Submitted for publication.

Semi-Automated | ncremental Synchronization between
Conceptual and I mplementation Level Architectures

Marwan Abi-Antoun, Jonahan Aldrich, David Garlan, Bradley Schmerl and Nagi Nahas
Institute for Software Research International, Carnegie Mellon University, Pittsburgh, PA 15213

{mabianto+, aldrich+, garlan+, schmerl+}@cs.cmu.edu

Abstract

In practice, there are many differences between an
implementation-level architecture (such as one derived
using architectural recovery techniques) and a more
conceptual architecture used at design time
Furthermore, additional differences may be introduced
during software development and evolution due to
documentation or implementation defects. This makes
ensuring conformance between an architectural design
and code a difficult problem worth addressing.

We present a lightweight, scalable, semi-automated,
incremental approach for synchronizing a Component-
and-Connector (C&C) view retrieved from an
implementation with a conceptual C&C view described
in an Architectural Description Language. Our tool
can automatically detect corresponding elementsin the
presence of insertions, deletions, renames, and moves,
and incrementally synchronize the two views. When we
applied the approach on an architecture of over 20
components, we found several divergences between the
conceptual and implementation level architectures.

1. Introduction

Ensuring that a system as built conforms to its
architectural design during software development and
evolution is important, as significant divergences
between architecture and implementation can
compromise architectural structure, style and properties
that have been established with careful analysis at the
architectura level.

Previous work has taken a number of approaches to
ensuring conformance between architecture and
implementation. Generating skeletal or glue code from
architecture is one option [SDK+95], athough it
provides no guarantees that the code will remain
conformant to the architecture as either evolves.
Approaches based on architectural reconstruction
include analysissbased architectural extraction
[MNSO1][EOG+98], run-time architecture monitoring

nnahas@acm.org

[YGS+04], and using a type system to verify
conformance to an architecture expressed within a
programming language [e.g., ACNO2].

A weakness of existing approaches is that they
reconstruct architectures that are very concrete and
implementation-oriented — in contrast, software
architects often view architecture more abstractly,
omitting components and connections that are not
relevant to their particular concern. Also, automatically
reconstructed architectures often lack the styles and
properties on which an architect relies when designing
a system. Finally, approaches assuming the primacy of
one architectural view over the other, i.e, allowing
changes to be made in only one direction, are overly
limiting, as it is valid to make changes in either view.
Thus existing work limits the ability of architects to
work a an appropriate level of abstraction and
simultaneously ensure that the design is a faithful
abstraction of the implementation, by not having the
ability to synchronize the two views.

This paper describes a lightweight and scalable
approach to synchronize an implementation-level
architectural view, such as one reconstructed using
architectural recovery techniques, with a conceptual-
level architectural view expressed in an Architecture
Description Language (ADL). Our approach handles
expressiveness gaps between conceptual and
implementation-level architectural views, alowing
architects to keep the two architectures up-to-date
without losing architectural style, type and property
information needed for architectural-level analyses.

Synchronization matches elements in the presence
of insertions, deletions, renames and moves, and
proposes a set of edits to make one representation more
consistent with the other. While our approach is
potentially applicable to a wide range of ADLS, in
order to evaluate it, we have chosen to represent a
conceptual-level architecture in the Acme ADL.
Implementation-level C& C views can be also extracted
from implementation-constraining ADLs with code
generation capabilities or implementation independent

ADLs such as C2 [MTO0O0] that provide an Unfortunately, examples like this cannot be
implementation framework for code generation. We expressed in implementation-level type systems asch
have chosen ArchJava [ACNO02] for our approach. the ones provided by C2SADL [MOR+96] or
We begin by describing the differences between ArchJava. A specification that a component hasra po
architectural information at different levels of implies a requirement that the environment will chat
abstraction that any synchronization approach mustthat port up with some other component, and theeefo
address. Section 3 describes ensuring conformanceonventional type systems require a component tiype
based on matching tree-structured architectural list all of the ports it might possibly have (orleast all
information. Section 4 describes the prototype twel those ports that are expected to be connectednat ru
have built. Section 5 shows how the approach wad us time). There is no way to say that a filter comptne
to detect several divergences between the condeptushas “at least two ports"—instead, one must sayttiet
and implementation level architectures of an filter has “at most” or “exactly” two ports. Theoet,

architecture of over 20 components. Finally, weuaks in the implementation, one cannot combine therfilte
related work and conclude with future work to addre type with a repository component type (which defiae
some of the limitations of our approach. third port that is prohibited by the filter specdition).

. . Since a design-level predicate-based type system is
2. The Design-Implementation Gap fundamentally incompatible with a programming-

In this section, we describe the problems that mustlanguage style type system, any system synchranizin
be addressed when attempting to synchronize anbetween design- and implementation-level viewstbas
implementation-level architecture with a conceptual allow the user to specify arbitrary matches betwiaen
level architecture. Typical Architecture Descriptio two type hierarchies in the two systems. In ouremt
Languages (ADLs) model architecture as a set oftool prototype, the architect specifies this magpma
components, connections between them, andview that shows the type hierarchies in both system
constraints on how these components interact [MT00] flattened and shown side-by-side (See Figure 1).

