
Draft, Submitted for Publication

A Case Study in Software Architecture Interchange�

David Garlan
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

(412) 268-5056
garlan@cs.cmu.edu

Zhenyu Wang
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

(412) 268-5056
zwang@cs.cmu.edu

Abstract

An important issue for the speci�cation and design
of software architectures is how to combine the anal-
ysis capabilities of multiple architectural de�nition
languages (ADLs) and their supporting toolsets. In
this paper, we describe our experience of integrat-
ing three ADLs: Wright, Rapide, and Aesop. We
discovered that it is possible achieve interoperabil-
ity in ADL tools for a non-trivial subset of the sys-
tems describable by these languages, even though
the languages have di�erent views about architec-
tural structure and semantics. To carry out the inte-
gration we used the Acme architectural interchange
language and its supporting tools.

Keywords: software architecture, architecture
description languages, architectural interchange,
Acme, architecture analysis tools

1 Introduction

An increasingly important problem for complex soft-
ware systems is the ability to specify and analyze
their architectures. At an architectural level of de-
sign, one typically identi�es the key computational

�Research sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-2-
0031, and by the National Science Foundation under Grant
No. CCR-9357792. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyrightannotation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the o�-
cial policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency Rome Lab-
oratory or the U.S. Government.

entities and their interactions. These high-level de-
scriptions are then used to understand key system
properties such as performance (latencies, through-
puts, bottlenecks), reliability, modi�ability, etc.

Unfortunately, current practice relies on little
more than informal diagrams and notations to sup-
port this activity. This imprecision in de�ning archi-
tectures limits the ability to carry out useful anal-
yses, and even to communicate with others e�ec-
tively. In response, a number of formal architec-
tural description languages (ADLs) have been de-
veloped [MT97]. Typically, each of these ADLs sup-
ports the description of architectural structure to-
gether with some form of associated semantics. The
particular semantics usually determines what kinds
of useful analyses can be carried out on systems de-
scribed in that ADL.

To take a few examples, Rapide [LAK+95] pro-
vides semantics based on posets, and supports anal-
yses based on (among other things) animation and
simulation. Wright [AG97] provides semantics based
on CSP, and supports static analyses of dead-
lock freedom, and interaction consistency. Dar-
win [MDEK95] provides semantics based on the Pi
Calculus, and supports description of dynamically
recon�gurable distributed systems.

For any particular system, it may be that the de-
sired analyses are completely covered by those sup-
ported by a single ADL. However, in general it is
useful to exploit capabilities of multiple ADLs. Un-
fortunately, each of the current ADLs stands in iso-
lation, making it di�cult to do this.

One proposal to help ameliorate the situation is to
use a common architectural interchange language for
exchanging architectural descriptions between var-

1



ious ADLs.1 Speci�cally, a notation called Acme,
has been proposed as a candidate interchange lan-
guage [GMW97]. Acme provides a simple, generic
vocabulary for describing architectural structures
as hierarchical graphs of components and connec-
tors. In addition, Acme has a 
exible annota-
tion mechanism that permits each ADL to encode
non-structural information (such as types, signa-
tures, protocols, performance and reliability esti-
mates, etc.).

To the extent that di�erent ADLs share an inter-
pretation of the Acme encoding, they can commu-
nicate. However, even when they do not, it may
be possible to massage the Acme representation to
make a given description accessible by other ADLs.

In order for such a scheme to work, however, two
assumptions must hold. First, it must be possible to
translate su�cient semantic content of an architec-
tural description from one ADL to another. Other-
wise, it will not be possible to exploit the analysis
capabilities of each. Second, the use of Acme must
provide advantages over pairwise translation (i.e., di-
rect ADL-to-ADL). Otherwise, there would be no
reason to go through an intermediate form.

In this paper we present a case study that sheds
light on these two assumptions. Speci�cally, we de-
scribe our experience using Acme to integrate three
ADLs: Wright, Rapide and Aesop. With respect to
semantic translation issues, we will focus primarily
on Wright and Rapide, since these were the most
problematic. As we will illustrate, it is possible to
map a substantial subset of Wright descriptions into
Rapide, even though the two languages have some-
what di�erent views about architectural structure
and the semantics of architectural behavior. We also
brie
y consider the cost e�ectiveness in using Acme
to carry out the translation.

