harnessing these resources without overburdening users with management of the
underlying technology and infrastructure.

One particularly important aspect of this problem is to support continuity in the face of time-
varying resources. While ubiquitous computing promises to make many more resources available
in any given location, the set of resources that can be used effectively is subject to frequent
change — both because the resource pool itself can change dynamically, and because a user may
move to a new environment, making some resources available and others inaccessible.

As we detail later, traditional solutions normally associated with mobile computing are inade-
guate to solve this problem either because they are unable to exploit resources as they become
available in a user’s environment, or because users must pay too high a price to manage those
resources. In Project Aura we are developing a new solution to this problem based on the intro-
duction of a concept of a personal Aura. This solution builds on existing efforts to provide ser-
vice location and discovery, and also incorporates research on fidelity-aware computing, context-
aware computing, networks, and human-computer interaction.

The intuition behind a personal Aura is that it acts as a proxy for the person it represents: when a
person enters a new location, her Aura negotiates the marshalling of the appropriate resources in
support of the person’s tasks." The Aura shields the person from the variability of computing en-
vironments as well as from the instability of resources. Moreover, it can play a proactive role in
anticipating the future needs of the person. Figure 1 illustrates this idea, using a thick arrow of
distracting interactions between a user with no personal Aura and the pervasive infrastructure, on
the left, and on the right, a thin arrow of meaningful, distraction-free interactions between a user
and his personal Aura: all the hard work in setting up and managing the pervasive computing in-
frastructure is being done by the Aura itself. To accomplish this, an Aura needs to be knowledge-
able about a user’s personal preferences, policies, and on-going tasks.

While an appealing idea, from a systems engineering point of view there are a number of hard
guestions: Which should be the responsibilities of the system components embodying the concept
of Aura? What kinds of information should they capture, and what forms should that representa-
tion take? How do those components interact with other parts of the computing infrastructure?

In this paper we present a set of answers to these questions. Section 2 outlines related work. Sec-
tion 3 then identifies the challenges in ubiquitous computing that are addressed by our research,
proposes criteria to evaluate solutions to those challenges, and gives concrete examples of the
features and properties that our system can support. Section 4 describes the architecture that we
have adopted to support the concept of a personal Aura, enumerates the responsibilities of each of
the components in that architecture, and illustrates how those components interact in terms of a
concrete scenario. An especially important role in this architecture is played by task descriptions:
we enumerate the requirements that are imposed by such a role, identify the features of task de-
scription languages that address those requirements, and argue why existing workflow languages
do not support all of those requirements. Section 5 presents an account of the state of the imple-
mentation of the Aura architecture, and Section 6 summarizes the principal contributions.

! When we refer to tasks in this paper, we mean tasks that are carried out by people using the ubiquitous
computing infrastructure, rather than to tasks in the operating system sense of a schedulable process.

Computing
Infrastructure

Figure 1. Auraas a proxy for people

2 Reated work

The area of ubiquitous computing is populated with numerous research projects and approaches:
see for instance [10], [11], [12]. Many of these, however, are primarily concerned with two key
problems. One is the problem of dealing with “sensors everywhere” issues: given a highly in-
strumented environment containing various kinds of information gathering devices, how do we
use this information effectively. Key sub-problems are information filtering, fusion, and abstrac-
tion. A second key problem is the construction of new devices and services that can function ef-
fectively in a ubiquitous computing setting. Research attacking this problem includes wearables,
new sensors and actuators, adaptive portable computers, people location services, location-
independent information access, adaptable communications and network infrastructure, etc.

In contrast, our research is primarily concerned with reducing user distraction by exploiting the
resources' made available in a ubiquitous computing setting to shield the user from the underly-
ing complexity and variability. Thus our research builds on much of the other ubiquitous comput-
ing infrastructure research, but with a new primary locus of concern — namely the scarce resource
of user attention.

An important component of our research is the representation and management of user tasks. This
work is closely related to existing work in academia and industry that addresses the modeling of
tasks/workflows. In the area of distributed systems and robotics, various task description lan-
guages (TDLs) have been developed. In that work tasks are meant to be executed by computers:
TDLs are akin to programming languages endowed with special communication and synchroniza-
tion primitives [13], [14]. A different approach is taken by the business and requirements model-
ing community: workflows are used to dictate the behavior of the executing agents [15], [16],
[17]. The human-computer interactions community uses task descriptions to model the admissible
behavior of users, and derives interfaces from those descriptions [18]. In contrast, our research
on task description and execution is driven by two principles: first, that the agent executing the
task should not be strictly constrained by the task description; and second, that the primary pur-

! By resources we broadly include devices, networks, services, and applications.

pose of the task description is to enable proactivity by a third party in setting up the support for
the task. These two assumptions determine the novel nature of the task execution and error han-
dling strategies adopted in Project Aura, as we detail later.

3 TheProblem

In a world where computing and communication infrastructures are rapidly becoming pervasive,
assumptions based on workstation-oriented computing are increasingly inappropriate. First, peo-
ple’s computing needs are no longer confined to a desk in an office: computing can now also take
place at home, on the train, at the park and even walking down the street. Second, people are in-
creasingly surrounded by devices that enable computation and communication. It is not uncom-
mon for a person to have a workstation at the office, a personal computer at home, maybe a lap-
top, a handheld computer and a mobile phone; all of them potentially interconnected through
wired or wireless networks. In the future the number of potential sources of computation and in-
formation will only skyrocket, as will people’s expectations of using these resources wherever
they may be at a given time.

