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Abstract 
 

In practice, there are many differences between an 
implementation-level architecture (such as one derived 
using architectural recovery techniques) and a more 
conceptual architecture used at design time. 
Furthermore, additional differences may be introduced 
during software development and evolution due to 
documentation or implementation defects. This makes 
ensuring conformance between an architectural design 
and code a difficult problem worth addressing. 

We present a lightweight, scalable, semi-automated, 
incremental approach for synchronizing a Component-
and-Connector (C&C) view retrieved from an 
implementation with a conceptual C&C view described 
in an Architectural Description Language. Our tool 
can automatically detect corresponding elements in the 
presence of insertions, deletions, renames, and moves, 
and incrementally synchronize the two views. When we 
applied the approach on an architecture of over 20 
components, we found several divergences between the 
conceptual and implementation level architectures. 
 

1. Introduction 
 
Ensuring that a system as built conforms to its 

architectural design during software development and 
evolution is important, as significant divergences 
between architecture and implementation can 
compromise architectural structure, style and properties 
that have been established with careful analysis at the 
architectural level. 

Previous work has taken a number of approaches to 
ensuring conformance between architecture and 
implementation. Generating skeletal or glue code from 
architecture is one option [SDK+95], although it 
provides no guarantees that the code will remain 
conformant to the architecture as either evolves. 
Approaches based on architectural reconstruction 
include analysis-based architectural extraction 
[MNS01][EOG+98], run-time architecture monitoring 

[YGS+04], and using a type system to verify 
conformance to an architecture expressed within a 
programming language [e.g., ACN02].  

A weakness of existing approaches is that they 
reconstruct architectures that are very concrete and 
implementation-oriented — in contrast, software 
architects often view architecture more abstractly, 
omitting components and connections that are not 
relevant to their particular concern. Also, automatically 
reconstructed architectures often lack the styles and 
properties on which an architect relies when designing 
a system. Finally, approaches assuming the primacy of 
one architectural view over the other, i.e., allowing 
changes to be made in only one direction, are overly 
limiting, as it is valid to make changes in either view. 
Thus existing work limits the ability of architects to 
work at an appropriate level of abstraction and 
simultaneously ensure that the design is a faithful 
abstraction of the implementation, by not having the 
ability to synchronize the two views. 

This paper describes a lightweight and scalable 
approach to synchronize an implementation-level 
architectural view, such as one reconstructed using 
architectural recovery techniques, with a conceptual-
level architectural view expressed in an Architecture 
Description Language (ADL). Our approach handles 
expressiveness gaps between conceptual and 
implementation-level architectural views, allowing 
architects to keep the two architectures up-to-date 
without losing architectural style, type and property 
information needed for architectural-level analyses.  

Synchronization matches elements in the presence 
of insertions, deletions, renames and moves, and 
proposes a set of edits to make one representation more 
consistent with the other. While our approach is 
potentially applicable to a wide range of ADLs, in 
order to evaluate it, we have chosen to represent a 
conceptual-level architecture in the Acme ADL. 
Implementation-level C&C views can be also extracted 
from implementation-constraining ADLs with code 
generation capabilities or implementation independent 
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ADLs such as C2 [MT00] that provide an 
implementation framework for code generation. We 
have chosen ArchJava [ACN02] for our approach. 

We begin by describing the differences between 
architectural information at different levels of 
abstraction that any synchronization approach must 
address.  Section 3 describes ensuring conformance 
based on matching tree-structured architectural 
information. Section 4 describes the prototype tool we 
have built. Section 5 shows how the approach was used 
to detect several divergences between the conceptual 
and implementation level architectures of an 
architecture of over 20 components. Finally, we discuss 
related work and conclude with future work to address 
some of the limitations of our approach. 

 
2. The Design-Implementation Gap 

 
In this section, we describe the problems that must 

be addressed when attempting to synchronize an 
implementation-level architecture with a conceptual-
level architecture. Typical Architecture Description 
Languages (ADLs) model architecture as a set of 
components, connections between them, and 
constraints on how these components interact [MT00]. 
We use Acme and ArchJava to illustrate the differences 
in expressiveness, but many problems are common to 
any pair of design-oriented and implementation-
oriented architectures, and the corresponding 
Component-and-Connector (C&C) views. 