2 Wright, Rapide, and Aesop

Before describing our approach to integration, we
�rst brie
y describe the three ADLs that we at-
tempted to integrate.

Wright

Wright models system structures using the abstrac-
tions of components, connectors, ports, roles and
con�gurations [AG97, All97]. Components represent

1Here and elsewhere, when we refer to an ADL we will
mean that ADL and its associated toolset.

processing elements and connectors describe interac-
tions between them. Each component and connec-
tor has an associated speci�cation described using a
variant of CSP. These speci�cations describe the ab-
stract behavior of the element in terms of the events
that it can engage in. Additionally, both components
and connectors have interfaces. Component inter-
faces are called ports, while connector interfaces are
called roles. These interfaces are described by proto-
col speci�cations (also in CSP). System descriptions,
called con�gurations are de�ned by attaching roles
of connectors to ports of components.

Wright provides a number of useful static analyses
of architectural descriptions [All97], including:

� Port-component consistency: checks whether a
port protocol is a valid projection of the com-
ponent's internal behavior.

� Port-role compatibility: checks whether a port's
behavior meets the requirements imposed by a
connector to which it is attached.

� Connector deadlock-freedom: checks whether a
connector represents an interaction that cannot
deadlock.

� Attachment completeness: checks that any
unattached port or role makes no assumptions
about the behavior of its environment.

These checks (and others) are carried out by the
Wright toolset using FDR [FDR92], a commercial
model-checker for CSP.

Rapide

Rapide also describes an architecture as a compo-
sition of components [LAK+95]. Each component
(called amodule) has a set of interfaces that describe
patterns of events that can take place. Component
behavior is speci�ed in terms of the way outgoing
events are produced in response to incoming events.

Rapide provides a �xed form of connection: es-
sentially, a connector indicates how output events
produced at one interface appear as input events at
other interfaces. Rapide also provides a bundling
facility for connectors, called services.

Rapide's primary form of analysis is based on tool-
supported examination of system runtime behavior.
Thus Rapide can function as a kind of architec-
ture simulation language: sets of traces (technically,
posets) can be examined for satisfaction of desirable
ordering relations. Additionally, Rapide provides
run-time animation capabilities with its \Raptor"
tools.

2



2.1 Aesop

Aesop provides a toolkit for describing and enforcing
architectural styles [GAO94]. An architectural style
is a set of component and connector types, together
with rules for how they can be legally combined. For
example, a Pipe-Filter style might describe a �lter
component type and a pipe connector type, together
with rules that indicate how pipes must connect out-
put ports of one �lter to input ports of another. Or,
a client-server style might describe client and server
component types and a client-server connector type,
with rules that govern how many clients can commu-
nicate with a given server, and whether servers can
communicate directly with other servers.

Aesop includes a graphical editor that can be spe-
cialized with visualizations appropriate to di�erent
styles. It also serves as a harness for analysis tools
that can be invoked on architectural descriptions.

Viewed as an ADL, Aesop represents architectures
as a system of objects. It uses an object-oriented
language for describing both the types of components
and connectors in a style as well as the semantic
\behavior" of architectural instances.

3 Integration Scheme

The three ADLs described above have complemen-
tary capabilities. With its graphical editing capabil-
ities, and support for domain-speci�c architectural
design (using styles), Aesop is a good front end for
architectural design. To carry out deeper semantic
analyses on these designs, Wright provides capabili-
ties for statically checking the consistency and com-
pleteness of the design. With its support for simu-
lation, runtime analysis and animation, Rapide pro-
vides other important capabilities for evaluating an
architectural description.

Clearly it would be bene�cial to harness all three
in a single environment. However, a number of dif-
�culties present themselves. First, each ADL has a
somewhat di�erent view of the structure of archi-
tectures. Second, and more importantly, there are
some signi�cant di�erences in the way the languages
specify architectural properties, such as abstract be-
havior. How can one bridge these mismatches?

In an attempt to answer this question we created
a prototype environment in which all three ADLs
were integrated using Acme as an interchange lan-
guage, together with several Acme-based architec-
tural transformation tools that we developed to han-
dle the mismatch problems.