While such diverse, resource-rich, and pervasive computing environments promise to provide
substantial new capabilities for users, there is one significant problem: people are spending more
and more time managing the heterogeneity of technology and replication of information, instead
of focusing on the productive tasks themselves.

Thus, arguably, the central challenge for ubiquitous computing is to find solutions that satisfy two
competing goals. The first is maximizing use of available resources — that is, effectively exploit-
ing the increasingly pervasive computing and communication infrastructure. The second is mini-
mizing the distraction and drains on user attention that stem from managing those resources in a
setting where users are mobile, and where the resources in a particular environment may change
dynamically and frequently. These two goals are in opposition insofar as the more technology one
exploits, the more that is required to make it all work together smoothly and adapt to changing
circumstances.

One way that people are addressing this problem today is by supporting as much of their comput-
ing needs as possible on a machine that they can carry everywhere. This approach partially
solves the problem of user overhead in adapting computations to new environments, since it pro-
vides a uniform interface to computation and information. Unfortunately, however, it suffers from
the problem that it is not able to exploit the richness of local environments — such as external dis-
plays, processors, and input devices. Moreover, because of size, weight, and battery constraints,
the computing capabilities of mobile devices will usually be weaker than the capabilities of their
fixed counterparts with no such constraints.

A second alternative — one that deals with the limited power of mobile computing platforms — is
to compute via remote access to a computing server that stores a users personal state and prefer-
ences, much as X-terminals do today. Like portable computing platforms, this approach presents
a uniform view of the personal work setting, thus reducing user distraction. But also, like mobile
devices, it suffers from the inability to take advantage of local capabilities to maximize the utility
of the environment relative to the person’s needs. Also, it typically requires a stable, long-lived,
high-bandwidth link to the remote server.

We propose an alternative approach in which the computing infrastructure is configured auto-
matically for the mobile user, potentially using whichever computing capabilities are available or
reachable from the current location. The challenge lurking behind this approach is to understand
how to enable the system to reestablish the personalized work setting of a mobile user, recovering
the activities” execution state where it left off, and reconstituting it in the new setting. Further-

more, that reconstitution should take full advantage of the capabilities available at the local envi-
ronment, augmenting any devices that the person is carrying to provide as high a quality of ser-
vice as possible.

Currently available tools for service location and reservation, like Jini™ [19], take a first step in
this direction, by providing a way to locate available services in an environment. But more is
needed to fully address the challenge above, since service location capabilities don’t by them-
selves deal with the problem of deciding which services should be used, and how they should best
be configured to support a user’s higher-level goals. Nor do they help maintain continuity for
mobile users. Nor do they handle the problem of time-varying resources, for example as devices
move in and out of range, or communications bandwidth changes due to external load.

The essential ingredient missing is a representation of users needs and desires. To see why this is
necessary, consider the problem of adapting the computation to accommodate changing band-
width. For instance, suppose that a person is viewing a video over a network connection for
which the bandwidth suddenly drops. Should the system (a) advise that the activity can no longer
be accomplished, (b) pause the video and try to find an alternative connection, or (c) reduce the
fidelity of the video, and if so, should it reduce the frame update rate or the image resolution?
The most appropriate choice depends on the person’s intent for watching the video.

As noted in Section 1, our approach to addressing these issues is based on the introduction of an
infrastructure layer between the person and the computing environment. The purpose of such a
layer is to act on behalf of people: setting up the environment according to a person’s needs, deal-
ing with heterogeneity of platforms, variation of resources, and migration of work settings and the
associated information. Playing such role requires knowledge about the person’s preferences, the
tasks she intends to carry out, and how that intent is best served by tradeoffs among limited re-
sources. That role requires the ability to forage capabilities on the different environments a per-
son roams into. People have traditionally played this role themselves — system administrators and
users covering different aspects of it — now we want a part of the pervasive infrastructure to play
it for us. We call that layer Aura, and, conceptually, each person has one instance of it.

3.1 Capabilitiesof theinfrastructure

To make the problem more concrete, in our research we have adopted a set of benchmark scenar-
ios that describe the kind of features we expect from a pervasive computing infrastructure such as
the one we propose. While there are many possible scenarios, in this paper we consider five that
are specifically related to task instantiation and adaptation in a mobile setting, and that briefly
touch on the influence that the physical context has on tasks. We describe their main features
below, along with a short synopsis for ease of reference. (A fuller description of benchmark sce-
narios is included in the Appendix.)

The first scenario illustrates a person leaving one environment and resuming the same task in an-
other, albeit similar, environment.

Scenario 1 - Commodity computing

Fred isworking on a task at home and leaves for the office. Aura sets up the environment at the
office and resumes the same task as soon as Fred is recognized entering the office.

The following scenario illustrates a person moving through environments while having an urgent
pending task, and finding the capabilities to accomplish that task in an unanticipated location.

Scenario 2 - Marshalling services

On his way home, Fred stops at a takeout restaurant. Aura proactively marshals services at the
location, allowing Fred to complete an urgent task.

