
 1

Semi-Automated Incremental Synchronization between
Conceptual and Implementation Level Architectures

Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley Schmerl and Nagi Nahas

Institute for Software Research International, Carnegie Mellon University, Pittsburgh, PA 15213
{mabianto+, aldrich+, garlan+, schmerl+}@cs.cmu.edu nnahas@acm.org

Abstract

In practice, there are many differences between an
implementation-level architecture (such as one derived
using architectural recovery techniques) and a more
conceptual architecture used at design time.
Furthermore, additional differences may be introduced
during software development and evolution due to
documentation or implementation defects. This makes
ensuring conformance between an architectural design
and code a difficult problem worth addressing.

We present a lightweight, scalable, semi-automated,
incremental approach for synchronizing a Component-
and-Connector (C&C) view retrieved from an
implementation with a conceptual C&C view described
in an Architectural Description Language. Our tool
can automatically detect corresponding elements in the
presence of insertions, deletions, renames, and moves,
and incrementally synchronize the two views. When we
applied the approach on an architecture of over 20
components, we found several divergences between the
conceptual and implementation level architectures.

1. Introduction

Ensuring that a system as built conforms to its

architectural design during software development and
evolution is important, as significant divergences
between architecture and implementation can
compromise architectural structure, style and properties
that have been established with careful analysis at the
architectural level.

Previous work has taken a number of approaches to
ensuring conformance between architecture and
implementation. Generating skeletal or glue code from
architecture is one option [SDK+95], although it
provides no guarantees that the code will remain
conformant to the architecture as either evolves.
Approaches based on architectural reconstruction
include analysis-based architectural extraction
[MNS01][EOG+98], run-time architecture monitoring

[YGS+04], and using a type system to verify
conformance to an architecture expressed within a
programming language [e.g., ACN02].

A weakness of existing approaches is that they
reconstruct architectures that are very concrete and
implementation-oriented — in contrast, software
architects often view architecture more abstractly,
omitting components and connections that are not
relevant to their particular concern. Also, automatically
reconstructed architectures often lack the styles and
properties on which an architect relies when designing
a system. Finally, approaches assuming the primacy of
one architectural view over the other, i.e., allowing
changes to be made in only one direction, are overly
limiting, as it is valid to make changes in either view.
Thus existing work limits the ability of architects to
work at an appropriate level of abstraction and
simultaneously ensure that the design is a faithful
abstraction of the implementation, by not having the
ability to synchronize the two views.

This paper describes a lightweight and scalable
approach to synchronize an implementation-level
architectural view, such as one reconstructed using
architectural recovery techniques, with a conceptual-
level architectural view expressed in an Architecture
Description Language (ADL). Our approach handles
expressiveness gaps between conceptual and
implementation-level architectural views, allowing
architects to keep the two architectures up-to-date
without losing architectural style, type and property
information needed for architectural-level analyses.

Synchronization matches elements in the presence
of insertions, deletions, renames and moves, and
proposes a set of edits to make one representation more
consistent with the other. While our approach is
potentially applicable to a wide range of ADLs, in
order to evaluate it, we have chosen to represent a
conceptual-level architecture in the Acme ADL.
Implementation-level C&C views can be also extracted
from implementation-constraining ADLs with code
generation capabilities or implementation independent

Submitted for publication.

 2

ADLs such as C2 [MT00] that provide an
implementation framework for code generation. We
have chosen ArchJava [ACN02] for our approach.

We begin by describing the differences between
architectural information at different levels of
abstraction that any synchronization approach must
address. Section 3 describes ensuring conformance
based on matching tree-structured architectural
information. Section 4 describes the prototype tool we
have built. Section 5 shows how the approach was used
to detect several divergences between the conceptual
and implementation level architectures of an
architecture of over 20 components. Finally, we discuss
related work and conclude with future work to address
some of the limitations of our approach.

2. The Design-Implementation Gap

In this section, we describe the problems that must

be addressed when attempting to synchronize an
implementation-level architecture with a conceptual-
level architecture. Typical Architecture Description
Languages (ADLs) model architecture as a set of
components, connections between them, and
constraints on how these components interact [MT00].
We use Acme and ArchJava to illustrate the differences
in expressiveness, but many problems are common to
any pair of design-oriented and implementation-
oriented architectures, and the corresponding
Component-and-Connector (C&C) views.

2.1 Expressiveness Gaps

In many design languages, types are arbitrary logical

predicates: an element is an instance of any type whose
properties and rules it satisfies, and one type is a
subtype of another if the predicate of the first type
implies the predicate of the second type. Such a type
system is highly desirable at design time, because it
allows designers to combine type specifications in rich
and flexible ways. Acme embodies this approach, but it
is hardly unique; for example, PVS [ROW98] takes a
similar approach. As an example of the benefits of a
predicate-based type system, consider an architecture
that is a hybrid of the pipe-and-filter and repository
architectural styles [SG96]. In this example, a filter
component type has at least one input and one output
port, while a client component in the repository style
has at least one port to communicate with the
repository. A component in this architecture might
inherit specification information from both the filter
and the repository client specifications, yielding a
component that has at least three ports: two for
communicating with other filters and one for
communicating with the repository.