Acme

As noted earlier, Acme provides a simple structural
framework for representing architectures, together
with a liberal annotation mechanism [GMW97].
Acme does not impose any semantic interpretation
of an architectural description, but simply provides
a syntactic structure on which to hang semantic de-
scriptions, which can then be interpreted by tools.
The Acme language is a simple textual notation, de-
signed for ease of tool manipulation.

ADL-1
Tools for Tools for 

ADL-2

ACME 
Tool 3

ACME
Representations

ACME 
Tool 1

ACME 
Tool 2

Figure 1: Acme-based Integration

An architectural design is shared among several
ADLs by �rst translating the design into an Acme
representation (see Figure 1). This representation
can then be read by other ADLs that understand
Acme, or it can be manipulated by tools that op-
erate on Acme directly. Acme comes with a rich
library for parsing, unparsing, and manipulating the
representations, together with a growing corpus of
tools for performing graphical layout, Web genera-
tion, and analysis.

Using Acme

To integrate the three ADLs we used the integra-
tion scheme illustrated in Figure 2. In this ensemble
Aesop acts a graphical editor, exploiting its visual-
ization and style-enforcement capabilities. Aesop de-
scriptions are initially annotated with Wright spec-
i�cation fragments.2 To carry out static analyses
on these designs we translate Aesop into Acme, and
then to native Wright, on which Wright's analysis
tools can be invoked. To carry out dynamic analyses
we use an intermediary tool that transforms Acme
with Wright annotations into Acme with Rapide an-
notations. This transformed description can then be

2Alternatively, as we illustrate later, the user can start with
aWright speci�cations, which can be imported into Aesop (via
Acme) for graphical viewing.

3



Rapide Specification

Specification Transformation

Simulation ToolModel Checking Tool

Tools

Specifications

ADL Tools Application

Layout Tool
Acme Tools

Aesop 

Acme Specification with
Wright annotations

Acme Specification with
Rapide annotations

Aesop 

Wright Specification

(a) (a)

(b)

(c)

(d)

Figure 2: Integration of Aesop, Wright, and Rapide

mapped into native Rapide on which Rapide's be-
havior analyzer and animator can be invoked.
In this scheme Acme plays the role of an inter-

mediary representation, that can be operated on by
the various translation tools. While Acme provides
neutral ground through which ADL translation can
take place, clearly it does not make the di�erences
between di�erent ADLs disappear. In particular, al-
though Wright, Aesop, and Acme are quite similar
in their treatment of structure, there are signi�cant
di�erences between Wright and Rapide both struc-
turally and semantically.
With respect to architectural structure, the most

signi�cant di�erence is that Wright permits the def-
inition of new kinds of connectors (and their seman-
tics), while Rapide provides a �xed set. Another key
di�erence is that Rapide permits the creation of new
architectural elements at runtime, while Wright de-
scribes only static architectures.

With respect to semantics, both Wright and
Rapide describe the behavior of architectures in
terms of patterns of events. However, there are
three signi�cant di�erences. First, Wright's behav-
ior de�nitions are functional (with heavy reliance
on recursion), whereas Rapide's are largely imper-
ative. Second, Rapide imposes some restrictions
on the use of nested parallelism in its descriptions,
whereas Wright does not. Third, non-determinism
can be made explicit in Wright speci�cations (using
the CSP's internal choice operator), while it is im-
plicit in Rapide.
In the next section we brie
y describe how we han-

dle these and other problems.

4 Integration Details

As illustrated in Figure 2, there are four key trans-
lations that contribute to the overall integration (la-

beled (a) { (d)).

(a) Aesop $ Acme

Translation between Acme and Aesop is relatively
straightforward because Aesop and Acme have a sim-
ilar notion of structure. In particular, in Aesop
connectors are �rst class entities, which map well
to Acme connectors. In the reverse direction Acme
components and connectors can be mapped to com-
ponents and connectors in the \generic" Aesop style.
Further, Aesop permits arbitrary properties to be as-
sociated with architectural objects, providing a nat-
ural home for Acme property lists. (Although we
don't have space to discuss it here, styles in Aesop
are easily represented using the \families" of Acme.)

(b) Wright $ AcmeWright

The translation from Wright to Acme consists of
mapping Wright's components and connectors to
Acme's, and then adding properties to those ele-
ments that correspond to the Wright behavior de-
scriptions. That is, each component and connector is
annotated with a property that speci�es its Wright
behavior. Since Wright and Acme have a similar
view of structure this step is likewise straightforward.