The third scenario illustrates a person resuming a task in adverse circumstances. In the first situa-
tion, Aura advises not to initiate a task due to lack of resources out of Aura’s control. In the sec-
ond situation, Aura distinguishes between what is essential to the task and what is not, assisting
the person in making the most out of the available resources. In the third situation, Aura proac-
tively scans the vicinity for resources and suggests the person to go to another location where the
task can be carried out. The forth situation illustrates the exploration of possible degraded modes
of operation, and in the fifth situation, Aura proactively scans forecasts of resource utilization to
find a time when the task can be carried out with satisfactory quality.

Scenario 3 - Helpful when it goes bad

Fred is waiting at the airport and trying to resume a videoconference. Aura helps by identifying
critical resources, where and when to get them, and what can be done with what is available.

The fourth scenario illustrates Aura’s proactivity in setting up the next possible task steps, cover-
ing several — the most likely — possibilities.

Scenario 4 - Proactive set up

Fred may or may not stop at the local library on his way to the office. Aura prepares the envi-
ronments at the different locations for the few of Fred’s most likely tasks, and monitors his
whereabouts to know exactly which work setting should be brought up and where.

The fifth scenario illustrates how the physical context places restrictions on the activities carried
out by a person, and how Aura reacts to those restrictions, helping but not hindering the person.

Scenario 5 - Context awareness

Fred is working on a task that contains sensitive information. When someone enters the office,
Aura checks the level of trust for that person and automatically hides the sensitive information.

Note that in al of these scenarios the interactions between the person and the computing infra-
structure are in terms of the tasks the person wants to accomplish and their supporting informa-
tion, and no longer in terms of individual applications or files.

4 TheAuradesign

We identify three high-level components to which we assign the responsibilities of addressing the
challengesin Section 3: first, aTask Manager component embaodies the concept of personal Aura.
Second, an Environment Manager component takes charge of finding, setting up, and managing
computing capabilities and resources. And third, a Context Observer component that reports on
the physical context where people carry out their tasks, allowing both the Task Manager and En-
vironment Manager to react to changes in the context. We elaborate the responsibilities of these
components below, and Section 4.2 illustrates how they interact during a concrete scenario.

4.1 Componentsof Aura

Task Manager. When aroaming person enters a new environment, it is the responsibility of the
Task Manager to consult the task information for that person and to proactively request the envi-
ronment to set up the capabilities that support the person’s tasks. The Task Manager assumes that
the Environment Manager holds explicit information about what the local environment can offer
— its available capabilities and resources — as determined by local devices, communication infra-
structures, and applications. Furthermore, upon dynamic changes in the available capabilities or
resources, the Task Manager negotiates the adjustments that best serve the person’s intention with
the Environment Manager.

To play such arole, there are four aspects to the knowledge a Task Manager has about the person
it represents. First, what are the preferences of the person: what are the preferred providers that
support a given capability (for instance a preference of emacs over vi for text editing,) and what
are the personalized settings for those providers (personalized shortcuts, macros, etc.) Second,
how the intent for the current activity is reflected in the preferred tradeoffs upon limited re-
sources. For instance, upon limited bandwidth does the person prefer to watch that particular
video later, or is it preferable to degrade the fidelity; and if so, which dimension of fidelity.
Third, what is the encompassing task within which the current activity fit; what are the following
steps, when are they expected, and what do they involve in terms of computing capabilities; and
what is the person’s likely trajectory for the immediate future. This knowledge is key for proac-
tively setting up the computing infrastructure. Fourth, how the physical context surrounding the
person affects each of the other three aspects; for instance in Scenario 5, how a person entering
Fred’s office prompts the hiding of sensitive information.

Environment Manager. The responsibilities of an Environment Manager are: First, matching
capability requests issued by Task Managers to the offer of local or remote providers of services,
cooperating with other Environments Managers as deemed necessary. Second, maximizing the
overall utility of a requested set of capabilities in the face of limited resources, and according to
preferences for the quality of service tradeoffs as expressed by Task Managers. Third, retrieving
and restoring the configuration and execution state of services, so to enable the continuity of a
task across different providers for the same service. And fourth, monitoring the environment,
automatically taking the necessary actions to assure the continuity of service as negotiated with
Task Managers. We detail some consequences of these responsibilities in the following para-
graphs.

An environment at a given location is defined to be the set of capabilities that can be used from
that location. Those capabilities include the ones resident on devices directly accessible by the
person, i.e., on local devices, as well as on devices that can be used via some communications
network, e.g. a remote file server. Contrast “usability” in this sense with “reachablility” in a strict
communications sense: if the person is sitting in Las Vegas, printing a document at a (reachable)
printer in Chicago may not be very handy — depending on the person’s intention. That is, the set
of usable capabilities is defined not only by the location of the person (i.e., by the devices around
her), but also by the intention of the task that the person wants to carry out. For example, printing
a document in a remote printer may be exactly what the person wants, if the document is to be
reviewed by someone else.

However, it is not practical to expect an Environment Manager at a particular location to know
about the capabilities on every location around the world. Therefore, although an Environment
Manager may know about all the local capabilities, it always has to assume incomplete knowl-
edge of the actual environment pertaining the task of a roaming person. For instance, it is the re-
sponsibility of the person’s Task Manager to let the local Environment Manager in Las Vegas
know that the person wants to use a printing capability near room X on building Y ... in Chicago.
This observation points to the need for a cooperation protocol between Environment Mangers, for
finding capabilities and allocating services across different locations. Another example of using
such a cooperation protocol is if the task requires some computing intensive activity for which the
local capabilities are insufficient. In a case like this, the Task Manager may rely on the local En-
vironment Manager to discover remote CPUs that comply with the requirements, or the task de-
scription itself may include a list of specific computers that are preferred by the person for those
purposes.