Unfortunately, examples like this cannot be
expressed in implementation-level type systems such as
the ones provided by C2SADL [MOR+96] or
ArchJava. A specification that a component has a port
implies a requirement that the environment will match
that port up with some other component, and therefore
conventional type systems require a component type to
list all of the ports it might possibly have (or at least all
those ports that are expected to be connected at run
time). There is no way to say that a filter component
has “at least two ports”—instead, one must say that the
filter has “at most” or “exactly” two ports. Therefore,
in the implementation, one cannot combine the filter
type with a repository component type (which defines a
third port that is prohibited by the filter specification).
Since a design-level predicate-based type system is
fundamentally incompatible with a programming-
language style type system, any system synchronizing
between design- and implementation-level views has to
allow the user to specify arbitrary matches between the
two type hierarchies in the two systems. In our current
tool prototype, the architect specifies this mapping in a
view that shows the type hierarchies in both systems
flattened and shown side-by-side (See Figure 1).

Design languages such as Acme tend to treat
hierarchy as design-time composition, where a
component at one level in the hierarchy is just a
transparent view of a more detailed decomposition
specified by the representation of that component.
Multiple representations for a given component or
connector could correspond to alternative
decompositions into sub-systems. On the other hand,
implementation-level C&C views such as ArchJava
tend to view hierarchy as the integration of existing
components, along with glue code, into a higher level

Figure 1: Matching Types Structures: the user
assigns any ArchJava port with only provided
methods the provideT Acme type defined in the
MVCFam, a Model-View-Controller style.

 3

component; due to the glue, a higher-level component
is semantically more than the sum of its parts.

These differing meanings of hierarchy create
additional challenges for synchronizing the two views.
For example, if multiple representations are present at
the design level, there must be a way to specify which
of these representations was actually implemented. As
another example, components in both ArchJava and
UML-RT [CG01] can have internal ports that are used
for communication between a component and its
subcomponents. These ports cannot be directly
represented in Acme, forcing us to model a private port
as a port on an internal component instance with
properties specifying its visibility. As a final example,
Acme views an external port of a composite component
as just an alias for ports in its subcomponents: it only
allows binding an outer port to one or more inner ports;
in contrast, ArchJava does not distinguish between
bindings and attachments and connectors can connect
an external port to ports on subcomponents.

2.2 Incidental Differences

There are additional differences between Acme and

ArchJava that are more incidental in nature, but
nonetheless make the problem of relating the two
representations more challenging. While these
differences will vary according to languages, they are
suggestive of the challenges likely to be encountered by
anyone trying to synchronize two C&C views:
• Missing Port Types: ArchJava does not declare

explicit types for ports. This means that Acme port
types must be assigned for each ArchJava port
instance, rather than assigning an Acme type to
each ArchJava port type.

• Missing Instance Names: Unlike Acme, ArchJava
does not name connectors or roles. This requires
us to match connectors and roles based on
structural criteria rather than names.

• Missing Connector Roles: ArchJava does not
have first-class roles and role types, unlike Acme,
one of the few ADLs with explicit support for
roles. Our tool takes advantage of style constraints
in order to automatically infer the types of the
implicit roles when going from ArchJava to Acme.

• Top Level Elements: The top-level structure of
architecture is represented as a system construct in
Acme which differs from a component in that it
cannot declare external ports. In ArchJava, top-
level architectures are represented by components
which may have ports, forcing us to model an
ArchJava top-level component that declares ports
with an extra level of hierarchy in Acme.

2.3 Structural Differences

In addition to the gaps in language expressiveness,

the ways conceptual-level and implementation-level
C&C views are developed and evolved differently
creates challenges for architectural synchronization.
Some of these differences are by design; others are due
to implementation or documentation defects.

For instance, architects may choose to structure a
system in different ways than system designers: an
architect may choose to abstract away some of the
components and connections in a system, because they
are not relevant to her modeling task. An
implementation-oriented view, on the other hand, is
likely to be complete. This example suggests that any
synchronization approach must be able to handle
elements that are inserted and deleted between the
design-level and the implementation level, as supported
by the ArchDiff tool [WH02].

Synchronization between design-level and
implementation-level architectures, however, requires
going beyond insertions and deletions to support
renames and moves. Name differences between the two
representations can arise for a variety of reasons.
ArchJava does not even name certain elements (e.g.,
connectors, roles and attachments): any names they
may have in Acme are lost during code generation.
Similarly, the architect may update a name in one
representation and forget to update it in the other
representation. Identifying an element as being deleted
and then inserted when it fact it is renamed, would
result in losing crucial style and property information
about the element at the design level.