 
2.1 Expressiveness Gaps 

 
In many design languages, types are arbitrary logical 

predicates: an element is an instance of any type whose 
properties and rules it satisfies, and one type is a 
subtype of another if the predicate of the first type 
implies the predicate of the second type. Such a type 
system is highly desirable at design time, because it 
allows designers to combine type specifications in rich 
and flexible ways. Acme embodies this approach, but it 
is hardly unique; for example, PVS [ROW98] takes a 
similar approach. As an example of the benefits of a 
predicate-based type system, consider an architecture 
that is a hybrid of the pipe-and-filter and repository 
architectural styles [SG96]. In this example, a filter 
component type has at least one input and one output 
port, while a client component in the repository style 
has at least one port to communicate with the 
repository. A component in this architecture might 
inherit specification information from both the filter 
and the repository client specifications, yielding a 
component that has at least three ports: two for 
communicating with other filters and one for 
communicating with the repository.  

Unfortunately, examples like this cannot be 
expressed in implementation-level type systems such as 
the ones provided by C2SADL [MOR+96] or 
ArchJava. A specification that a component has a port 
implies a requirement that the environment will match 
that port up with some other component, and therefore 
conventional type systems require a component type to 
list all of the ports it might possibly have (or at least all 
those ports that are expected to be connected at run 
time). There is no way to say that a filter component 
has “at least two ports”—instead, one must say that the 
filter has “at most” or “exactly” two ports. Therefore, 
in the implementation, one cannot combine the filter 
type with a repository component type (which defines a 
third port that is prohibited by the filter specification). 
Since a design-level predicate-based type system is 
fundamentally incompatible with a programming-
language style type system, any system synchronizing 
between design- and implementation-level views has to 
allow the user to specify arbitrary matches between the 
two type hierarchies in the two systems.  In our current 
tool prototype, the architect specifies this mapping in a 
view that shows the type hierarchies in both systems 
flattened and shown side-by-side (See Figure 1). 

Design languages such as Acme tend to treat 
hierarchy as design-time composition, where a 
component at one level in the hierarchy is just a 
transparent view of a more detailed decomposition 
specified by the representation of that component. 
Multiple representations for a given component or 
connector could correspond to alternative 
decompositions into sub-systems. On the other hand, 
implementation-level C&C views such as ArchJava 
tend to view hierarchy as the integration of existing 
components, along with glue code, into a higher level 

 
Figure 1: Matching Types Structures: the user 
assigns any ArchJava port with only provided 
methods the provideT Acme type defined in the 
MVCFam, a Model-View-Controller style. 
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component; due to the glue, a higher-level component 
is semantically more than the sum of its parts. 

These differing meanings of hierarchy create 
additional challenges for synchronizing the two views.  
For example, if multiple representations are present at 
the design level, there must be a way to specify which 
of these representations was actually implemented. As 
another example, components in both ArchJava and 
UML-RT [CG01] can have internal ports that are used 
for communication between a component and its 
subcomponents. These ports cannot be directly 
represented in Acme, forcing us to model a private port 
as a port on an internal component instance with 
properties specifying its visibility. As a final example, 
Acme views an external port of a composite component 
as just an alias for ports in its subcomponents: it only 
allows binding an outer port to one or more inner ports; 
in contrast, ArchJava does not distinguish between 
bindings and attachments and connectors can connect 
an external port to ports on subcomponents.  

 
2.2 Incidental Differences 

 
There are additional differences between Acme and 

ArchJava that are more incidental in nature, but 
nonetheless make the problem of relating the two 
representations more challenging. While these 
differences will vary according to languages, they are 
suggestive of the challenges likely to be encountered by 
anyone trying to synchronize two C&C views: 
• Missing Port Types: ArchJava does not declare 

explicit types for ports. This means that Acme port 
types must be assigned for each ArchJava port 
instance, rather than assigning an Acme type to 
each ArchJava port type. 

• Missing Instance Names: Unlike Acme, ArchJava 
does not name connectors or roles. This requires 
us to match connectors and roles based on 
structural criteria rather than names. 

• Missing Connector Roles: ArchJava does not 
have first-class roles and role types, unlike Acme, 
one of the few ADLs with explicit support for 
roles. Our tool takes advantage of style constraints 
in order to automatically infer the types of the 
implicit roles when going from ArchJava to Acme. 

• Top Level Elements: The top-level structure of 
architecture is represented as a system construct in 
Acme which differs from a component in that it 
cannot declare external ports. In ArchJava, top-
level architectures are represented by components 
which may have ports, forcing us to model an 
ArchJava top-level component that declares ports 
with an extra level of hierarchy in Acme. 