The capabilities of an environment are qualified by properties observable by the person. For in-
stance, a speech recognition capability may be qualified by the extent of the vocabulary it recog-
nizes and by the average latency of recognition. The possible values of those properties are, in

turn, constrained by the availability of relevant resources; say CPU cycles, bandwidth to remote
CPUs, battery charge, etc. So, tradeoffs arise in the face of limited resources: the person should
expect higher latencies if she prefers a larger vocabulary to be recognized. Assigning the respon-
sibility of maximizing the utility of a capability to the Environment Manager implies that, first, it
should consider aternative providers for the requested capability, and second, it should tune the
fidelity of that capability according to the preferred quality of service tradeoffs in face of the
available resources.

Note that the god of migrating tasks from one environment to another also poses requirements on
the applications and devices providing the services that support those tasks: the new provider for
a service must be willing to resume the execution state generated by some other provider serving
that task in the previous environment.*

Context Observer. This component has responsibility for observing the physical context sur-
rounding people. For instance, what is the physical location of the person (her office, the
street...) who else is in the vicinity and what is the corresponding level of trust; and what is going
on around the person (working by herself, in a formal meeting, driving a car...).

Note that recognizing the constraints that a particular context poses on the tasks is a responsibility
for the Task Manager: for instance, in Scenario 5 in the Appendix, knowing which aspects of the
task should be suspended when the Context Observer observes someone entering Fred’s office.
Likewise, it is the responsibility of the Environment Manager to know what to do with the de-
vices that a Context Observer recognizes within reach of the person: for instance, in Scenario 2,
matching the capabilities observed in the takeout Fred just walked in to the capabilities requested
by Fred’s Task Manager.

4.2 Aurain action

We now use Scenario 1 in the Appendix to illustrate the workings of Aura, emphasizing the pro-
tocols of interaction between the components identified in Section 4.1. For simplicity, we refer to
an instance of a particular component at a given location as “the component at location;” for in-
stance, “the Environment Manager at Fred’s home,” or simply, the “Home Environment.”

In Figure 2, Fred is working at home when the Context Observer notices Fred leaving the house.
The Context Observer lets Fred’s Task Manager (TM) know that Fred is leaving through interac-
tion (1). This causes Fred’s TM to undergo state transition (a) where it realizes it should suspend
the task ongoing at home. Fred’s TM then requests to checkpoint the state of each of the services
being provided as part of the ongoing task — interaction (2) — and in interaction (3), Fred’s TM
tells the Home Environment to deallocate those services.

After checking Fred’s schedule, the TM infers that he is likely to head to the office, and (4) con-
veys that information along with an estimated time of arrival to the TM at the office.? That trig-
gers state transition (b) in the TM at the office, causing it to (5) retrieve the state from the tasks
Fred has been working on in the last location.?

! For instance, the execution state associated with text editing includes the edited file, the pane and cursor
position within that file, and the editing preferences and macros.

2 We are deliberately abstracting away implementation decisions and mechanisms concerned with the in-
stantiation of Task Managers at different locations. Examples of such decisions are: whether to migrate or
replicate a TM, whether to cache it in an environment where the person goes recurrently, etc.

% The state of atask includes the task description, personal preferences, the configuration and state of all the
computing services supporting the task, as well as the manipulated information. Again we are abstracting

Fred’s TM red’s TM
. (a) 5 (b§
= a} 1 1 1 o O
52| ol ®
25 @ [(6) g2
5 8 o
Oas . [0t
Home Office
Environment Environment
Fred’s home Fred’s office

Figure 2. Fred leaves for the office

Given that, Fred’s TM at the office requests the capabilities involved in Fred’s task to the Office
Environment, (6), indicating the estimated time they will be needed. By having this advanced
notice on the requested capabilities, the Environment can do a better job at planning and manag-
ing the resources it has available. Now, there are two possible outcomes captured in the follow-
ing two figures. In Figure 3, the Environment is plentiful in resources and is willing to setup in
advance the services corresponding to the requested capabilities. So, it comes back to Fred’s TM,
(7), indicating the services allocated to cater for Fred’s computing needs. Fred’s TM is therefore
able (8) to restore the personalized configurations and execution state of those services as left off
by Fred at home. As soon as the Context Observer at the office recognizes Fred coming into his
office, it informs the TM of that — (9). This causes Fred’s TM to undergo state transition (c), re-
suming the task for Fred, and requesting the services to popup in the Office Environment (10).

In Figure 4, maybe due to local policies concerning the anticipated granting of services in face of
constrained resources, the Office Environment does not get back to Fred’s TM with a list of allo-
cated services before Fred actually reaches the office. When the TM is informed by the Context
Observer that Fred is coming into his office, (7), it makes a state transition (d) that prompts it to
resume the task for Fred: requesting the immediate allocation of services (8); and upon such allo-
cation, (9), restoring the personalized configurations and execution state of the allocated services
- (10).