We use Acme and ArchJava to illustrate the diffeesn Design languages such as Acme tend to treat
in expressiveness, but many problems are common tdlerarchy as design-time composition, where a
any pair of design-oriented and implementation- component at one level in the hierarchy is just a
oriented architectures, and the corresponding transparent view of a more detailed decomposition

Component-and-Connector (C&C) views. specified by the representation of that component.
) Multiple representations for a given component or
2.1 Expressiveness Gaps connector could correspond to alternative

In many design languages, types are arbitrary &gic decompositions into sub-systems. On the other hand,
predicates: an element is an instance of any typEses implementation-level C&C views such as ArchJava
properties and rules it satisfies, and one typea is tend to view hierarchy as the integration qf erpti
subtype of another if the predicate of the firgpety ~COMponents, along with glue code, into a higheellev

implies the predicate of the second type. Suchpa ty sacme Types: u# Achlava Typss:
system is highly desirable at design time, because + &% ArchlavaFam Match [= €08 Archlava
allows designers to combine type specificationgdh =-8F mvcFam ¥ #+[3 Component Types
. . . . +- (07 Component Types Unmatch —|-- (23 Connector Types
and flexible ways. Acme embodies this approachjtbut 5-£3 Connector Types S
is hardly unique; for example, PVS [ROW98] takes a =% CalReturnConnT (3 Roles
similar approach. As an example of the benefits of i +E‘:‘R°'es L e
X i N wentBusT - o ANY
predicate-based type system, consider an archigectu £ Roles ey P PR OVIDE. oMLY
that is a hybrid of the pipe-and-filter and reposit =@ Port Types - @ REQUIRE_OMLY
. . . o commandT Order = (3 Role Types
architectural styles [SG96]. In this example, aefil o modelT B AN
component type has at least one input and one butpu o provideT
port, while a client component in the repositorylest : Ej:;“'ﬂ
has at least one port to communicate with the =-£3 Role Types
repository. A component in this architecture might | providerT
inherit specification information from both the tdit | e

and the repository client specifications, yieldimg Figure 1: Matching Types Structures: the user
component that has at least three ports: two for assigns any ArchJava port with only provided
communicating with other filters and one for methods the provideT Acme type defined in the
communicating with the repository. MVCFam, a Model-View-Controller style.

component; due to the glue, a higher-level compbnen 2.3 Structural Differences
is semantically more than the sum of its parts.

These differing meanings of hierarchy create
additional challenges for synchronizing the twowse
For example, if multiple representations are presgen
the design level, there must be a way to specifichvh
of these representations was actually implemerfsd.
another example, components in both ArchJava an
UML-RT [CGO1] can have internal ports that are used
for communication between a component and its
subcomponents. These ports cannot be directly
represented in Acme, forcing us to model a priyete
as a port on an internal component instance wit
properties specifying its visibility. As a final @mple,
Acme views an external port of a composite compbnen
as just an alias for ports in its subcomponentsniy

In addition to the gaps in language expressiveness,
the ways conceptual-level and implementation-level
C&C views are developed and evolved differently
creates challenges for architectural synchronimatio
Some of these differences are by design; otherdwere
qto implementation or documentation defects.

For instance, architects may choose to structure a
system in different ways than system designers: an
architect may choose to abstract away some of the
components and connections in a system, becauge the
pare not relevant to her modeling task. An
implementation-oriented view, on the other hand, is
likely to be complete. This example suggests timgt a
synchronization approach must be able to handle
allows binding an outer port to one or more innarts elements that are inserted and deleted between the

in contrast, ArchJava does not distinguish betweendes'gn'leveI and the implementation level, as stpgo

bindings and attachments and connectors can conneck?ytshe A;Chp'ﬁ t.OOI [WEOZ]' desian-level q
an external port to ports on subcomponents. __Synchronization etween esign-ieve an
implementation-level architectures, however, rezgiir

2.2 Incidental Differences going beyond insertions and deletions to support
- . renames and moves. Name differences between the two

There are additional differences between Acme and . . X
. . representations can arise for a variety of reasons.

ArchJava that are more incidental in nature, but .
: ArchJava does not even name certain elements (e.g.,

nonetheless make the problem of relating the two i
connectors, roles and attachments): any names they

representations more challenging. While these . . .

; : : may have in Acme are lost during code generation.

differences will vary according to languages, tlaeg 7 ; .
Similarly, the architect may update a name in one

Zﬂggﬁztlt\:;r?é ttr;esgziufgr?iiz Q\lfvil%tgé)iigcv?mm representat!on and forget to update it in.the other
. Missing Port Types: ArchJava does not declare representqtlon. Identlfylng.an eIe_mgnt as beingtddl
explicit types for por.ts This means that Acme port and then m;erted v_vhen it fact it is renamed,. would
o result in losing crucial style and property infotioa
pres must be assigned .for. each ArchJava portabout the element at the design level.
g‘asé?]n'gféhgi\?aer than assigning an Acme type to Furthermore, it is not unusual for architects and
. port type. . implementers to differ in their use of hierarchy,that
» Missing Instance Namesinlike Acme, Arf:hJava_ components expressed at the top level in one
does not name connectors or roles. This requireSyrchitecture are nested within another component in
us to mat(_:h _connectors and roles based ONsome other architecture (i.e., in Acme, this would
struc.tural criteria rather than names. correspond to replacing an architectural elemett wi
* Missing Connector Roles: ArchJava does not s representation). For example, the architect wayt
have first-class roles and.role type.s, unlike Acme, 4 ise hierarchy to analyze the architecture dgheh
one of the few ADLs with explicit support for |o\e| or hide certain decision decisions from sqags
roles. Our tool takes_advantage of style conssaint ¢ ihe system [Par72], but an implementer may wdsh
in order to automatically infer the types of the fa4en the hierarchy for efficiency reasons. This
implicit roles when going from ArchJava to ACme. roqujires detecting moves across levels of hierarchy
* Top Level Elements: The top-level structure of These are not the only structural differences that
architecture is represented asysem construct in 5y arise: elements (e.g., components or portspean
Acme which differs from a component in that it gpjit or merged during restructuring of the arcttivee
cannot declare external ports. In ArchJava, t0p- o the implementation. Splitting is common practice
level architectures are represented by components,t s difficult to formalize, since it affects coections