(c) AcmeWright ! AcmeWright+Rapide

In this step the properties that characterize Wright
behavior are transformed to create additional prop-
erties that characterize Rapide behavior. To do this
we must �nd a way to create Rapide module code
fragments from the Wright \process" annotations
stored in the Acme representation.

Wright processes are de�ned using a subset of CSP
that includes operators for event sequencing (!), ex-
ternal choice (2), internal choice (u), and parallel
composition (k).3 In addition, unlike CSP, Wright
distinguishes between initiated and observed events:
the former is indicated with an overbar.

Figure 3 shows how each of these constructs is
mapped into a Rapide speci�cation. Most of the
translations are straightforward: Wright initiated
events correspond to Rapide output events, while
observed events correspond to Rapide input events.
Top-level parallelism can be translated directly to

3Space does not permit a detailed description of these op-
erators: however, a detailed understanding is not necessary to
understand the main ideas of the paper.

4



Map (e! P ) = e(); Map(P);

Map(e! P ) = await e(); Map(P);

Map (P1k � � � kPn) =
parallel

Map(P1)
k
� � �
k
Map(Pn)

end parallel;

Map (e1 ! P12 � � �2en ! Pn) =
await

e1 ) P1; : : : ; en ) Pn;
end await;

Map (P1 u � � � u Pn) =
�();
await

�()) P1; : : : ; �()) Pn;
end await;
where � is de�ned as an internal event of the module

Figure 3: AcmeWright to AcmeWright+Rapide

the \parallel" construct of Rapide. Guarded inter-
nal choice simply becomes the Rapide event-trigger
case statement.

The only three non-obvious parts are the handling
of non-determinism, nested parallelism, and recur-
sion.

To handle non-determinism that arises from an in-
ternal choice in CSP (u) we introduce a local Rapide
event � (invisible to other modules) that serves as a
guard for each of the processes in the choice. Since
multiple choices with the same event guard in Rapide
is treated as non-deterministic choice, we achieve the
desired e�ect.

To handle nested parallelism we could have used
CSP's algebraic operators to eliminate parallelism
before performing the translation. However, as it
turns out, nested parallelism is rarely used inWright,
and so instead we constrain our translation to apply
only to Wright descriptions that don't use this fea-
ture. (Use of nested parallelism can be easily checked
for, and a warning can be issued to the user, who can
perform the transformation by hand if desired.)

To handle recursion in CSP processes, we �rst map
CSP processes into a state machine and then gener-
ate Rapide code to simulate this state machine. This
is accomplished by assigning a state number to each
process and de�ning a Rapide variable that records
the current state of execution. When one process
(recursively) transitions another process, the trans-

lation arranges for the state variable to change cor-
respondingly.

AcmeWright+Rapide ! Rapide

In this step, the goal is to translate Acme structures
(i.e., components and connectors) annotated with
Rapide fragments into native Rapide structures such
as interfaces and modules. The basic idea behind the
translation is that component interfaces in Acme be-
come interfaces in Rapide. Component behavior (de-
scribed by Wright property speci�cations) become
module implementations in Rapide. The key di�-
culty is how to handle the fact that in Acme (as well
as Wright and Aesop) new connectors may be de�ned
and those connectors may have complex speci�ca-
tions, whereas in Rapide connectors are primitives.
There appeared to be two ways to handle the situ-

ation. One was to limit the class of architectural de-
scriptions to just those that use the connector types
provided by Rapide. The second was to represent
complex connectors as modules in Rapide. We chose
the latter, because it allows a much larger class of
systems to be handled by the translation. (We will
return to this issue in section 6.)
Thus to complete the translation, Acme con-

nectors are translated into Rapide modules, and
Acme attachments (between connectors and com-
ponents) are translated into event bindings between
the Rapide interfaces of modules representing Acme
components and the Rapide interfaces of modules
representing Acme connectors. Finally, we map an
Acme top-level \System" into a Rapide top-level
\Architecture".

5 Example

To illustrate how the pieces �t together for the inte-
gration of Wright and Rapide, consider the following
deliberately simple (partial) Wright speci�cation of
a single reader attached to a pipe.