 

2.3 Structural Differences 
 
In addition to the gaps in language expressiveness, 

the ways conceptual-level and implementation-level 
C&C views are developed and evolved differently 
creates challenges for architectural synchronization. 
Some of these differences are by design; others are due 
to implementation or documentation defects.  

For instance, architects may choose to structure a 
system in different ways than system designers: an 
architect may choose to abstract away some of the 
components and connections in a system, because they 
are not relevant to her modeling task. An 
implementation-oriented view, on the other hand, is 
likely to be complete. This example suggests that any 
synchronization approach must be able to handle 
elements that are inserted and deleted between the 
design-level and the implementation level, as supported 
by the ArchDiff tool [WH02].  

Synchronization between design-level and 
implementation-level architectures, however, requires 
going beyond insertions and deletions to support 
renames and moves. Name differences between the two 
representations can arise for a variety of reasons. 
ArchJava does not even name certain elements (e.g., 
connectors, roles and attachments): any names they 
may have in Acme are lost during code generation. 
Similarly, the architect may update a name in one 
representation and forget to update it in the other 
representation. Identifying an element as being deleted 
and then inserted when it fact it is renamed, would 
result in losing crucial style and property information 
about the element at the design level. 

Furthermore, it is not unusual for architects and 
implementers to differ in their use of hierarchy, so that 
components expressed at the top level in one 
architecture are nested within another component in 
some other architecture (i.e., in Acme, this would 
correspond to replacing an architectural element with 
its representation). For example, the architect may want 
to use hierarchy to analyze the architecture at a higher 
level or hide certain decision decisions from some parts 
of the system [Par72], but an implementer may wish to 
flatten the hierarchy for efficiency reasons. This 
requires detecting moves across levels of hierarchy. 

These are not the only structural differences that 
may arise: elements (e.g., components or ports) can be 
split or merged during restructuring of the architecture 
or the implementation. Splitting is common practice, 
but is difficult to formalize, since it affects connections 
in a context-dependent way [Erd98]. We leave splits 
and merges to future work. 
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3. Ensuring Conformance 
 

Our approach to enforcing structural conformance 
between an architectural C&C view and an 
implementation-level C&C view proceeds as follows: 
1) convert the architectural C&C view into tree-
structured data, 2) retrieve a C&C view from the 
ArchJava implementation and convert it to tree-
structured data, 3) use a tree-to-tree correction 
algorithm for unordered labeled trees to identify 
matches and structural differences (classified as inserts, 
deletes, renames and moves – See Figure 2), and obtain 
an edit script to make one view more consistent with 
the other 4) supplement the edit script with information 
that cannot be derived from the architecture or the 
implementation (for example, styles and types, in one 
direction, or namespaces and source code locations in 
the other), and 5) optionally apply the edit script to the 
underlying representation (e.g., the Acme model or the 
ArchJava implementation). The final step is optional 
because the architect may consider the differences 
innocuous or may only be interested in a change impact 
analysis [KPS+99]. 
 
3.1 Tree Structured Data 
 

The architectural structure information is 
represented as a cross-linked tree structure instead of a 
graph, to emphasize the notion of hierarchy inherently 
present in nested sub-architectures and to keep the 
algorithms tractable. For scalability reasons, and taking 
advantage of the recursive nature of the problem, our 
structural comparison is designed to start at a given 
Acme system (or a given Acme component 
representation) and a corresponding ArchJava top-level 
component. If there are multiple representations for a 
component in Acme, the user can use this feature to 
determine which representation was actually 
implemented by the developers, by finding the one that 
most closely matches the implementation. 

The tree structure closely mirrors the hierarchical 
decomposition of the system and includes information 
to improve the accuracy of the structural comparison. 
For instance, the subtree of a node corresponding to a 
port or role includes all the port’s or the role’s 
involvements, i.e., all components (and their ports) or 
connectors (and their roles) reachable from that port or 
role through attachments or bindings. Cross-links refer 
back to the defining occurrence of each element and 
allow the user to navigate the architectural graph. 