which may have ports, forcing us to model an i, 5 context-dependent way [Erd98]. We leave splits
ArchJava top-level component that declares ports 544 merges to future work.

with an extra level of hierarchy in Acme.

3. Ensuring Conformance are not directly considered during tree-to-tree
) correction (i.e., they will not have edit actions
Our approach to enforcing structural conformance gqggciated with them). However, these properties

between an architectural C&C view and an proyide additional semantic information that the
implementation-level C&C view proceeds as follows: matching algorithms can rely on. For instance,tyipe

1) convert the architectural C&C view into tree- jnformation, if provided, is used to build a matog
structured data, 2) retrieve a C&C view from the jncompatible elements that may not be matched. In
ArchJava implementation and convert it to tree- pqgition, some of these properties provide a loose
structured data, 3) use a tree-to-tree correc:tlonm(.mping between the C&C view elements and the
algorithm for unordered labeled trees to identify corresponding elements in the module view; e.g.,
matches and structural differences (clgssifiedwserfts, properties with ArchJava namespace and source code
deletes, renames and moves — See Figure 2), aathobt |5cation information are automatically added to

an edit script to make one view more consistenh Wit gjements retrieved from ArchJava to help distiniguis
the other 4) supplement the edit script with infation between similarly named types in the implementation
that cannot be derived from the architecture or the opaining the architectural tree-structured data is

implementation (for example, styles and types, i 0 gimply a matter of converting the Acme architedtura
direction, or namespaces and source code 10cations graph into the cross-linked tree structure. Mosthef
the other), and 5) optionally apply the edit sctipthe glements are already available as Acme model

underlying representation (e.g., the Acme modeher gjements: required and provided methods are retliev
ArchJava implementation). The final step is optlona qom properties on ports if they exist.

because the architect may consider the differences The tree-structured data is derived from the

innocuous or may only be interested in a chang@@Mp jmplementation by traversing the ArchJava compikati
analysis [KPS+99]. units, ignoring non-architecturally relevant Jalasses
3.1 Tree Structured Data or fields _(i.e., not of type component or conne_);to_r
representing the various elements and bridging
The architectural structure information is expressiveness gaps as they are encountered, e.g.,
represented as a cross-linked tree structure ohstka representing a private port by first Creating aenimal

graph, to emphasize the notion of hierarchy intren component instance and adding the port to it.
present in nested sub-architectures and to keep th~

algorithms tractable. For scalability reasons, @ihg o= = g Archisva Instances:
- phyds_5tepsa ey Aphyds
2 Aphyds_Step3 Compare | €35 Aphyd
advantage of the recursive nature of the problam, 0 |2 components ~-Ea Components
structural comparison is designed to start at @&mgiv | @ dhameRouteiiewer Clear 2@ channeRouteviener
. I (&} circuitModel +- (5} MoorplanDialog
Acme system (or a given Acme componeni +- [Ports ey © -1 (5 model
representation) and a corresponding ArchJava tegd-le = ?E"gﬂ;‘mnts i gf:;:o "
component. If there are multiple representationsafo +- @ channel Order =1 Components
component in Acme, the user can use this feature 1@ circuit % - @ channeRout
. X ! +- (&) MoorPlanner Scroll +- (& cirouitData
determine which representation was actually - partitioner = +1- @) Foorplanner
; R +-(5 place Report +-(&) globalRauter
implemented by the devel_opers, by fln.dmg the dvae t G e e 7@ b
most closely matches the implementation. = Connectors i +- @ placer
The tree structure closely mirrors the hierarchica 0 Sl " R
decomposition of the system and includes infornmatio +-4n conn_place_rout, Feset + @ placeRoutsviewer
to improve the accuracy of the structural compariso D | B e enphyds
For instance, the subtree of a node correspondiray t %@ dircuit¥iewer +- @ window
. y , +- (& lan¥i (= wi
port or role includes all the port's or the role's| & eoremiewe e
involvements, i.e., all components (and their goots |& C3 Connectors
connectors (and their roles) reachable from that@o '* _ _ _

role through attachments or bindings. Cross-liferr Figure 2: Structural comparison of architectural
back to the defining occurrence of each element aridstances in a C&C view retrieved from Acme and a
allow the user to navigate the architectural graph. C&C view retrieved from ArchJava: component
We decorate each element in the tree-structured dd¥rivateAphyds exists in ArchJava but not in Acme;
with various properties, some automatically reegyv Similarly, connector starConnector matches a
from either representation, others corresponding teonnector in ArchJava with an automatically-
user-entered data (e.g., type assignments). Thegenerated name (highlighted nodes).
properties are not represented in the tree-strgtnd ~ Symbols: Match (+), Insert (8), Delete B), Rename #)

3.2 Tree-to-Tree Correction

Tree-to-tree correction is then used to compare the
tree-structured data from the architecture and ftioen
implementation views to find structural differencesl
produce an edit script. The comparison can be
restricted to user-defined subsets of the two views,
if the Acme model does not specify some information
that exists in ArchJava (such as method signatures)
this information can be excluded from the compariso
to avoid gratuitous differences. Structural conguani
finds matches and classifies differences as inserts
deletes, renames, and optionally moves.