Fred’s TM Fred’s TM
+ (]
52 29
£ § g =
S & | @
Oas . QX

Home Office
Environment Environment
Fred’s home Fred’s office

Figure 3. The environment is willing to setup the services before Fred reaches the office

away implementation issues like whether that state is totally or partialy (updates only) transmitted in a
point-to-point fashion, or by synchronization with a distributed file system.

Fred’s TM Fred’s TM
-) (d) B
5 2 M| g9
25 ® |© a0 1§ 2
5 8 o
Oas . [0t

Home Office
Environment Environment
Fred’s home Fred’s office

Figure 4. Fred reaches the office before the services were setup

4.3 Describing Tasks

Examples of tasks are found in the scenarios described in the Appendix: organizing a conference;
debating some topic with a number of people; interviewing and evaluating candidates to some
position; etc. Tasks are usualy long lived — they span a number of sessions — and they can be
carried out anywhere — each session can potentially be carried out at a different location.

Task descriptions in Aura obey to the following four requirements. First, we would like to be
able to instantiate tasks in diverse environments. Second, we would like to reduce distractions by
raising the level of interaction between the person and the infrastructure from individual applica-
tions and files to meaningful task steps. Third, we would like to enable proactivity in setting up
the environment according to the person’s needs for the immediate future. And fourth, we would
like the infrastructure to play a supportive rather than restrictive role with respect to people’s
tasks. We now examine how each of these requirements is addressed in our approach.

First, it is much easier to support the migration of a person’s work setting to a different environ-
ment if we have a description of what the person is doing — her task — in terms that are independ-
ent of particular platforms or application software. That is, by having a person’s activity de-
scribed in terms of the capabilities that are required to accomplish what the person wants. Exam-
ples of such capabilities are: video conferencing, text editing, printing, etc. As a person moves
from one environment to the next, the available devices or applications that have a particular ca-
pability may be very different. For instance, text editing may be supported on a Unix work-
station, on a PC running Windows, on a Palm Pilot, or on a set-top-box sitting on some airport
lounge... — and the roaming person would like to take advantage of that support to carry out her
activity. By asking the current environment for text editing capabilities, as opposed to a specific
product, say, emacs, we are able to instantiate the task in heterogeneous environments without
previous knowledge of which products support that capability.

Second, raising the level of interaction between the person and the infrastructure is achieved by
remembering the set of capabilities associated to the particular activity the person intends to en-
gage in, so that the person doesn’t have to setup those capabilities individually. When the person
moves from one environment to the next, we use that knowledge to retrieve the state of the task in
one environment and reinstate it in the other.

Third, if a person’s activity is looked upon as a task step, the infrastructure can be made aware of
conditions that trigger a step transition. Examples of triggering conditions are:

— an explicit indication from the person wanting to move to another activity;

— an event originated by the activity itself, like disconnecting a phone call or closing a win-
dow on a window-based interface;

— derived from the context, like a person coming into or leaving a particular location; or

10

— based on atiming characterization, like a scheduled video-conference with an established
start time and estimated duration.

Upon detecting the occurrence, or the imminence, of a triggering condition, the infrastructure
proactively sets up all the capabilities required by the next task step, thus relieving the person of
that chore.

Fourth, from the premise that people are to be assisted rather than constrained by the pervasive
computing infrastructure, we monotonically increase the task description with a new possibility
every time the person takes a step that is unexpected from a task description viewpoint, but le-
gitimate from the viewpoint of security and privacy policies. To manage the proliferation of pos-
sibilities, we use probabilistic task descriptions, akin to Markov chains, that describe how likely
each of the possible next stepsis. This way, the infrastructure can adjust how much it goes into
setting up less likely scenarios depending on how plentiful resources are at the time.

Existing Task Description Languages (TDLs) and workflow languages obviously address the
third requirement above, and can easily be adapted to provide support for the first and second re-
guirements. However, they make assumptions that are not compatible with the fourth require-
ment. As we noted in Section 2, current TDLs assume that the purpose of the description is to
constrain the behavior of the executing agent to predetermined paths. In the context of ubiquitous
computing, however, people are unconstrained agents, free to use the computing capabilities ac-
cording to their best judgment — opportunistic personal judgment may override existing ways of
carrying out a given task, allowing for the exploration of new ways. Furthermore, the purpose of
a task description is foremost to support the proactivity of a third party — the infrastructure. That
same infrastructure uses the task description to anticipate the needs of the person for the immedi-
ate future, setting up and configuring the capabilities corresponding to those needs. When faced
with a deviation from the possible behaviors encoded in the task description, the infrastructure
can react in three possible ways: a) consider it an error and nudge the person back to known
paths. b) Replace the broken behavior by the new one; and ¢) monotonically increase the set of
possible behaviors. Although by requirement four, alternative a) more often takes the form of
providing feedback aimed at guiding the person in well-established behaviors, there are circum-
stances where the infrastructure may indeed refuse to accommodate the person’s behavior. For
instance, when that behavior collides with human law or coded privacy rules. Since having the
system refuse an action by the person can be handled by traditional error mechanisms, we shall
not belabor this aspect any further.

Alternatives b) and c) are contrasted in the following concrete example. Suppose that a person
uses the pervasive computing infrastructure to help her plan and carry out trips. A high-level de-
composition of the traveling task includes such task steps as browsing airline fairs, buying the
tickets, getting to the airport and so on.! Suppose further that, someday, the person decides not to
buy an air ticket after browsing the airfares, but rather decides to rent a car. Alternative b) re-
places the behavior excerpt in Figure 5a) by the excerpt in Figure 5b). Alternative ¢) augments
the description in Figure 5a) so to include the new behavior as an alternative, denoted by the +
symbol in Figure 6.