We decorate each element in the tree-structured data 
with various properties, some automatically retrieved 
from either representation, others corresponding to 
user-entered data (e.g., type assignments). These 
properties are not represented in the tree-structure and 

are not directly considered during tree-to-tree 
correction (i.e., they will not have edit actions 
associated with them). However, these properties 
provide additional semantic information that the 
matching algorithms can rely on. For instance, the type 
information, if provided, is used to build a matrix of 
incompatible elements that may not be matched. In 
addition, some of these properties provide a loose 
mapping between the C&C view elements and the 
corresponding elements in the module view; e.g., 
properties with ArchJava namespace and source code 
location information are automatically added to 
elements retrieved from ArchJava to help distinguish 
between similarly named types in the implementation. 

Obtaining the architectural tree-structured data is 
simply a matter of converting the Acme architectural 
graph into the cross-linked tree structure. Most of the 
elements are already available as Acme model 
elements; required and provided methods are retrieved 
from properties on ports if they exist.  

The tree-structured data is derived from the 
implementation by traversing the ArchJava compilation 
units, ignoring non-architecturally relevant Java classes 
or fields (i.e., not of type component or connector), 
representing the various elements and bridging 
expressiveness gaps as they are encountered, e.g., 
representing a private port by first creating an internal 
component instance and adding the port to it. 

 
Figure 2: Structural comparison of architectural 
instances in a C&C view retrieved from Acme and a 
C&C view retrieved from ArchJava: component 
privateAphyds exists in ArchJava but not in Acme; 
similarly, connector starConnector matches a 
connector in ArchJava with an automatically- 
generated name (highlighted nodes). 
Symbols: Match ( ), Insert ( ), Delete ( ), Rename ( ) 
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3.2 Tree-to-Tree Correction 
 

Tree-to-tree correction is then used to compare the 
tree-structured data from the architecture and from the 
implementation views to find structural differences and 
produce an edit script. The comparison can be 
restricted to user-defined subsets of the two views: e.g., 
if the Acme model does not specify some information 
that exists in ArchJava (such as method signatures), 
this information can be excluded from the comparison 
to avoid gratuitous differences. Structural comparison 
finds matches and classifies differences as inserts, 
deletes, renames, and optionally moves. 

Much of the research on tree-to-tree correction has 
focused on ordered labeled trees, since the problem for 
unordered trees is MAX SNP-hard [ZJ94]. We initially 
used an exact polynomial time tree-to-tree correction 
algorithm [SZ97], simply ordering nodes by name. We 
also added string-to-string correction to evaluate the 
intrinsic degree of similarity between the labels of two 
nodes, using the standard dynamic programming 
algorithm to find the longest common subsequence 
[WF74]. Given that the ordering we chose is artificial, 
however, it is perhaps unsurprising that we found this 
algorithm to perform poorly when renames change the 
ordering of sibling nodes in the tree. Other orderings 
are possible (such as ordering subtrees by weight) but 
these have similar drawbacks. 

A software architecture has no inherent ordering 
among its elements, suggesting that an unordered tree-
to-tree correction algorithm might perform better. 
Existing algorithms work around the NP-hardness 
result either through heuristic methods [WDC03] or 
through an exact solution under additional assumptions 
[THP05]. We chose the second approach, initially 
assuming that a node can be matched to another only if 
its parent is matched to some node. However, this 
assumption did not allow us to detect moves, such as 
when a top-level architectural component is moved into 
the representation of another component. 

We generalized this assumption so that the 
algorithm can correctly identify architectural moves as 
long as they do not involve more than M levels of 
architectural hierarchy (for some fixed constant M).  
Our resulting algorithm is polynomial-time, yet 
generalizes the one in [THP05] to detect renames, 
inserts, deletes and moves, as well as support forcing 
and preventing matches between nodes. Unfortunately, 
space limitations prevent us from a more detailed 
description of our algorithm. 

An upper bound on the running time of the 
algorithm is as follows: let X the set of nodes of both 
trees, x an element of X, p the maximum allowable size 
of a connected subgraph of the tree that can be deleted 

or inserted in the middle of the tree, f(x,p) the number 
of nodes that lie within a distance of (p+1) from x, and 
F(a) = max{f(x,p): x∈X and p=a}: our algorithm has a 
worst case running time of O((2F(p))! N2) and requires 
O(d.N2) memory, where d is an upper bound on the 
maximum degree of a node and N is number of nodes. 
In our implementation, pruning the search tree, using 
additional semantic information (e.g., types) and being 
able to limit the running time by returning a suboptimal 
solution, make the average case much faster than the 
worst case. In comparison, [THP05] has a running time 
of O(d3 N2) and requires O(N2) memory. 