Much of the research on tree-to-tree correction has
focused on ordered labeled trees, since the profdem
unordered trees is MAX SNP-hard [Z2J94]. We iniiall
used an exact polynomial time tree-to-tree coroecti
algorithm [SZ97], simply ordering nodes by name. We
also added string-to-string correction to evalute
intrinsic degree of similarity between the labelgveo
nodes, using the standard dynamic programming
algorithm to find the longest common subsequence
[WF74]. Given that the ordering we chose is aiitific
however, it is perhaps unsurprising that we foumd t
algorithm to perform poorly when renames change the
ordering of sibling nodes in the tree. Other onaigsi
are possible (such as ordering subtrees by welmgtit)
these have similar drawbacks.

A software architecture has no inherent ordering
among its elements, suggesting that an unordeeed tr
to-tree correction algorithm might perform better.
Existing algorithms work around the NP-hardness
result either through heuristic methods [WDCO03] or
through an exact solution under additional asswmpti
[THPO5]. We chose the second approach, initially
assuming that a node can be matched to anotheifonly
its parent is matched to some node. However, this
assumption did not allow us to detect moves, si&ch a
when a top-level architectural component is moved i
the representation of another component.

We generalized this assumption so that the
algorithm can correctly identify architectural mevas
long as they do not involve more tham levels of
architectural hierarchy (for some fixed constamy.

or inserted in the middle of the trééx,p) the number
of nodes that lie within a distance (pf+ 1) from x, and
F(a) = max{f(x,p): xLIX and p=a}: our algorithm has a

worst case running time @((2F(p))! N%) and requires

O(d N® memory, whered is an upper bound on the
maximum degree of a node aNds number of nodes.

In our implementation, pruning the search treengisi
additional semantic information (e.g., types) aeth
able to limit the running time by returning a sutioal
solution, make the average case much faster than th

worst case. In comparison, [THPO5] has a runnimg ti

of O(d®*N? and require©(N?) memory.

Originally designed to detect moves, our algorithm
also detects insertions better than [THPO5]; dhg,
latter did not detect that compongmtvateAphyds (In
Figure 2) is an insertion. We avoided premature
optimization in our implementation to allow for eas
debugging. On an Intel Pentium4® CPU 3GHz with
1GB of RAM, comparing an Acme tree of around 800
nodes with an ArchJava tree of around 1,400 noaes (
in Figure 2) currently takes around 2 minutes, wher
our implementation of [THPO5] takes around 30
seconds but produces less accurate results.

There is one caveat to representing architectural
graphs using trees: tree-structuring the data saemeh
shared node in the architectural graph to appe@rae
times in several subtrees, with cross-links refeyri
back to their defining occurrences. These redundant
nodes greatly improve the accuracy of the treede-t
correction; however, they may be inconsistently
matched with respect to their defining occurrences
(either in what they refer to, or in the associagekt
operations). We currently alert the user to incstesit
matches in the output, if they occur, and allow trer
manually correct them; if provided, the correcti@me
taken into account to build the edit script.

Inconsistent matches becomes more pronounced if
there are many cycles in the architectural grapi, B
practice, we found it is possible to address thidbjem
by making two passes to synchronize the two
representations: during the first pass, synchrotfiee
strictly hierarchical information (e.g., components
connectors, ports, roles, and representations)nglur

the second pass, synchronize the context-dependent
attachments and bindings. We are also investigating
'techniques to express the dependencies between the
mapping decisions and prevent inconsistent matches.

Our resulting algorithm is polynomial-time, yet
generalizes the one in [THPO5] to detect renames
inserts, deletes and moves, as well as supporinfprc
and preventing matches between nodes. Unfortunately
space limitations prevent us from a more detailed
description of our algorithm.

An upper bound on the running time of the
algorithm is as follows: leX the set of nodes of both
trees,x an element oK, p the maximum allowable size
of a connected subgraph of the tree that can lededkl

4. Tool Support

We intended for our approach to be lightweight
enough that it can fit into a single dialog withoak-
and-feel similar to the one provided by popularrepe
source Integrated Development Environments [e.g.,

Ecl03] instead of more specialized environments for 4.2 Viewing and Matching Instances

architectural recovery such as [TMRO02]. Tool suppor
for our approach uses AcmeStudio [SG04], a domain-
neutral architecture modeling environment for Acme,
and ArchJava's development environment,
implemented as plugins in the Eclipse tool intdgrat
platform. At any time while using the AcmeStudio or
the ArchJava development environments, the user ca
invoke the synchronization functionality. We have
completed the functionality needed to make an Acme
model incrementally consistent with an ArchJava
implementation. We still need to change the ArchJav *
infrastructure to support making incremental chartge
an existing ArchJava implementation. In both cages,
following five-step process applies:

1. Setup the synchronization

2. View and match types (optional)

3. View and match instances

4. View and modify the edit script (optional)

5. Confirm and apply the edit script

Because steps 1 and 5 are straightforward, weowil
discuss steps 2-4 in more detail below.