Furthermore, it is not unusual for architects and
implementers to differ in their use of hierarchy, so that
components expressed at the top level in one
architecture are nested within another component in
some other architecture (i.e., in Acme, this would
correspond to replacing an architectural element with
its representation). For example, the architect may want
to use hierarchy to analyze the architecture at a higher
level or hide certain decision decisions from some parts
of the system [Par72], but an implementer may wish to
flatten the hierarchy for efficiency reasons. This
requires detecting moves across levels of hierarchy.

These are not the only structural differences that
may arise: elements (e.g., components or ports) can be
split or merged during restructuring of the architecture
or the implementation. Splitting is common practice,
but is difficult to formalize, since it affects connections
in a context-dependent way [Erd98]. We leave splits
and merges to future work.

 4

3. Ensuring Conformance

Our approach to enforcing structural conformance
between an architectural C&C view and an
implementation-level C&C view proceeds as follows:
1) convert the architectural C&C view into tree-
structured data, 2) retrieve a C&C view from the
ArchJava implementation and convert it to tree-
structured data, 3) use a tree-to-tree correction
algorithm for unordered labeled trees to identify
matches and structural differences (classified as inserts,
deletes, renames and moves – See Figure 2), and obtain
an edit script to make one view more consistent with
the other 4) supplement the edit script with information
that cannot be derived from the architecture or the
implementation (for example, styles and types, in one
direction, or namespaces and source code locations in
the other), and 5) optionally apply the edit script to the
underlying representation (e.g., the Acme model or the
ArchJava implementation). The final step is optional
because the architect may consider the differences
innocuous or may only be interested in a change impact
analysis [KPS+99].

3.1 Tree Structured Data

The architectural structure information is
represented as a cross-linked tree structure instead of a
graph, to emphasize the notion of hierarchy inherently
present in nested sub-architectures and to keep the
algorithms tractable. For scalability reasons, and taking
advantage of the recursive nature of the problem, our
structural comparison is designed to start at a given
Acme system (or a given Acme component
representation) and a corresponding ArchJava top-level
component. If there are multiple representations for a
component in Acme, the user can use this feature to
determine which representation was actually
implemented by the developers, by finding the one that
most closely matches the implementation.

The tree structure closely mirrors the hierarchical
decomposition of the system and includes information
to improve the accuracy of the structural comparison.
For instance, the subtree of a node corresponding to a
port or role includes all the port’s or the role’s
involvements, i.e., all components (and their ports) or
connectors (and their roles) reachable from that port or
role through attachments or bindings. Cross-links refer
back to the defining occurrence of each element and
allow the user to navigate the architectural graph.

We decorate each element in the tree-structured data
with various properties, some automatically retrieved
from either representation, others corresponding to
user-entered data (e.g., type assignments). These
properties are not represented in the tree-structure and

are not directly considered during tree-to-tree
correction (i.e., they will not have edit actions
associated with them). However, these properties
provide additional semantic information that the
matching algorithms can rely on. For instance, the type
information, if provided, is used to build a matrix of
incompatible elements that may not be matched. In
addition, some of these properties provide a loose
mapping between the C&C view elements and the
corresponding elements in the module view; e.g.,
properties with ArchJava namespace and source code
location information are automatically added to
elements retrieved from ArchJava to help distinguish
between similarly named types in the implementation.

Obtaining the architectural tree-structured data is
simply a matter of converting the Acme architectural
graph into the cross-linked tree structure. Most of the
elements are already available as Acme model
elements; required and provided methods are retrieved
from properties on ports if they exist.

The tree-structured data is derived from the
implementation by traversing the ArchJava compilation
units, ignoring non-architecturally relevant Java classes
or fields (i.e., not of type component or connector),
representing the various elements and bridging
expressiveness gaps as they are encountered, e.g.,
representing a private port by first creating an internal
component instance and adding the port to it.

Figure 2: Structural comparison of architectural
instances in a C&C view retrieved from Acme and a
C&C view retrieved from ArchJava: component
privateAphyds exists in ArchJava but not in Acme;
similarly, connector starConnector matches a
connector in ArchJava with an automatically-
generated name (highlighted nodes).
Symbols: Match (), Insert (), Delete (), Rename ()

 5

3.2 Tree-to-Tree Correction

Tree-to-tree correction is then used to compare the
tree-structured data from the architecture and from the
implementation views to find structural differences and
produce an edit script. The comparison can be
restricted to user-defined subsets of the two views: e.g.,
if the Acme model does not specify some information
that exists in ArchJava (such as method signatures),
this information can be excluded from the comparison
to avoid gratuitous differences. Structural comparison
finds matches and classifies differences as inserts,
deletes, renames, and optionally moves.

Much of the research on tree-to-tree correction has
focused on ordered labeled trees, since the problem for
unordered trees is MAX SNP-hard [ZJ94]. We initially
used an exact polynomial time tree-to-tree correction
algorithm [SZ97], simply ordering nodes by name. We
also added string-to-string correction to evaluate the
intrinsic degree of similarity between the labels of two
nodes, using the standard dynamic programming
algorithm to find the longest common subsequence
[WF74]. Given that the ordering we chose is artificial,
however, it is perhaps unsurprising that we found this
algorithm to perform poorly when renames change the
ordering of sibling nodes in the tree. Other orderings
are possible (such as ordering subtrees by weight) but
these have similar drawbacks.