! Each of these steps could be further decomposed into finer detail; for instance, buying a ticket can be
made online or over the phone, each of these requiring different capabilities from the environment. Never-
theless, the presented detail is enough to illustrate the point. Also, the figures depicting the task descriptions
are informal, and should not be taken as representative of any form of syntax suggested to express these
constructs.

11

Current step % Browse Airlines Current step % Browse Airlines

% \%

Buy Ti cket Rent a Car
Get to Airport Drive
a) b)

Figure 5. Two versions of atraveling task

One can argue that keeping the two versions of the task description in Figure 5, and toggling be-
tween them as appropriate, is equivalent to the augmented description in Figure 6. Indeed that is
the case from an adaptation perspective, where the infrastructure reacts to the actions of the per-
son. It isnot equivalent, however, from a proactivity perspective: the description in Figure 6 al-
lows the infrastructure to easily foresee al known possible next steps and proactively set them up
for the person.

However, continually augmenting the set possible behaviors in the fashion suggested above may
overload the infrastructure with respect to setting up a multitude of capabilities, with little added
value for the person. This observation constrains the execution model followed by the infrastruc-
ture: proactivity is better served by task descriptions that include the relative likelihood of each
possible next step. Using probabilistic task descriptions, akin to Markov chains, the infrastructure
can adjust how much it goes into setting up less likely scenarios depending on how plentiful re-
sources are at the time. It can also do a better job at guiding the person through most common
paths. Figure 7 shows the probabilistic version of the traveling task excerpt, where the infrastruc-
ture can observe that the branch related to driving is 20 times less likely than the one for taking
the plane. Note that the probabilities associated to aternative branches are not static — they are
adjusted from one execution of the task to the next, given the observation of the actual behavior
of the person.

Finally, we note that although not a primary goal for the pervasive computing infrastructure, the
existence of a task description like the one in Figure 7 enables sophisticated systems to provide
people with guidance in best work-practices. Task descriptions may be built to reflect the knowl-
edge of domain experts, which then becomes accessible to less experienced people carrying out
the same kind of task. For instance, someone inexperienced in buying a house could benefit from
a task description that includes the steps from the market survey, to inspecting the prospective
property, to legal procedures. Taking advantage of knowledge on both the criticality of the task
step towards the overall intention, and on the context surrounding the person, such sophisticated
systems can tune the level of feedback received by the person when deviating from known prac-
tices; for instance, no audible beeping during a formal meeting.

Current step # Browse Airlines
I
&)

Pr(s)eactive$ Buy Ti cket Rent a Car é
tup \l/ \1/

Cet to Airport Drive

Figure 6. Augmented description for the traveling task

12

Current step % Browse Airlines

95% ® 5%

Proactive % Buy Ti cket Rent a Car é

o v v

Get to Airport Drive
Figure 7. Probabilistic description for the traveling task

5 Auraimplementation

The framework described above is being implemented in the context of Project Aura at Carnegie
Mellon University. Broadly, the project addresses the design, development and evaluation of a
pervasive computing infrastructure spanning wearable, handheld, desktop and infrastructure com-
puters; wired and wirdess networks [1]. Within that context, support for task description and
user mobility are key components.

As along-term, ambitious effort, Project Aura, is continuously adapting as new research and sys-
tem construction proceeds. Our current implementation takes advantage of the wireless network
that spans the entire campus, with a potential user base of 10,000. It currently provides capabili-
tiesin each of the key categories outlined above. In the area of environment management we are
building on top of established service registration efforts, such as Jini, but aso providing addi-
tional capabilities for monitoring the state of an environment’s dynamic resources [8], [9], deter-
mining whether ensembles of services can work together, and evaluating the utility of alternative
configurations [7]. We are also building services, operating systems, and networking infrastruc-
ture that is inherently more adaptable and resilient to resource variability [4], [5] [6]. In the area
of context observation, we have been developing a number of services that support context-
awareness, such as people location services [3]. In the area of task management we have an initial
prototype that supports automatic capture of certain kinds of tasks — taken as snapshots of the
work setting — and migration tasks across homogeneous platforms [2].

6 Conclusion and Future Work

In this paper we have identified as a core challenge for ubiquitous computing the need to simulta-
neously make appropriate use of the available resources in an environment, while minimizing
distractions to the user, and to do this in a world where those resources are continuously changing
because of user mobility or other environmental changes.

To meet this challenge we argued that current approaches will not suffice, and that what is needed
instead is a new kind of system architecture that supports the encapsulation of a user’s Aura — a
set of preferences, tasks, and policies that allow the system to marshal the appropriate resources
in support of that user’s high-level tasks. To make the ideas concrete we enumerated the require-
ments of such an architecture in terms of the kinds of usage scenarios that it should enable. We
then described a specific architectural framework consisting of an Environment Manager, a Task
Manager, and a Context Observer that collectively realize those requirements. Focusing on task
management as the key innovation in this framework, we argued that task representations must
accommodate workflow-like descriptions, but permit dynamic changes to the flow, and indicate
probabilities of paths through the graph. We also briefly described the current implantation of
these ideas in Project Aura.