System Reader-Pipe:

Component Reader
Port read = read?x ! read
Computation = read:read?x ! Computation

Connector Pipe
Role read = read?x ! read

Role write = write!x ! write

Glue = write:write?x ! read:read!x ! Glue

Instances

reader1 : Reader;
pipe1 : Pipe;

5



Attach pipe1.read to reader1.read

After the �rst translation step (b) we obtain an
Acme description annotated with Wright processes.
(The Acme description appears in Figure 4 at the
end of this paper.) After the second translation step
(c), the Acme description is almost the same, except
that each component or connector now has a new
Rapide property generated from the Wright proper-
ties. From this, we synthesize a native Rapide spec-
i�cation (d) to get:

type reader is interface
action

in read read(x : Params);
end interface reader

type pipe is interface
action

in write write(x : Params);
action

out read read(x : Params);
end interface pipe

module new reader() return reader is

while true
await read read(?x : Params);
end await

end module

module new pipe() return pipe is
while true

await write write(?x : Params)
) read read(?x);
end await

end module

Architecture system() return root is
reader1 is new reader();
pipe1 is new pipe();

connect

(?x in Params) pipe1.read read(?x)
to

reader1.read read(?x);
end system

The application of the translation rules can be
seen by comparing the Rapide speci�cation that
is obtained from the original Wright speci�cation.
First, component reader is mapped into interface
reader . Since its port process read only has a single
observed event read, the reader interface only has
an in event read read, (the naming scheme is port
name event name). Second, we generate module in-
stances reader1 and pipe1 by calling module gener-
ators we get from component reader and connector
pipe. Since we only have one attachment from port
read to role read both of which only have one event,
we need only one basic connection.

6 Discussion and Conclusion

Let us now return to the two key issues raised earlier:
(1) How do we integrate diverse ADLs even in the
presence of structural and semantic mismatches? (2)
Does Acme help?
With respect to the problem of mismatched fea-

tures in the ADLs, given the di�erences between
the three ADLs (and especially between Wright and
Rapide), it was clear from the outset that complete
integration would not be possible. That is, we rec-
ognized that there would be certain kinds of system
descriptions possible in one ADL that had no coun-
terpart in one of the others. However, rather than
attempting to get complete coverage, we attempted
to �nd a scheme that would allow a signi�cant sub-
set of the systems to be mutually accessible in the
integrated system. The key challenge was to make
that subset as large as possible. To accomplish this
we used three techniques that have general applica-
bility to any integration e�ort of this kind.

1. Limit the class of systems: We avoided some
of the di�culties in translation by excluding cer-
tain systems. In particular, we excluded Wright
speci�cations that use nested parallelism. Ide-
ally (as is the situation here), this does not im-
pose a serious limitation on the class of system
that can be handled.

2. Limit the directionality: A key factor in
making the integration work was an early de-
cision not to attempt to map Rapide speci�-
cations back to Wright. By avoiding the re-
verse translation problem, we avoided problems
of handling features of Rapide that had no coun-
terpart in Wright. For example, we did not have
to handle the Rapide features for creating new
architectural structures at runtime.

3. Provide a semantics-based translator: We
were able to convert most Wright speci�cations
into Rapide speci�cations using straightforward
mappings. This helped us deal with a number of
representational discrepancies that are likely to
appear when attempting to integrate two arbi-
trary ADLs. These include: use (or not) of �rst
class connectors; di�erent treatments of non-
determinism; di�erent control structures (e.g.,
functional versus imperative descriptions); and
di�erent constraints on nesting (e.g., nested par-
allelism).

While each of these techniques is useful, it is worth
noting that each has a downside that must be care-
fully considered. Limiting the class of systems makes

6



the translation easier, but may exclude the very sys-
tems that one is hoping to analyze. Limiting the di-
rectionality clearly restricts the ability to incorporate
native descriptions from ADL's that aren't mapped
back. (For example, our system cannot handle native
Rapide speci�cations directly { we can only exploit
Rapide tools on descriptions that are initially gener-
ated fromWright and Aesop.) Providing a translator
helps bridge semantic gaps, but it also may make it
di�cult to relate the analyses produced by one ADL
to the descriptions viewed in another.