A software architecture has no inherent ordering
among its elements, suggesting that an unordered tree-
to-tree correction algorithm might perform better.
Existing algorithms work around the NP-hardness
result either through heuristic methods [WDC03] or
through an exact solution under additional assumptions
[THP05]. We chose the second approach, initially
assuming that a node can be matched to another only if
its parent is matched to some node. However, this
assumption did not allow us to detect moves, such as
when a top-level architectural component is moved into
the representation of another component.

We generalized this assumption so that the
algorithm can correctly identify architectural moves as
long as they do not involve more than M levels of
architectural hierarchy (for some fixed constant M).
Our resulting algorithm is polynomial-time, yet
generalizes the one in [THP05] to detect renames,
inserts, deletes and moves, as well as support forcing
and preventing matches between nodes. Unfortunately,
space limitations prevent us from a more detailed
description of our algorithm.

An upper bound on the running time of the
algorithm is as follows: let X the set of nodes of both
trees, x an element of X, p the maximum allowable size
of a connected subgraph of the tree that can be deleted

or inserted in the middle of the tree, f(x,p) the number
of nodes that lie within a distance of (p+1) from x, and
F(a) = max{f(x,p): x∈X and p=a}: our algorithm has a
worst case running time of O((2F(p))! N2) and requires
O(d.N2) memory, where d is an upper bound on the
maximum degree of a node and N is number of nodes.
In our implementation, pruning the search tree, using
additional semantic information (e.g., types) and being
able to limit the running time by returning a suboptimal
solution, make the average case much faster than the
worst case. In comparison, [THP05] has a running time
of O(d3 N2) and requires O(N2) memory.

Originally designed to detect moves, our algorithm
also detects insertions better than [THP05]; e.g., the
latter did not detect that component privateAphyds (In
Figure 2) is an insertion. We avoided premature
optimization in our implementation to allow for easier
debugging. On an Intel Pentium4® CPU 3GHz with
1GB of RAM, comparing an Acme tree of around 800
nodes with an ArchJava tree of around 1,400 nodes (as
in Figure 2) currently takes around 2 minutes, whereas
our implementation of [THP05] takes around 30
seconds but produces less accurate results.

There is one caveat to representing architectural
graphs using trees: tree-structuring the data causes each
shared node in the architectural graph to appear several
times in several subtrees, with cross-links referring
back to their defining occurrences. These redundant
nodes greatly improve the accuracy of the tree-to-tree
correction; however, they may be inconsistently
matched with respect to their defining occurrences
(either in what they refer to, or in the associated edit
operations). We currently alert the user to inconsistent
matches in the output, if they occur, and allow her to
manually correct them; if provided, the corrections are
taken into account to build the edit script.

Inconsistent matches becomes more pronounced if
there are many cycles in the architectural graph. But, in
practice, we found it is possible to address this problem
by making two passes to synchronize the two
representations: during the first pass, synchronize the
strictly hierarchical information (e.g., components,
connectors, ports, roles, and representations); during
the second pass, synchronize the context-dependent
attachments and bindings. We are also investigating
techniques to express the dependencies between the
mapping decisions and prevent inconsistent matches.

4. Tool Support

We intended for our approach to be lightweight
enough that it can fit into a single dialog with a look-
and-feel similar to the one provided by popular open-
source Integrated Development Environments [e.g.,

 6

Ecl03] instead of more specialized environments for
architectural recovery such as [TMR02]. Tool support
for our approach uses AcmeStudio [SG04], a domain-
neutral architecture modeling environment for Acme,
and ArchJava's development environment, both
implemented as plugins in the Eclipse tool integration
platform. At any time while using the AcmeStudio or
the ArchJava development environments, the user can
invoke the synchronization functionality. We have
completed the functionality needed to make an Acme
model incrementally consistent with an ArchJava
implementation. We still need to change the ArchJava
infrastructure to support making incremental changes to
an existing ArchJava implementation. In both cases, the
following five-step process applies:
1. Setup the synchronization
2. View and match types (optional)
3. View and match instances
4. View and modify the edit script (optional)
5. Confirm and apply the edit script
Because steps 1 and 5 are straightforward, we will only
discuss steps 2-4 in more detail below.