13

This paper, of course, leaves many details unexplained. How is utility best determined? What
kinds of service interfaces are needed to support composability? How does a user specify or mod-
ify atask, and what mechanisms can be introduced to simplify this process? What is the right
balance between system proactivity and non-intrusiveness? These are dl interesting guestions,
and ones that form the basis of on-going research in this area.

7 References
[1] AuraProject at Carnegie Mellon University, http://ww.cs.cmu.edu/~aural.

[2] Z. Wang, D. Garlan. Task Driven Computing. Carnegie Mellon University Technical Report CMU-CS-00-154,
http://reports-archive.adm.cs.cmu.edu/cs2000.html, May 2000.

[3] J Small, A. Smailagic, D. Siewiorek. Determining User Location For Context Aware Computing Through the
Use of a Wireless LAN Infrastructure, http://www.cs.cmu.edu/~aura/docdir/small00.pdf, submitted to the ACM
Sigmetrics, 2001.

[4] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, K. Walker. Agile Application-Aware Adapta-
tion for Mobility. Proceedings of the 16th ACM Symposium on Operating System Principles, October 1997, St.
Malo, France.

[5] J. Flinn, M. Satyanarayanan. Energy-aware adaptation for mobile applications. Proceedings of the 17th ACM
Symposium on Operating Systems Principles, December 1999, Kiawah Idand Resort, South Carolina.

[6] J. Flinn, D. Narayanan, M. Satyanarayanan. Self-Tuned Remote Execution for Pervasive Computing. To appear
in the Proceedings of The 8th Workshop on Hot Topics in Operating Systems, May 2001, Oberbayern, Germany.

[7] C. Lee. On Qudity of Service Management. Carnegie Mellon University Technical Report CMU-CS-99-165,
http://reports-archive.adm.cs.cmu.edu/cs1999.html, August 1999.

[8] N. Miller, P. Steenkiste. Collecting Network Status Information for Network-Aware Applications. Proceedings
of Infocom’00 — | EEE conference on Computer Communications, March 2000, Tel Aviv, Israel.

[9] T. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, D.Sutherland. ReMoS: A Resource
Monitoring System for Network-Aware Applications. Carnegie Mellon University Technical Report CMU-CS
97-194, http://reports-archive.adm.cs.cmu.edu/cs1997.html, December 1997.

[10] Oxygen at the Massachusetts Institute of Technology LCS. http://www.lcs.mit.edu/news/scifi.html.
[11] The Endeavour Expedition at the University of California, Berkeley. http://endeavour.cs.berkeley.edu/.
[12] Portolano at the University of Washington. http://portolano.cs.washington.edu/.

[13] D. Doubleday, M. Barbacci. Durra: A Task Description Language User’s Manual. Software Engineering Institute
Technical Report CMU/SEI-92-TR-36, http://www.sei.cmu.edu/publications/documents/doc.list/1992.htm, De-
cember 1992.

[14] R. Simmons, D. Apfelbaum. A Task Description Language for Robot Control. Proceedings Conference on Intel-
ligent Robotics and Systems, October 1998.

[15] Little-JIL at the University of Massachusetts. http://laser.cs.umass.edu/tools/littlejil.html.

[16] I. Alexander. A Co-Operative Task Modelling Approach to Business Process Understanding. 12th European
Conference on Object-Oriented Programming, Workshop W8: Object-Oriented Business Process Modeling,
http://easyweb.easynet.co.uk/~iany/consultancy/papers.htm, July 1998, Brussels, Belgium.

[17] H. Simon. The Sciences of the Artificial, 3rd Edition, MIT Press, 1996, pp. 59-72.

[18] F. Paterno, 1.Breedvelt-Schouten, N.deKonig. Deriving Presentations from Task Models. Proceedings EHCI'98 -
IFIP Working Conference on Engineering for Human-Computer Interaction, Kluwiert Publisher, 1998, Crete,
Greece.

[19] Jini Connection Technology, http://Awww.sun.convjini.

14

Appendix — Benchmark Scenarios

Scenario 1- Commodity computing

This smple scenario illustrates a person leaving one environment and resuming the same task in
another, albeit similar, environment.

Fred is at home working on the organization of a conference in a remote place. He’s gathering
information on possible venues and getting budgets for catering. The web pages of some of the
hotels include short videos featuring virtual visits to the premises and Fred already downloaded
some of these for reference. Fred is also taking notes on a spreadsheet concerning his appraisal
of each venue alongside with the alternative catering budgets.

Fred leaves home and heads to his office. Since Fred means to continue working on the organi-
zation of the conference, Aura sets up that task at Fred’s office so that he can resume his work as
soon as he is recognized entering the office: a web browser over the recently visited pages, the
downloaded videos paused on the same places, and a spreadsheet containing all the entered fig-
ures. Since there is a big screen on the wall of Fred’s office, that is preferred to stage the video
and web browsing, releasing monitor space for the spreadsheet.

Scenario 2- Marshalling services

This scenario illustrates a person moving through environments while having an urgent task pend-
ing, and finding the capabilities to accomplish that task in a maybe unsuspected location.

Fred leaves his office in the evening and heads home. During the day, Fred reached a point
where he must decide between a very nice hotel, with a fat catering budget, or a slightly modest
one with an attractive budget. Fred sent a mail to the manager of the nicer place asking him to
review the budget, but the reply didn’t get in by the time Fred left the office. However, the dead-
line for having a decision made, according to Fred’s schedule, is making this a high priority task.