With respect to the cost-e�ectiveness of Acme, we
found that Acme reduced costs in two signi�cant
ways. The �rst was by providing useful infrastruc-
ture on which to build: The parsing and manipu-
lating libraries substantially reduced the amount of
code we had to write, and provided a convenient
framework in which to apply the property transla-
tion tool. The second bene�t was in providing a sin-
gle representation that more than two ADLs could
share. For example, we got Aesop compatibility (and
hence a graphical front end) almost for free, since
Aesop was already able to read and write Acme de-
scriptions.

In conclusion, we believe that while it is impor-
tant not to generalize too far beyond the speci�c
examples of this case study, the goal of integrat-
ing diverse ADLs through Acme shows considerable
promise. Acme does not magically make semantic
di�erences between ADLs disappear, but it does pro-
vide a framework within which one can achieve sig-
ni�cant bene�ts by combining the toolsets of di�er-
ent ADLs. The primary challenge in doing this is
to understand what classes of systems can be han-
dled and what kinds of translation are required to
map between the various ADL-speci�c tools. While
the speci�c techniques will di�er from ADL to ADL,
there appear to be several general strategies for ac-
complishing the translation. We have illustrated sev-
eral in this paper, but expect the repertoire to grow
as others attempt similar integration e�orts.

References

[AG97] Robert Allen and David Garlan. A for-
mal basis for architectural connection.
ACM Transactions on Software Engi-
neering and Methodology, July 1997.

[All97] Robert Allen. A Formal Approach
to Software Architecture. PhD thesis,
Carnegie Mellon, School of Computer

Science, January 1997. Issued as CMU
Technical Report CMU-CS-97-144.

[FDR92] Failures Divergence Re�nement: User
Manual and Tutorial. Formal Systems
(Europe) Ltd., Oxford, England, 1.2�
edition, October 1992.

[GAO94] David Garlan, Robert Allen, and John
Ockerbloom. Exploiting style in ar-
chitectural design environments. In
Proceedings of SIGSOFT'94: The Sec-
ond ACM SIGSOFT Symposium on the
Foundations of Software Engineering,
pages 179{185. ACM Press, December
1994.

[GMW97] David Garlan, Robert T. Monroe, and
David Wile. Acme: An architecture de-
scription interchange language. In Pro-
ceedings of CASCON'97, pages 169{183,
Ontario, Canada, November 1997.

[LAK+95] David C Luckham, Lary M. Augustin,
John J. Kenney, James Veera, Doug
Bryan, and Walter Mann. Speci�cation
and analysis of system architecture using
Rapide. IEEE Transactions on Software
Engineering, Special Issue on Software
Architecture, 21(4):336{355, April 1995.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and
J. Kramer. Specifying distributed soft-
ware architectures. In Proceedings of
the Fifth European Software Engineering
Conference, ESEC'95, September 1995.

[MT97] Nenad Medvidovic and Richard N.
Taylor. Architecture description lan-
guages. In Software Engineering {
ESEC/FSE'97, volume 1301 of Lec-
ture Notes in Computer Science, Zurich,
Switzerland, September 1997. Springer.
Also published as Software Engineering
Notes, Vol 22, No 6, November 1997.

7



Acme Speci�cation of the Reader-Pipe Example

System acmespec = component f
ports : f
g;
representations : f

acmespec = con�guration f
components : f

reader1 = component f
ports : f

read = port f
representations : f
external : CFamWrightRep = \ ff Name fWrightSpec1gg

fData fspec1.wrightgg fTool fComponent editorggg";
g;

g;
g;
representations : f

external : CFamWrightRep = \ ff Name fWrightSpec1gg
fData fspec1.wrightgg fTool fComponent editorggg;"

g;
g;

g;
connectors : f

pipe1 = connector f
roles : f

read = role f
representations : f

external : CFamWrightRep = \ ff Name fWrightSpec1gg
fData fspec2.wrightgg fTool fConnector editorggg";

g;
g;
write = role f

representations : f
external : CFamWrightRep = \ ff Name fWrightSpec1gg
fData fspec2.wrightgg fTool fConnector editorggg";

g;
g;

g;
representations : f

external : CFamWrightRep = \ ff Name fWrightSpec1gg
fData fspec2.wrightgg fTool fConnector editorggg";

g;
g;

g;
Attachments : f

pipe1.read to reader1.read
g;

g;
bindings : f
g;

g;
g;

Figure 4: Acme Reader-Pipe System

8