4.1 Viewing and Matching Types

As we discussed earlier, matching type structures
helps discover implementation-level violations of
architectural styles and types that are not currently
represented in ArchJava. This step has to be done
mostly manually (See Figure 1), and for that reason, is
currently kept as optional step in the tool. Matching
type structures can take several forms:
• Match explicit types when possible: e.g., match an

ArchJava component type with one or more Acme
component types;

• Assign types to instances when no explicit type is
available: e.g., assign types to individual ports on
an ArchJava component type;

• Assign types to special wildcards: e.g., using the
ArchJava connector type ANY, one can assign the
Acme type CallReturnT to all ArchJava implicit
connector instances; similarly, one can assign a
specific Acme type to a port with only required
and no provided methods (e.g., useT) or with only
provided and no required methods (e.g.,
provideT);

• Finally, infer types when possible: e.g., infer the
types of implicit ArchJava roles based on Acme
connection patterns optionally defined for an
architectural style: if the architect assigns types to
components, ports and connectors, the role type
(e.g., providerT) is inferred based on the source
component type (e.g., ANY), source port type (e.g.,
provideT), and connector type (e.g., ANY).

4.2 Viewing and Matching Instances

The differences found during structural matching
are shown in each tree by overlaying icons on the
affected elements (see Figure 2). If an element is
renamed, the tool automatically selects and highlights
the matching element in the other tree; for inserted or
deleted elements, the tool automatically selects the
insertion point by navigating up the tree until it reaches
a matched ancestor. Various features give the user
more control of the structural matching:
• Direct manipulation: the user can manually

insert, delete or rename elements (e.g., add a port
to a component) which will also generate the
corresponding edit actions.

• Elision: the user can selectively hide (and unhide)
elements, excluding them from comparison.
Elision can be instance-based or type-based, where
all elements of a given type are excluded at once
(e.g., only match components and ports). Elision is
temporary and does not generate any edit actions.

• Forced matches: the user can manually force a
match between an Acme element and an ArchJava
element without leaving the synchronization tool
to change either representation. The user can use
this feature to correct inconsistent matches in the
output of the tree-to-tree correction as discussed
earlier. The user can also use this feature to
manually force a match between two elements that
cannot be structurally matched : e.g., force a match
between an Acme spliFilter component designed
with one input and two output ports with an
ArchJava split component implemented with one
input port and one output port.

• Manual overrides: finally, the user can override
any edit action produced by tree-to-tree correction,
e.g., cancel a delete action.

4.3 Viewing and Modifying the Edit Script

We produce a common supertree to show the
merged model as a tree-structured preview of the
architectural model after the edit actions are applied. In
this step, the user can assign types to elements to be
created, change the types of existing elements, override
automatically inferred types, or cancel any unwanted
edit actions prior to the application of the edit script.

Setting types during synchronization may affect the
processing of the edit script. For instance, when a
component instance is assigned a type, it may inherit
ports from its assigned type, so the edit script need not
create additional ports on the component instance; it
may rename a port to match the name declared in the
architectural type. We generally allow the user to

 7

rename any architectural element in the edit script: for
example, in our case study presented in Section 5, we
gave the more meaningful name windowBus to a
connector with an automatically generated name.

The edit script is also checked for some common
problems: e.g., the tool raises warnings for architectural
elements without an assigned type, or errors, such as
having an element name corresponding to a reserved
Acme keyword. Currently, we do not check that the
edit script will produce a valid architectural model
before it is applied, e.g., check that it will not generate
a dangling port. This is deferred for future work.

5. Case Study

We now illustrate our approach and tool support on
an ArchJava implementation of a pedagogical circuit
layout application, Academic Physical Design System
(Aphyds) with over 20 components divided into several
subsystems. In [ACN02], Aldrich discusses how
Aphyds was re-engineered from 8,000 source lines of
Java code (not counting the libraries used) to take
advantage of the architectural features of ArchJava.

The architect evaluating our synchronization tool
was familiar with ArchJava but was not previously
involved with the development of the Aphyds system.
He started out with the original Aphyds architect’s
drawing of the conceptual architecture shown in Figure
3. The architecture loosely follows the Model-View-
Controller style, with the views consisting of user
interface elements shown above the line in the middle

of the diagram and the model consisting of a circuit
database and a set of computational components shown
below the line; also the arrows labeled “call”
correspond to control flow whereas the unlabeled
arrows correspond to data flow. With this information,
the Acme architect designed a conceptual C&C view
for the system (See Figure 4): he created a single Acme
component to represent the circuitModel and added all
the components below the line to a representation of
circuitModel (See Figure 5). The architect did not want
to distinguish between data and control flow, so he
added the data flow arrows as connectors. Finally, he
used the following convention to carefully name the
various elements: component instances start with
lowercase to distinguish them from component types; a
port or a role involved in a two-way connection is
named after the component it is attached to through the
connector; otherwise, a reasonably meaningful name is
chosen. The Acme architect did not initially assign any
architectural types to the model, since he was anxious
to explore the ArchJava implementation, and see how
well it matches the conceptual view. The architect ran
the synchronization tool: carefully naming the elements
was helpful since names are the main visual cue
available when viewing the architectural C&C view in
a tree. He noticed a few renames, e.g., ArchJava uses
model instead of circuitModel, and in that
representation, ArchJava uses globalRouter instead of
route (See Figure 2).