Originally designed to detect moves, our algorithm 
also detects insertions better than [THP05]; e.g., the 
latter did not detect that component privateAphyds (In 
Figure 2) is an insertion. We avoided premature 
optimization in our implementation to allow for easier 
debugging. On an Intel Pentium4® CPU 3GHz with 
1GB of RAM, comparing an Acme tree of around 800 
nodes with an ArchJava tree of around 1,400 nodes (as 
in Figure 2) currently takes around 2 minutes, whereas 
our implementation of [THP05] takes around 30 
seconds but produces less accurate results. 

There is one caveat to representing architectural 
graphs using trees: tree-structuring the data causes each 
shared node in the architectural graph to appear several 
times in several subtrees, with cross-links referring 
back to their defining occurrences. These redundant 
nodes greatly improve the accuracy of the tree-to-tree 
correction; however, they may be inconsistently 
matched with respect to their defining occurrences 
(either in what they refer to, or in the associated edit 
operations). We currently alert the user to inconsistent 
matches in the output, if they occur, and allow her to 
manually correct them; if provided, the corrections are 
taken into account to build the edit script.  

Inconsistent matches becomes more pronounced if 
there are many cycles in the architectural graph. But, in 
practice, we found it is possible to address this problem 
by making two passes to synchronize the two 
representations: during the first pass, synchronize the 
strictly hierarchical information (e.g., components, 
connectors, ports, roles, and representations); during 
the second pass, synchronize the context-dependent 
attachments and bindings. We are also investigating 
techniques to express the dependencies between the 
mapping decisions and prevent inconsistent matches. 

 

4. Tool Support 
 

We intended for our approach to be lightweight 
enough that it can fit into a single dialog with a look-
and-feel similar to the one provided by popular open-
source Integrated Development Environments [e.g., 
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Ecl03] instead of more specialized environments for 
architectural recovery such as [TMR02]. Tool support 
for our approach uses AcmeStudio [SG04], a domain-
neutral architecture modeling environment for Acme, 
and ArchJava's development environment, both 
implemented as plugins in the Eclipse tool integration 
platform. At any time while using the AcmeStudio or 
the ArchJava development environments, the user can 
invoke the synchronization functionality. We have 
completed the functionality needed to make an Acme 
model incrementally consistent with an ArchJava 
implementation. We still need to change the ArchJava 
infrastructure to support making incremental changes to 
an existing ArchJava implementation. In both cases, the 
following five-step process applies: 
1. Setup the synchronization 
2. View and match types (optional) 
3. View and match instances 
4. View and modify the edit script (optional) 
5. Confirm and apply the edit script 
Because steps 1 and 5 are straightforward, we will only 
discuss steps 2-4 in more detail below. 
 
4.1 Viewing and Matching Types 
 

As we discussed earlier, matching type structures 
helps discover implementation-level violations of 
architectural styles and types that are not currently 
represented in ArchJava. This step has to be done 
mostly manually (See Figure 1), and for that reason, is 
currently kept as optional step in the tool. Matching 
type structures can take several forms:  
• Match explicit types when possible: e.g., match an 

ArchJava component type with one or more Acme 
component types;  

• Assign types to instances when no explicit type is 
available: e.g., assign types to individual ports on 
an ArchJava component type;  

• Assign types to special wildcards: e.g., using the 
ArchJava connector type ANY, one can assign the 
Acme type CallReturnT to all ArchJava implicit 
connector instances; similarly, one can assign a 
specific Acme type to a port with only required 
and no provided methods (e.g., useT) or with only 
provided and no required methods (e.g., 
provideT);  

• Finally, infer types when possible: e.g., infer the 
types of implicit ArchJava roles based on Acme 
connection patterns optionally defined for an 
architectural style: if the architect assigns types to 
components, ports and connectors, the role type 
(e.g., providerT) is inferred based on the source 
component type (e.g., ANY), source port type (e.g., 
provideT), and connector type (e.g., ANY). 

 

4.2 Viewing and Matching Instances 
 

The differences found during structural matching 
are shown in each tree by overlaying icons on the 
affected elements (see Figure 2). If an element is 
renamed, the tool automatically selects and highlights 
the matching element in the other tree; for inserted or 
deleted elements, the tool automatically selects the 
insertion point by navigating up the tree until it reaches 
a matched ancestor. Various features give the user 
more control of the structural matching: 
• Direct manipulation:  the user can manually 

insert, delete or rename elements (e.g., add a port 
to a component) which will also generate the 
corresponding edit actions. 