The email with the revised budget actually got in as Fred was walking home. Aura, aware that
the wireless handheld that Fred is carrying does not have the capabilities to bring up the task,
refrains from bothering Fred.

On his way home, Fred makes a stop at a local takeout. Upon entering the premises, Aura detects
courtesy set-top-boxes available for customers. Aura buzzes Fred’s handheld and asks if he
would be ok with completing the decision while he waits for the food. Fred sits at a free set-top-
box and gets authenticated. Aura brings up the mail with the reply from the manager of the nicer
hotel, the videos of the final candidate venues and the spreadsheet with the evaluation notes, ena-
bling Fred to work on his decision.

Scenario 3- Helpful when it goes bad

This scenario illustrates a person resuming a task in adverse circumstances. In situation a) Aura
advises not to initiate a task due to lack of resources out of Aura’s control. Situation b) shows
Aura distinguishing between what is essential to a task and what is not, assisting the person in
making the most out of the available resources. Situation c) illustrates Aura proactively scanning
the vicinity for resources and suggesting the person to go to another location where the task can
be carried out. Situation d) illustrates the exploration of degraded modes in order to be able to
carry out the task with the available resources. Finally, situation e) illustrates Aura proactively
scanning forecasts of resource utilization so to find a time when the task can be carried out with
satisfactory quality.

15

Fred is at his office, holding a videoconference with four colleagues. The incoming video feeds
are being displayed on the big screen on the wall, and Fred is using the monitor on his desk to
consult some notes and charts that are helpful to support his argument. But Fred has a plane to
catch, so he leaves the discussion.

Twenty minutes later Fred is waiting at the airport, since his plane just got delayed. Fred opens
his laptop and lets Aura know that he would like to join the discussion again.

a) Aura estimates the power consumption associated with the communication and rendering of
four video feeds and recognizes it can only hold the laptop for 3 minutes on the remaining
battery charge. Aura recommends not initiating the communication due to power limitations.

b) Auraisalso aware of the limited display space on the laptop, so it informs Fred that even in
case he decides to hold the conference, the supporting notes and charts cannot be displayed
in an acceptable size.

Fred finds a power plug and accepts not having the auxiliary materials displayed, since by now
Fred pretty much hasthemin his head.

¢) In the meantime, a lot of people are getting to the next gate and Aura recognizes that the
available bandwidth in the wireless cell is not enough for the minimal needs of the videocon-
ference. Aura consults with the wireless network service at the airport and finds out that the
only location with low bandwidth utilization is at the other end of the terminal.

d) Fredisnot willing to walk that far, so he changes his preferences for the task, increasing his
appreciation for getting service at a closer distance and relaxing his expectations on the
guality of service. Aura checks the wireless network service again and finds that the relaxed
guality of service parameters can be met six gates down the hall.

e) Fredisfeding tired, so he tries another approach: he relaxes his preference for starting the
conference right away. Aura finds out that the local wireless cell is forecasted to clear in 10
minutes, when the boarding closes at the next gate. Aura starts the videoconference as soon
as the wireless utilization comes down, and Fred is able to join the discussion until he gets
called for boarding.

Scenario 4 - Proactive set up

This scenario illustrates Aura’s proactivity when faced with uncertainty, covering several — the
most likely — possibilities.

Fred is heading for the office and has no scheduled appointments in the morning. Fred has been
working on and off on two tasks, and Aura infers from a probabilistic model of Fred’s behavior
that these are the most likely tasks Fred will be resuming. Aura has no way of obtaining before-
hand certainty of which task Fred will decide to work on first, so Aura decides to make arrange-
ments for the two tasks.

One of the tasks requires a literature search, and Fred often does that in the local library; so,
Aura contacts the environment at the library to scan for available capabilities and make a tenta-
tive reservation for the resources Fred may be using.

Aura observes through the people locating system that Fred is indeed heading to the library, so
Aura migrates the information Fred will be basing his search on to the local server, and confirms
Fred’s reservation indicating his estimated time of arrival. As soon as Fred is recognized sitting
at one of the library’s desks, Aura brings up Fred’s work setting for the literature search.

16

Scenario5- Context awareness

This scenario illustrates how the physical context places restrictions on the activities carried out
by a person, and how Aurareacts to those restrictions, hel ping but not hindering the person.

Fred isinterviewing candidates for a position in his group, and he has scheduled a meeting with
a candidate in a few minutes. Fred is reviewing the details of the job description, contrasting
those with the candidate’s application and writing his appraisal of the application. Fred classi-
fied the access to these three types of documents as follows: the job description is public access,
all the candidate’s applications can be accessed only by trusted people, and Fred’s appraisals
are to be accessed only by Fred.

When Aura recognizes the candidate entering Fred’s office, his identity is checked against the list
of trusted people, and Aura automatically hides all information not for public access. Of course,
while the candidate is at the office, Fred can bring back up the candidate’s application, if Fred
explicitly makes that decision. However, if Fred tries to bring up the candidate’s appraisal, clas-
sified as being for Fred’s eyes only, Aura will prompt a confirmation so to prevent an accidental
indiscretion. As soon as the candidate leaves the office, Aura lifts the restrictions on information
display and the task can be fully resumed.

17