The Acme architect was the least sure about how he
represented the circuitModel component in Acme;
facing a number of name differences certainly did not
raise his confidence level. So, he decided to focus on
the circuitModel Acme component instance which was
matched to the model ArchJava component instance.
He noticed that the ArchJava model component
instance was being incorrectly interpreted by the
synchronization tool as having only bindings, i.e., no
connectors! This was an example of the expressiveness
gap discussed earlier: ArchJava was using the glue
primitive to connect inner and outer instances and
ports, the equivalent of an illegal Acme construct of
binding an outer port to a role on an inner connector:

glue circuit to circuitData.main,
partitioner.circuit, floorplanner.circuit,
placer.circuit, globalRouter.circuit,
channelRouter.circuit;

Since Acme cannot express this ArchJava construct
directly, the developer chose to refactor the Archjava
code to more closely reflect his Acme design. Our tool
cannot yet propogate changes from Acme to ArchJava
automatically, so the Acme architect looked at the
properties of the ArchJava model component instance,
copied the name of its source file

Figure 3: Original Java developer’s model.

 8

(AphydsModel.archj), switched to the ArchJava
development environment within the same running
instance of the Eclipse environment, browsed that
source file and manually changed the ArchJava code to
the mostly equivalent ArchJava construct:
glue circuit to circuitData.main;
connectcircuitData.main,partitioner.circuit,
floorplanner.circuit, placer.circuit,
globalRouter.circuit,channelRouter.circuit;

The Acme architect then switched back to AcmeStudio,
and restarted the synchronization wizard and confirmed
that the ArchJava code modification had the intended
effect. However, the structural comparison then showed
that the Acme representation for circuitModel had
more connectors than the ArchJava implementation,
i.e., the tool only matched starConnector in the middle
of the diagram, modulo renaming (See Figure 2). The
architect investigated this further and confirmed that
the dataflow arrows in the informal Aphyds boxes-and-
lines diagram are not actually in the implementation, so
he accepted the edit actions to delete the extra
connectors from the Acme model (See Figure 5).

Having synchronized the circuitModel component,
the Acme architect next turned his attention to the top-
level system. The synchronization tool had alerted the
Acme architect to the presence of additional
representations for components channelRouteViewer,
placeRouteViewer, and circuitViewer. The architect
decided against adding those sub-systems to the Acme
model, so he cancelled the corresponding edit actions.
The architect next turned his attention to the additional
top level component, shown as privateAphyds in Figure
2): he discovered that specific component was added to
represent a private port in ArchJava and the
corresponding glue, a limitation of Acme discussed
earlier. By looking at the required and provided
methods and the control flow, the architect decided to
have that subsystem follow the publish-subscribe style,
so he renamed component privateAphyds as window
and renamed the added connector to windowBus. The
architect also decided to use the same component
names as the ArchJava implementation to future avoid
confusion, so he let the tool apply the edit script.

The architect then decided to assign styles and types
to the model. He reran the synchronization wizard
using it to assign types. As he was interested in the
control flow in the system, he assigned the provideT,
useT, provreqT Acme types to ArchJava ports which
only provide, only require, or have both methods,
respectively; he assigned the generic TierNodeT Acme
type to all components, the CallReturnT Acme type to
all connectors, except the previously created
windowBus connector, which was assigned the
EventBusT connector type from the Publish-Subscribe

style. Figure 6 shows the C&C view after it has been
manually laid out in AcmeStudio. Unlike the original
architect’s model, Figure 6 shows bi-directional
communication taking place between components
placeRouteViewer and model; upon further
investigation, the architect traced that to a callback.
Since Aphyds is a multi-threaded application with long
running operations moved onto worker threads, the
architect makes note of the fact that developers should
not carelessly add callbacks from a worker thread onto
the user interface thread. Finally, the architect plans on
using the up-to-date C&C view with types and styles
for evolving the system.

Figure 6: Acme model with styles and types.

Figure 4: Original developer’s model in Acme.

Figure 5: Acme representation for the circuitModel
component. Extra connectors are marked with ����.

�
� �

�

 9

6. Related Work

Many researchers have studied ensuring
conformance between architecture and implementation,
often within the context of architectural recovery. Some
of the challenges we identified, such as mapping both
types and instances, are typical of issues involved in
representing architectures using multiple views or
models such as UML [AM99][ICG+04][HK03].

Murphy et al. [MNS01] also follow an incremental,
lightweight, approximate approach to check the actual
architecture against the idealized one. The work on
Reflexion Models and Hierarchical Reflexion Models
[KS03] appears to be mostly concerned with module
views and not with C&C views. In Reflexion Models,
the source model and the high-level models can be
typed, partially typed or un-typed; similarly, assigning
types is an optional step in our approach. Having the
user match Acme and ArchJava types or specify
additional types on the edit script during
synchronization supports the same “goal of a
lightweight technique by reducing the burden on the
engineer to define a type for each high-level model
interaction” with a “focus on those parts of the model
where typing will provide the most benefit”. In
Reflexion Models, a minimal representation of types is
used, i.e., names, whereas Acme types have additional
semantics, constraints and heuristics associated with
them [Mon98]. Just as Reflexion Models let the user
elide information from view and permit inconsistencies
to remain, we allow the user to cancel any unwanted
edit actions and can restrict the structural comparison
to a subset of the tree-structured data.