• Elision: the user can selectively hide (and unhide) 
elements, excluding them from comparison. 
Elision can be instance-based or type-based, where 
all elements of a given type are excluded at once 
(e.g., only match components and ports). Elision is 
temporary and does not generate any edit actions. 

• Forced matches: the user can manually force a 
match between an Acme element and an ArchJava 
element without leaving the synchronization tool 
to change either representation. The user can use 
this feature to correct inconsistent matches in the 
output of the tree-to-tree correction as discussed 
earlier. The user can also use this feature to 
manually force a match between two elements that 
cannot be structurally matched : e.g., force a match 
between an Acme spliFilter component designed 
with one input and two output ports with an 
ArchJava split component implemented with one 
input port and one output port.  

• Manual overrides: finally, the user can override 
any edit action produced by tree-to-tree correction, 
e.g., cancel a delete action. 

 
4.3 Viewing and Modifying the Edit Script 
 

We produce a common supertree to show the 
merged model as a tree-structured preview of the 
architectural model after the edit actions are applied. In 
this step, the user can assign types to elements to be 
created, change the types of existing elements, override 
automatically inferred types, or cancel any unwanted 
edit actions prior to the application of the edit script. 

Setting types during synchronization may affect the 
processing of the edit script. For instance, when a 
component instance is assigned a type, it may inherit 
ports from its assigned type, so the edit script need not 
create additional ports on the component instance; it 
may rename a port to match the name declared in the 
architectural type. We generally allow the user to 
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rename any architectural element in the edit script: for 
example, in our case study presented in Section 5, we 
gave the more meaningful name windowBus to a 
connector with an automatically generated name. 

The edit script is also checked for some common 
problems: e.g., the tool raises warnings for architectural 
elements without an assigned type, or errors, such as 
having an element name corresponding to a reserved 
Acme keyword. Currently, we do not check that the 
edit script will produce a valid architectural model 
before it is applied, e.g., check that it will not generate 
a dangling port. This is deferred for future work. 
 
5. Case Study 
 

We now illustrate our approach and tool support on 
an ArchJava implementation of a pedagogical circuit 
layout application, Academic Physical Design System 
(Aphyds) with over 20 components divided into several 
subsystems. In [ACN02], Aldrich discusses how 
Aphyds was re-engineered from 8,000 source lines of 
Java code (not counting the libraries used) to take 
advantage of the architectural features of ArchJava. 

The architect evaluating our synchronization tool 
was familiar with ArchJava but was not previously 
involved with the development of the Aphyds system. 
He started out with the original Aphyds architect’s 
drawing of the conceptual architecture shown in Figure 
3. The architecture loosely follows the Model-View-
Controller style, with the views consisting of user 
interface elements shown above the line in the middle 

of the diagram and the model consisting of a circuit 
database and a set of computational components shown 
below the line; also the arrows labeled “call” 
correspond to control flow whereas the unlabeled 
arrows correspond to data flow. With this information, 
the Acme architect designed a conceptual C&C view 
for the system (See Figure 4): he created a single Acme 
component to represent the circuitModel and added all 
the components below the line to a representation of 
circuitModel (See Figure 5). The architect did not want 
to distinguish between data and control flow, so he 
added the data flow arrows as connectors. Finally, he 
used the following convention to carefully name the 
various elements: component instances start with 
lowercase to distinguish them from component types; a 
port or a role involved in a two-way connection is 
named after the component it is attached to through the 
connector; otherwise, a reasonably meaningful name is 
chosen. The Acme architect did not initially assign any 
architectural types to the model, since he was anxious 
to explore the ArchJava implementation, and see how 
well it matches the conceptual view. The architect ran 
the synchronization tool: carefully naming the elements 
was helpful since names are the main visual cue 
available when viewing the architectural C&C view in 
a tree. He noticed a few renames, e.g., ArchJava uses 
model instead of circuitModel, and in that 
representation, ArchJava uses globalRouter instead of 
route (See Figure 2). 