4.1 Viewing and Matching Types

As we discussed earlier, matching type structures
helps discover implementation-level violations of
architectural styles and types that are not cusent
represented in ArchJava. This step has to be done
mostly manually (See Figure 1), and for that reagon
currently kept as optional step in the tool. Matchi
type structures can take several forms:

e Match explicit types when possible: e.g., match an
ArchJava component type with one or more Acme
component types;

« Assign types to instances when no explicit type is °
available: e.g., assign types to individual ponts o
an ArchJava component type;

The differences found during structural matching
are shown in each tree by overlaying icons on the
both affected elements (see Figure 2). If an element is
renamed, the tool automatically selects and higkdig
the matching element in the other tree; for insede
r‘peleted elements, the tool automatically selects th
Insertion point by navigating up the tree untilaaches
a matched ancestor. Various features give the user
more control of the structural matching:

Direct manipulation: the user can manually
insert, delete or rename elements (e.g., add a port
to a component) which will also generate the
corresponding edit actions.

Elision: the user can selectively hide (and unhide)
elements, excluding them from comparison.
Elision can be instance-based or type-based, where
all elements of a given type are excluded at once
(e.g., only match components and ports). Elision is
temporary and does not generate any edit actions.
Forced matches:the user can manually force a
match between an Acme element and an ArchJava
element without leaving the synchronization tool
to change either representation. The user can use
this feature to correct inconsistent matches in the
output of the tree-to-tree correction as discussed
earlier. The user can also use this feature to
manually force a match between two elements that
cannot be structurally matched : e.g., force a matc
between an AcmepliFilter component designed
with one input and two output ports with an
ArchJavasplit component implemented with one
input port and one output port.

Manual overrides: finally, the user can override
any edit action produced by tree-to-tree corregtion
e.g., cancel a delete action.

* Assign types to special wildcards: e.g., using the 4.3 Viewing and Modifying the Edit Script

ArchJava connector typ&NY, one can assign the
Acme typeCallReturnT to all ArchJava implicit
connector instances; similarly, one can assign a
specific Acme type to a port with only require
and no provided methods (e.gseT) or with only
provided and no required methods (e.g.,
provideT);

» Finally, infer types when possible: e.g., infer the

We produce a common supertree to show the
merged model as a tree-structured preview of the
¢ architectural model after the edit actions are iappln
this step, the user can assign types to element to
created, change the types of existing elementsridee
automatically inferred types, or cancel any unwdnte
edit actions prior to the application of the editist.

Setting types during synchronization may affect the
processing of the edit script. For instance, when a
component instance is assigned a type, it may iinher
ports from its assigned type, so the edit scrijgtdneot
create additional ports on the component instaiice;
may rename a port to match the name declared in the
architectural type. We generally allow the user to

types of implicit ArchJava roles based on Acme
connection patterns optionally defined for an
architectural style: if the architect assigns tyfes
components, ports and connectors, the role type
(e.g., providerT) is inferred based on the source
component type (e.gANY), source port type (e.g.,
provideT), and connector type (e.@\NY).

rename any architectural element in the edit scfigpt of the diagram and thmodel consisting of a circuit
example, in our case study presented in Sectiome5, database and a set of computational componentanshow
gave the more meaningful namgndowBus to a below the line; also the arrows labeled “call”

connector with an automatically generated name. correspond to control flow whereas the unlabeled
The edit script is also checked for some common arrows correspond to data flow. With this inforroati
problems: e.g., the tool raises warnings for aeciitral the Acme architect designed a conceptual C&C view

elements without an assigned type, or errors, sisch for the system (See Figure 4): he created a sihghee
having an element name corresponding to a reservedcomponent to represent thigcuitModel and added all
Acme keyword. Currently, we do not check that the the components below the line to a representatfon o
edit script will produce a valid architectural mbde circuitModel (See Figure 5). The architect did not want
before it is applied, e.g., check that it will ggnerate to distinguish between data and control flow, so he
a dangling port. This is deferred for future work. added the data flow arrows as connectors. Finhby,
used the following convention to carefully name the
5. Case Study various elements: component instances start with
We now illustrate our approach and tool support on lowercase to distinguish them from component types;
an ArchJava implementation of a pedagogical circuit POrt or a role involved in a two-way connection is
|ay0ut app”cationgéademicil‘wica' _msign_gstem named after the Component it is attached to thrdhgh
(Aphyds) with over 20 components divided into saver ~connector; otherwise, a reasonably meaningful name
subsystems. In [ACNO2], Aldrich discusses how chosen. The Acme architect did not initially assagy
Aphyds was re-engineered from 8,000 source lines ofarchitectural types to the model, since he wasoasxi
Java code (not counting the libraries used) to taket0 explore the ArchJava implementation, and see how
advantage of the architectural features of ArchJava ~ Well it matches the conceptual view. The architect
The architect evaluating our synchronization tool the synchronization tool: carefully naming the eteits
was familiar with ArchJava but was not previously Was helpful since names are the main visual cue
involved with the deve'opment of the Aphyds System_ available when VieWing the architectural C&C viaw i
He started out with the original Aphyds architect's @ tree. He noticed a few renames, e.g., ArchJaga us
drawing of the conceptual architecture shown irufdg ~ Model instead of circuitModel, and in that
3. The architecture loosely follows the Model-View- representation, ArchJava usgisbalRouter instead of