Medvidovic et al [MJ04] also attempt to check the
conformance of an implementation with respect to an
architectural style. However, in their approach, the
idealized architecture is not represented using C&C
views: they mainly employ architectural recovery
techniques and manually relate the two views.

For maximum generality, we match elements based
on their structure and do not assume that architectural
or implementation-level elements have unique
identifiers associated with them. In some approaches,
the names are immutable—every time an element is
changed, it gets a new unique identifier [OWK03], so
checking for renames is not needed anymore.
Assuming unique identifiers may be possible when
comparing two versions of the same model, but is not
appropriate when dealing with different levels of
abstractions. As an optimization to our system,
persistent unique identifiers could be assigned to Acme
and ArchJava elements so that they could be quickly
matched up between invocations, or to automatically
ignore previously flagged known differences in a large

architectural model. The identifiers could be persisted
outside the Acme model or the ArchJava source code,
to keep the synchronization unobtrusive.

Tracking changes to an architectural representation
in an ADL using features similar to those in source
control management systems (e.g., Mae [RHM+04])
may provide the ability to infer coarse grained
operations, such as merges or splits, in addition to the
fine-grained operations (inserts, deletes, …). For
maximum generality, we assume a disconnected
operation, i.e., no monitoring of structural changes is
taking place while the user is modifying the Acme
model or the ArchJava implementation. The connected
operation seems less appropriate when dealing with
different levels of abstraction. Furthermore, even
having accurate, fast and reliable structural comparison
algorithms will not completely eliminate some of the
manual steps involved, such as matching the type
structures between the two representations.

Work on finding differences between inheritance
trees [XS03] inspired the use of tree-to-tree correction
algorithms. However, most approaches use variants of
tree-to-tree correction for ordered labeled trees
mentioned earlier. We discussed earlier how the
problem calls for potentially taking into account a large
number of name differences: even if the
implementation-level architecture structurally conforms
to the conceptual-level architecture, such as right after
code generation, name differences will be found.
Reliably detecting renames requires using unordered
tree-to-tree correction. ArchDiff [WH02] detects
inserts and deletes, but not renames nor moves, and
seems to be using a simpler comparison algorithm.
ArchDiff only compares two architectural models in
xADL and does not have to bridge any expressiveness
gaps. Our implementation could be readily adapted to
compare and synchronize two architectural models.

7. Limitations and Future Work

In this paper we have described a lightweight,
scalable, semi-automated, incremental approach for
synchronizing an implementation-oriented C&C
architectural view with a design-level architectural
C&C view described in an ADL. We have presented a
tool that implements this approach to provide
synchronization between Acme and ArchJava.

There are various limitations of the approach and
tool that we will address as future work. We would like
to explore other comparison algorithms to determine
which gives the best performance and the best results,
as well as support additional differences such as
merges and splits. We still need to change the ArchJava
infrastructure to support making incremental changes.

 10

In general, it may not be feasible to make incremental
changes to an implementation in a programming
language that does not encode architectural structure,
or if the C&C view is obtained by instrumenting a
running system [YGS+04], or when dealing with C&C
views with structural dynamism. The latter case has not
been addressed mainly since Acme currently cannot
express the dynamic constructs ArchJava can. Finally,
we plan to address in future work some of the
incidental differences encountered during this research
to further streamline synchronizing the Acme and
ArchJava architectural representations.

8. References

[AM99] Abi-Antoun, M. and Medvidovic, N. Enabling the

Refinement of a Software Architecture into a Design. In
Proc.of «UML» 99, 1999.

[AP03] Alanen, M. and Porres, I. Difference and Union of
Models. In Proc. of «UML» 2003, 2003.

[ACN02] Aldrich, J., Chambers, C. and Notkin, D.
ArchJava: Connecting Software Architecture to
Implementation. In Proc. ICSE, 2002.

 [CG01] Cheng, S.-W. and Garlan, D. Mapping Architectural
Concepts to UML-RT. In Proc. of PDPTA, 2001.

[Erd98] Erdogmus, H. Representing Architectural Evolution.
In Proc. CASCON’ 98, 1998.

[EOG+98] Eixelsberger W., Ogris M., Gall H., and Bellay B.
1998. Software architecture recovery of a program
family. In Proc. ICSE, 1998.

[GKC01] Garlan, D., Kompanek, A. J., and Cheng, S.-W.
Reconciling the Needs of Architectural Description with
Object-Modeling Notations. In Science of Computer
Programming, Volume 44, Elsevier Press, 2001.

[GMW00] Garlan, D., Monroe, R., and Wile, D. Acme:
Architectural Description of Component-Based Systems.
In Foundations of Component-Based Systems,
Cambridge University Press, 2000.