The Acme architect was the least sure about how he 
represented the circuitModel component in Acme; 
facing a number of name differences certainly did not 
raise his confidence level. So, he decided to focus on 
the circuitModel Acme component instance which was 
matched to the model ArchJava component instance. 
He noticed that the ArchJava model component 
instance was being incorrectly interpreted by the 
synchronization tool as having only bindings, i.e., no 
connectors! This was an example of the expressiveness 
gap discussed earlier: ArchJava was using the glue 
primitive to connect inner and outer instances and 
ports, the equivalent of an illegal Acme construct of 
binding an outer port to a role on an inner connector: 

glue circuit to circuitData.main, 
partitioner.circuit, floorplanner.circuit, 
placer.circuit, globalRouter.circuit, 
channelRouter.circuit; 

Since Acme cannot express this ArchJava construct 
directly, the developer chose to refactor the Archjava 
code to more closely reflect his Acme design.  Our tool 
cannot yet propogate changes from Acme to ArchJava 
automatically, so the Acme architect looked at the 
properties of the ArchJava model component instance, 
copied the name of its source file 

 
Figure 3: Original Java developer’s model. 
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(AphydsModel.archj), switched to the ArchJava 
development environment within the same running 
instance of the Eclipse environment, browsed that 
source file and manually changed the ArchJava code to 
the mostly equivalent ArchJava construct: 
glue circuit to circuitData.main; 
connectcircuitData.main,partitioner.circuit, 
floorplanner.circuit, placer.circuit, 
globalRouter.circuit,channelRouter.circuit; 

The Acme architect then switched back to AcmeStudio, 
and restarted the synchronization wizard and confirmed 
that the ArchJava code modification had the intended 
effect. However, the structural comparison then showed 
that the Acme representation for circuitModel had 
more connectors than the ArchJava implementation, 
i.e., the tool only matched starConnector in the middle 
of the diagram, modulo renaming (See Figure 2). The 
architect investigated this further and confirmed that 
the dataflow arrows in the informal Aphyds boxes-and-
lines diagram are not actually in the implementation, so 
he accepted the edit actions to delete the extra 
connectors from the Acme model (See Figure 5). 

Having synchronized the circuitModel component, 
the Acme architect next turned his attention to the top-
level system. The synchronization tool had alerted the 
Acme architect to the presence of additional 
representations for components channelRouteViewer, 
placeRouteViewer, and circuitViewer. The architect 
decided against adding those sub-systems to the Acme 
model, so he cancelled the corresponding edit actions. 
The architect next turned his attention to the additional 
top level component, shown as privateAphyds in Figure 
2): he discovered that specific component was added to 
represent a private port in ArchJava and the 
corresponding glue, a limitation of Acme discussed 
earlier. By looking at the required and provided 
methods and the control flow, the architect decided to 
have that subsystem follow the publish-subscribe style, 
so he renamed component privateAphyds as window 
and renamed the added connector to windowBus. The 
architect also decided to use the same component 
names as the ArchJava implementation to future avoid 
confusion, so he let the tool apply the edit script. 

The architect then decided to assign styles and types 
to the model. He reran the synchronization wizard 
using it to assign types. As he was interested in the 
control flow in the system, he assigned the provideT, 
useT, provreqT Acme types to ArchJava ports which 
only provide, only require, or have both methods, 
respectively; he assigned the generic TierNodeT Acme 
type to all components, the CallReturnT Acme type to 
all connectors, except the previously created 
windowBus connector, which was assigned the 
EventBusT connector type from the Publish-Subscribe 

style. Figure 6 shows the C&C view after it has been 
manually laid out in AcmeStudio. Unlike the original 
architect’s model, Figure 6 shows bi-directional 
communication taking place between components 
placeRouteViewer and model; upon further 
investigation, the architect traced that to a callback. 
Since Aphyds is a multi-threaded application with long 
running operations moved onto worker threads, the 
architect makes note of the fact that developers should 
not carelessly add callbacks from a worker thread onto 
the user interface thread. Finally, the architect plans on 
using the up-to-date C&C view with types and styles 
for evolving the system. 

 
Figure 6: Acme model with styles and types. 

 
Figure 4: Original developer’s model in Acme. 

 
Figure 5: Acme representation for the circuitModel 
component. Extra connectors are marked with ����. 

� 
� � 

� 
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6. Related Work  
 

Many researchers have studied ensuring 
conformance between architecture and implementation, 
often within the context of architectural recovery. Some 
of the challenges we identified, such as mapping both 
types and instances, are typical of issues involved in 
representing architectures using multiple views or 
models such as UML [AM99][ICG+04][HK03]. 