Controller style, with theviews consisting of user route(See Figure 2)
interface elements shown above the line in the midd ~ The Acme architect was the least sure about how he

represented thecircuitModel component in Acme;

c i 05 Uses 1~ ,7/_; L . . .
SIGE L [f Cioorton, e facing a number of name differences certainly ditl n
N eatt ' raise his confidence level. So, he decided to faous

< the circuitModel Acme component instance which was

\ matched to thenodel ArchJava component instance.
\ He noticed that the ArchJavanodel component

instance was being incorrectly interpreted by the
synchronization tool as having only bindings, imo,

, connectors! This was an example of the exprességene
Neveat ddbus. ‘e% e gap discussed earlier: ArchJava was using dghe

— \ flv‘”"” primitive to connect inner and outer instances and
L l\ ports, the equivalent of an illegal Acme constratt

binding an outer port to a role on an inner cormrect
glue circuit to circuitData.nain,
partitioner.circuit, floorplanner.circuit,
placer.circuit, global Router.circuit,
channel Router.circuit;

Since Acme cannot express this ArchJava construct
directly, the developer chose to refactor the Aaghj
code to more closely reflect his Acme design. ot
cannot yet propogate changes from Acme to ArchJava
automatically, so the Acme architect looked at the
properties of the ArchJawaodel component instance,
Figure 3: Original Java developer's model. copied the name of its source file

(AphydsModel.archj), switched to the ArchJava
development environment within the same running
instance of the Eclipse environment, browsed that
source file and manually changed the ArchJava tode

the mostly equivalent ArchJava construct:
glue circuit to circuitData.nain;
connectcircuitData. main, partitioner.circuit,
floorplanner.circuit, placer.circuit,
gl obal Rout er. circuit, channel Router.circuit;

The Acme architect then switched back to AcmeStudio
and restarted the synchronization wizard and cowefir
that the ArchJava code modification had the intende
effect. However, the structural comparison themsitb
that the Acme representation faircuitModel had
more connectors than the ArchJava implementation,
i.e., the tool only matchestarConnector in the middle

of the diagram, modulo renaming (See Figure 2). The
architect investigated this further and confirméett
the dataflow arrows in the informal Aphyds boxes-an
lines diagram are not actually in the implementat&n

he accepted the edit actions to delete the extra |

connectors from the Acme model (See Figure 5).
Having synchronized theircuitModel component,
the Acme architect next turned his attention totthpe
level system. The synchronization tool had aletted
Acme architect to the presence of additional
representations for componenthannel RouteViewer,
placeRouteViewer, and circuitViewer. The architect
decided against adding those sub-systems to theeAcm
model, so he cancelled the corresponding edit @&tio
The architect next turned his attention to the tolathl
top level component, shown psvateAphyds in Figure
2): he discovered that specific component was adnled
represent a private port in ArchJava and the
corresponding glue, a limitation of Acme discussed
earlier. By looking at the required and provided
methods and the control flow, the architect decitted
have that subsystem follow the publish-subscrilgke st
so he renamed componeptivateAphyds as window
and renamed the added connectowindowBus. The

channelRouteViewer
H placeRouteViewer
floorPlanViewer

circuitModel

Figure 4 Original developer’s model in Acme.

lp]
T 1

+ |
.

route
ﬂoorP\anner p\ace

Figure 5: Acme representation for thecircuitModel
component. Extra connectors are marked withx.

. ﬁpamhoner;

window

windowBus

viewer
R “‘
‘!IaceRouteViewer

s

-
channelRouteViewer

Ports
O use

@ provreq
p provide

Roles
- provider

@ both
—) user

=

model

architect also decided to use the same componentrigure 6: Acme model with styles and types.

names as the ArchJava implementation to futuredavoi
confusion, so he let the tool apply the edit script

The architect then decided to assign styles angstyp
to the model. He reran the synchronization wizard
using it to assign types. As he was interestedhen t
control flow in the system, he assigned pevideT,
useT, provreqT Acme types to ArchJava ports which
only provide, only require, or have both methods,
respectively; he assigned the gendiiierNodeT Acme
type to all components, theallReturnT Acme type to
all connectors, except the previously created
windowBus connector, which was assigned the
EventBusT connector type from the Publish-Subscribe

style. Figure 6 shows the C&C view after it hasrbee
manually laid out in AcmeStudio. Unlike the oridina
architect's model, Figure 6 shows bi-directional
communication taking place between components
placeRouteViewer —and model; upon further
investigation, the architect traced that to a eallb
Since Aphyds is a multi-threaded application withg
running operations moved onto worker threads, the
architect makes note of the fact that developeosilgh
not carelessly add callbacks from a worker thre@o o
the user interface thread. Finally, the architdahg on
using the up-to-date C&C view with types and styles
for evolving the system.