[HK03] Hausmann, J. H., Kent, S. Visualizing Model
Mappings in UML. In Proc SOFTVIS 2003, 2003.

[ICG+04] Ivers, J., Clements, P., Garlan, D., Nord, R.,
Schmerl, B. and Silva, J.O. Documenting Component
and Connector Views with UML 2.0. CMU/SEI-2004-
TR-008, Software Engineering Institute, 2004.

[KS03] Koschke, R., and Simon, D. Hierarchical Reflexion
Models. In Working Conf. on Reverse Eng., 2003.

[KPS+99] Krikhaar, R., Postma, A., Sellink, A., Stroucken,
M., Verhoef, C. A Two-Phase Process for Software
Architecture Improvement. In Proc. ICSM, 1999.

[MJ04] Medvidovic, N., and Jakobac, V. Using Software
Evolution to Focus Architectural Recovery. In Journal of
Automated Software Engineering, 2004.

[MOR+96] Medvidovic, N., Oreizy, P., Robbins, J. E. and
Taylor, R. N. Using Object-Oriented Typing to Support
Architectural Design in the C2 Style. In Proc. FSE 1996.

[MT00] Medvidovic, N., and Taylor, R. N. A Classification
and Comparison Framework for Software Architecture
Description Languages. In IEEE Transactions on
Software Engineering, vol. 26, no. 1, pp.70–93, 2000.

[Mon98] Monroe, R.T. Capturing software architecture
design expertise with Armani. Technical Report No.
CMU-CS-98-163, Carnegie Mellon University, 1998.

[MNS01] Murphy, G. C., Notkin D., and Sullivan K.
Software Reflexion Models: Bridging the Gap Between
Design and Implementation. In IEEE Transactions on
Software Engineering, vol. 27, no. 4, pp. 364–380, 2001.

[Ecl03] Object Technology International, Inc. Eclipse
Platform Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[OWK03] Ohst, D., Welle, M., and Kelter, U. Differences
between Versions of UML Diagrams. In
ESEC/SIGSOFT FSE, 2003.

[Par72] Parnas, D. On the Criteria for Decomposing Systems
into Modules. In Communications ACM, 15 (12), 1972.

[RHM+04] Roshandel, R., van der Hoek, A., Mikic-Rakic,
M. and Medvidovic, N. Mae - A System Model and
Environment for Managing Architectural Evolution. In
ACM Transactions on Software Engineering and
Methodology, 13(2), pages 240-276, 2004.

[ROW98] Rushby, J., Owre, S., and Shankar, N. Subtypes
for Specifications: Predicate Subtyping in PVS. In IEEE
Trans. Software Engineering 24(9), 1998.

[SG96] Shaw, M. and Garlan, D. Software Architectures:
Perspectives on an Emerging Discipline, Prentice Hall,
1996.

[SDK+95] Shaw, M., DeLine, R., Klein, D. V., Ross, T. L.,
Young, D. M., and Zelesnik, G. Abstractions for
Software Architecture and Tools to Support Them. In
IEEE Trans. Software Engineering, 21(4), April 1995.

[SG04] Schmerl, B. and Garlan, D. AcmeStudio: Supporting
Style-Centered Architecture Development. In Proc. Int’l
Conference on Software Engineering, 2004.

[SZ97] Shasha, D., Zhang, K. Approximate Tree Pattern
Matching, in Pattern Matching Algorithms, Apostolico,
A. and Galil, Z., Eds., Oxford University Press, 1997.

[TMR02] Telea, A., Maccari, A. and Riva, C. An open
visualization toolkit for reverse architecting. In Proc.
10th Int’l Work. on Program Comprehension, 2002.

[THP05] Torsello, A., Hidovic-Rowe, D. and Pelillo, M.
Polynomial-Time Metrics for Attributed Trees. To appear
in IEEE Transaction on Pattern Analysis and Machine
Intelligence, 27 (7), 2005.

[WDC03] Wang, Y., Dewitt, D.J. and Cai, J.-Y. X-Diff: An
Effective Change Detection Algorithm for XML
Documents. In Proc. 19th Int’l Conf. Data Eng., 2003.

[WF74] Wagner, R.A. and Fischer, M.J. The string to string
correction problem. Journal of the ACM, 21:168--173, 1974.
[XS03] Xing, Z., and Stroulia, E. Understanding Object-

Oriented Architecture Evolution via Change Detection.
Technical Report TR03-20, University of Alberta, 2003.

[YGS+04] Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and
Kazman, R. DiscoTect: A System for Discovering
Architectures from Running Systems. In ICSE, 2004.

[ZJ94] Zhang, K., and Jiang, T. Some MAX SNP-hard
results concerning unordered labeled trees. In
Information Processing Letters, 49, pp. 249–254, 1994.

[WH02] van der Westhuizen, C. and van der Hoek, A.
Understanding and Propagating Architectural Changes.
In Proc. WICSA 3, 2002.