Murphy et al. [MNS01] also follow an incremental, 
lightweight, approximate approach to check the actual 
architecture against the idealized one. The work on 
Reflexion Models and Hierarchical Reflexion Models 
[KS03] appears to be mostly concerned with module 
views and not with C&C views. In Reflexion Models, 
the source model and the high-level models can be 
typed, partially typed or un-typed; similarly, assigning 
types is an optional step in our approach. Having the 
user match Acme and ArchJava types or specify 
additional types on the edit script during 
synchronization supports the same “goal of a 
lightweight technique by reducing the burden on the 
engineer to define a type for each high-level model 
interaction” with a “focus on those parts of the model 
where typing will provide the most benefit”. In 
Reflexion Models, a minimal representation of types is 
used, i.e., names, whereas Acme types have additional 
semantics, constraints and heuristics associated with 
them [Mon98]. Just as Reflexion Models let the user 
elide information from view and permit inconsistencies 
to remain, we allow the user to cancel any unwanted 
edit actions and can restrict the structural comparison 
to a subset of the tree-structured data. 

Medvidovic et al [MJ04] also attempt to check the 
conformance of an implementation with respect to an 
architectural style. However, in their approach, the 
idealized architecture is not represented using C&C 
views: they mainly employ architectural recovery 
techniques and manually relate the two views. 

For maximum generality, we match elements based 
on their structure and do not assume that architectural 
or implementation-level elements have unique 
identifiers associated with them. In some approaches, 
the names are immutable—every time an element is 
changed, it gets a new unique identifier [OWK03], so 
checking for renames is not needed anymore. 
Assuming unique identifiers may be possible when 
comparing two versions of the same model, but is not 
appropriate when dealing with different levels of 
abstractions. As an optimization to our system, 
persistent unique identifiers could be assigned to Acme 
and ArchJava elements so that they could be quickly 
matched up between invocations, or to automatically 
ignore previously flagged known differences in a large 

architectural model. The identifiers could be persisted 
outside the Acme model or the ArchJava source code, 
to keep the synchronization unobtrusive. 

Tracking changes to an architectural representation 
in an ADL using features similar to those in source 
control management systems (e.g., Mae [RHM+04]) 
may provide the ability to infer coarse grained 
operations, such as merges or splits, in addition to the 
fine-grained operations (inserts, deletes, …). For 
maximum generality, we assume a disconnected 
operation, i.e., no monitoring of structural changes is 
taking place while the user is modifying the Acme 
model or the ArchJava implementation. The connected 
operation seems less appropriate when dealing with 
different levels of abstraction. Furthermore, even 
having accurate, fast and reliable structural comparison 
algorithms will not completely eliminate some of the 
manual steps involved, such as matching the type 
structures between the two representations. 

Work on finding differences between inheritance 
trees [XS03] inspired the use of tree-to-tree correction 
algorithms. However, most approaches use variants of 
tree-to-tree correction for ordered labeled trees 
mentioned earlier. We discussed earlier how the 
problem calls for potentially taking into account a large 
number of name differences: even if the 
implementation-level architecture structurally conforms 
to the conceptual-level architecture, such as right after 
code generation, name differences will be found. 
Reliably detecting renames requires using unordered 
tree-to-tree correction. ArchDiff [WH02] detects 
inserts and deletes, but not renames nor moves, and 
seems to be using a simpler comparison algorithm. 
ArchDiff only compares two architectural models in 
xADL and does not have to bridge any expressiveness 
gaps. Our implementation could be readily adapted to 
compare and synchronize two architectural models.  
 
7. Limitations and Future Work 
 

In this paper we have described a lightweight, 
scalable, semi-automated, incremental approach for 
synchronizing an implementation-oriented C&C 
architectural view with a design-level architectural 
C&C view described in an ADL. We have presented a 
tool that implements this approach to provide 
synchronization between Acme and ArchJava. 

There are various limitations of the approach and 
tool that we will address as future work. We would like 
to explore other comparison algorithms to determine 
which gives the best performance and the best results, 
as well as support additional differences such as 
merges and splits. We still need to change the ArchJava 
infrastructure to support making incremental changes. 
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In general, it may not be feasible to make incremental 
changes to an implementation in a programming 
language that does not encode architectural structure, 
or if the C&C view is obtained by instrumenting a 
running system [YGS+04], or when dealing with C&C 
views with structural dynamism. The latter case has not 
been addressed mainly since Acme currently cannot 
express the dynamic constructs ArchJava can. Finally, 
we plan to address in future work some of the 
incidental differences encountered during this research 
to further streamline synchronizing the Acme and 
ArchJava architectural representations. 
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