6. Related Work architectural model. The identifiers could be pstesi
] ~outside the Acme model or the ArchJava source code,

Many researchers have studied ensuring i keep the synchronization unobtrusive.
conformance between architecture and implementation Tracking changes to an architectural representation
often within the context of architectural recove®pme in an ADL using features similar to those in source
of the challenges we identified, such as mappinttp bo gntrol management systems (e.g., Mae [RHM+04])
types and instances, are typical of issues invoived may provide the ability to infer coarse grained
representing architectures using multiple views or operations, such as merges or splits, in additothe
models such as UML [AMO9][ICG+04][HKO3]. fine-grained operations (inserts, deletes, ...). For

Murphy et al. [MNSO01] also follow an incremental, maximum generality, we assume a disconnected
lightweight, approximate approach to check the alctu operation, i.e., no monitoring of structural chamge
architecture against the idealized one. The work ONtaking place while the user is modifying the Acme
Reflexion Models and Hierarchical Reflexion Models odel or the ArchJava implementation. The connected
[KS03] appears to be mostly concerned with module peration seems less appropriate when dealing with
views and not with C&C views. In Reflexion Models, giferent levels of abstraction. Furthermore, even
the source model and the high-level models can bepaying accurate, fast and reliable structural caispa
typed, partially typed or un-typed; similarly, agsing algorithms will not completely eliminate some okth
types is an optional step in our approach. Havit® t manyal steps involved, such as matching the type
user match Acme and ArchJava types or specify giryctures between the two representations.
additional ~ types on the edit script during work on finding differences between inheritance
synchronization supports the same “goal of a ees [XS03] inspired the use of tree-to-tree aive
lightweight technique by reducing the burden on the 4 qrithms. However, most approaches use varidts o
engineer to define a type for each high-level model yeeto-tree correction for ordered labeled trees
interaction” with a “focus on those parts of thedeb mentioned earlier. We discussed earlier how the

where typing will provide the most benefit”. In yroplem calls for potentially taking into accouriaege
Reflexion Models, a minimal representation of tyl®s number of name differences: even if the
used, i.e., names, whereas Acme types have addition jyplementation-level architecture structurally aamifis
semantics, constraints and heuristics associatéldl Wi {5 the conceptual-level architecture, such as riter
them [Mon98]. Just as Reflexion Models let the user .yqe generation, name differences will be found.

elide information from view and permit inconsist®sc Rejiably detecting renames requires using unordered
to remain, we allow the user to cancel any unwantediee-to-tree correction. ArchDiff [WHO2] detects
edit actions and can restrict the structural compar jnserts and deletes, but not renames nor moves, and
to a subset of the tree-structured data. seems to be using a simpler comparison algorithm.
Medvidovic et al [MJ04] also attempt to check the archDiff only compares two architectural models in
conformance of an implementation with respect to anyap| and does not have to bridge any expressiveness
architectural style. However, in their approache th gaps. Our implementation could be readily adapted t

idealized architecture is not represented using C&C compare and synchronize two architectural models.
views: they mainly employ architectural recovery

techniques and manually relate the two views. 7. Limitations and Future Work
For maximum generality, we match elements based
on their structure and do not assume that architgict
or implementation-level elements have unique
identifiers associated with them. In some approsiche
the names are immutable—every time an element is
changed, it gets a new unique identifier [OWKO03], s
checking for renames is not needed anymore.
Assuming unique identifiers may be possible when
comparing two versions of the same model, but is no
appropriate when dealing with different levels of
abstractions. As an optimization to our system,
persistent unique identifiers could be assigneficdime
and ArchJava elements so that they could be quickly
matched up between invocations, or to automatically
ignore previously flagged known differences in ayéa

In this paper we have described a lightweight,
scalable, semi-automated, incremental approach for
synchronizing an implementation-oriented C&C
architectural view with a design-level architectura
C&C view described in an ADL. We have presented a
tool that implements this approach to provide
synchronization between Acme and ArchJava.

There are various limitations of the approach and
tool that we will address as future work. We wolile
to explore other comparison algorithms to determine
which gives the best performance and the besttsgsul
as well as support additional differences such as
merges and splits. We still need to change the Jae¢h
infrastructure to support making incremental change

In general, it may not be feasible to make incremlen [Mon98] Monroe, R.T. Capturing software architeetur
Changes to an imp|ementation in a programming design expertise with A_rmani. Tech_nical_ Report No.
language that does not encode architectural steyctu CMU-CS-98-163, Carnegie Mellon University, 1998.

or if the C&C view is obtained by instrumenting a [MNSO1l Murphy, G.-C., Notkin D. and Sullivan K.
running system [YGS+04], or when dealing with C&C Softyvare Reflexion Mode_ls. Bridging the Gap B_etween
- . . Design and Implementation. In IEEE Transactions on
views with structural (_lenamlsm. The latter caseriats Software Engineering, vol. 27, no. 4, pp. 364—38M1.
been addressed mainly since Acme currently cannot{ecio3] Object Technology International, Inc. Esip
express the dynamic constructs ArchJava can. Igjnall Platform Technical Overview, 2003.
we plan to address in future work some of the http://www.eclipse.org/whitepapers/eclipse-overvigai
incidental differences encountered during thisaese = [OWKO3] Ohst, D., Welle, M., and Kelter, U. Diffatees

to further streamline synchronizing the Acme and between Versions of UML Diagrams. In

ArchJava architectural representations. ESEC/SIGSOFT FSE, 2003.
[Par72] Parnas, D. On the Criteria for DecompoSggtems
8. References into Modules. In Communications ACM, 15 (12), 1972.
[RHM+04] Roshandel, R., van der Hoek, A., Mikic-Rgk
[AM99] Abi-Antoun, M. and MedVidOViC, N. Enabllngﬁe M. and Medvidovic’ N. Mae - A System Model and
Refinement of a Software Architecture into a Design Environment for Managing Architectural Evolutiom |
Proc.of «UML» 99, 1999. ACM Transactions on Software Engineering and
[APO3] Alanen, M. and Porres, |. Difference and &miof Methodology, 13(2), pages 240-276, 2004.
Models. In Proc. of «UML» 2003, 2003. [ROW98] Rushby, J., Owre, S., and Shankar, N. sty
[ACNO2] Aldrich, J., Chambers, C. and Notkin, D. for Specifications: Predicate Subtyping in PVSIEEE
ArchJava: Connecting Software Architecture to Trans. Software Engineering 24(9), 1998.
Implementation. In Proc. ICSE, 2002. [SG96] Shaw, M. and Garlan, D. Software Architeesur
[CGO1] Cheng, S.-W. and Garlan, D. Mapping Arcttiieal Perspectives on an Emerging Discipline, Prenticé, Ha
Concepts to UML-RT. In Proc. of PDPTA, 2001. 1996.
[Erd98] Erdogmus, H. Representing Architectural Iation. [SDK+95] Shaw, M., DeLine, R., Klein, D. V., RosE, L.,

In Proc. CASCON'’ 98, 1998. Young, D. M., and Zelesnik, G. Abstractions for
[EOG+98] Eixelsberger W., Ogris M., Gall H., andligg B. Software Architecture and Tools to Support Them. In
1998. Software architecture recovery of a program |EEE Trans. Software Engineering, 21(4), April 1995
family. In Proc. ICSE, 1998. [SGO04] Schmerl, B. and Garlan, D. AcmeStudio: Suppg

[GKCO1] Garlan, D., Kompanek, A. J., and ChengWs.- Style-Centered Architecture Development. In Prog] |
Reconciling the Needs of Architectural Descriptioith Conference on Software Engineering, 2004.
Object-Modeling Notations. In Science of Computer [Sz97] Shasha, D., Zhang, K. Approximate Tree Patte
Programming, Volume 44, Elsevier Press, 2001. Matching, in Pattern Matching Algorithms, Apostalic

[GMWO0O0] Garlan, D., Monroe, R., and Wile, D. Acme: A. and Galil, Z., Eds., Oxford University Press99
Architectural Description of Component-Based System [TMRO2] Telea, A., Maccari, A. and Riva, C. An open
In Foundations of Component-Based Systems, yjsualization toolkit for reverse architecting. Proc.
Cambridge University Press, 2000. 10th Int'l Work. on Program Comprehension, 2002.

[HKO3] Hausmann, J. H., Kent, S. Visualizing Model [THP05] Torsello, A., Hidovic-Rowe, D. and Pelillo.
Mappings in UML. In Proc SOFTVIS 2003, 2003. Polynomial-Time Metrics for Attributed Trees. Topaar

[ICG+04] Ivers, J., Clements, P., Garlan, D., Nofl, in IEEE Transaction on Pattern Analysis and Machine

Schmerl, B. and Silva, J.O. Documenting Component Intelligence, 27 (7), 2005.
and Connector Views with UML 2.0. CMU/SEI-2004- [WDCO03] Wang, Y., Dewitt, D.J. and Cai, J.-Y. X-BifAn

TR-008, Software Engineering Institute, 2004. Effective Change Detection Algorithm for XML
[KS03] Koschke, R., and Simon, D. Hierarchical Beibn Documents. In Proc. 19th Int'l Conf. Data Eng., 200
Models. In Working Conf. on Reverse Eng., 2003. [WF74] Wagner, R.A. and Fischer, M.J. The stringtiing

[KPS+99] Krikhaar, R., Postma, A., Sellink, A., &icken, correction problem. Journal of the ACM, 21:168--11874.
M., Verhoef, C. A Two-Phase Process for Software [XS03] Xing, Z., and Stroulia, E. Understanding €xj

Architecture Improvement. In Proc. ICSM, 1999. Oriented Architecture Evolution via Change Detettio
[MJ04] Medvidovic, N., and Jakobac, V. Using Softeva Technical Report TR03-20, University of Alberta 020
Evolution to Focus Architectural Recovery. In Jalrof [YGS+04] Yan, H., Garlan, D., Schmerl, B., Aldrich, and
Automated Software Engineering, 2004. Kazman, R. DiscoTect: A System for Discovering
[MOR+96] Medvidovic, N., Oreizy, P., Robbins, J. &hd Architectures from Running Systems. In ICSE, 2004.
Taylor, R. N. Using Object-Oriented Typing to Sugpo [zJ94] Zhang, K., and Jiang, T. Some MAX SNP-hard
Architectural Design in the C2 Style. In Proc. FBI96. results concerning unordered labeled trees. In
[MTOO0] Medvidovic, N., and Taylor, R. N. A Classiétion Information Processing Letters, 49, pp. 249—258419
and Comparison Framework for Software Architecture [WHO2] van der Westhuizen, C. and van der Hoek, A.
Description Languages. In IEEE Transactions on Understanding and Propagating Architectural Changes
Software Engineering, vol. 26, no. 1, pp.70-93,200 In Proc. WICSA 3, 2002.

10

