
Capturing Design Expertise in Customized Software Architecture Design Environments

Capturing Design Expertise in Customized Software
Architecture Design Environments

Robert T. Monroe
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

 Abstract:

 Software architecture is receiving increasing attention as a powerful way to deal with
the complexity of large software systems. It has emerged as a distinct form of abstraction for
software systems with its own set of design issues, vocabulary, and goals. Like designers in
other disciplines, software architects can gain significant leverage by using powerful design
environments and tools. Powerful design tools generally encapsulate a relatively small
amount of design expertise that provides the important functionality of the tool within a
relatively large support infrastructure. In this position paper I argue that in order to make the
development of specialized architectural design tools practical it must be relatively easy and
inexpensive to capture and make use of the desired design expertise. I then briefly describe an
emerging approach for capturing this design expertise so that it can be used to incrementally
configure architectural design environments.

1 Introduction

Software designers and developers have long realized the importance of powerful and appro-
priate abstractions for software systems. The architectural level of abstraction describes, at a rel-
atively coarse level, the decomposition of a system into its major components, the mechanisms
and rules by which those components interact, and the global properties of the system that emerge
from the composition of its pieces. There is growing recognition in the software design commu-
nity that one of the critical steps for the successful completion and fielding of a major software
system is the creation of a well defined and documented architecture [5].

Given that architectural design is a critical step in the process of building a complex software
system, one promising approach to improving the state of the practice of building software lies in
providing software architects with powerful design environments and tools for specifying, analyz-
ing, and reasoning about software architectures. The success of computer assisted design tools in
other domains such as mechanical engineering, building architecture, and VLSI design argues that
when design tools effectively capture the important aspects of design in a given domain they can
offer useful analyses, significant reuse of common design elements, and even design guidance and
evaluation. It is reasonable to believe that appropriate software architecture design tools can pro-
vide software architects with similar leverage.

In order for software architecture design tools to provide useful analyses and design guidance
they must be capable of capturing, encoding, and making use of architectural design expertise.
Architectural design expertise encompasses the concepts, models, rules and guidelines that skilled
software architects use when specifying, constructing, or analyzing a software architecture.
Examples of architectural design expertise include selecting an appropriate vocabulary of design

Capturing Design Expertise in Customized Software Architecture Design Environments

elements, verifying the type-correctness of message communication paths between components,
using rate-monotonic analysis to determine the schedulability of a real-time system, and deter-
mining whether the communications topology of a given architectural design provides sufficient
redundancy and throughput to satisfy its requirements.

The traditional approach to building architectural design environments has been to hard-wire
this expertise into the environment and its tools in an ad-hoc manner. This expertise is hard-wired
not only in terms of the tool and environment implementations but also in terms of the selection of
design concepts and models that the finished tool will support. Examples of design tools using
this approach include UniCon [8], GenVoca [3], and the numerous commercial object-oriented
design environments that support the Object Modeling Technique [7].

Because significant portions of design environments are developed on an ad-hoc basis, they
are expensive, difficult, and time-consuming to build. An environment builder must come up not
only with a design and implementation for the environment and the analyses it will support but
also develop models for structuring, representing, and modifying the architectural designs pro-
duced with the environments. All of this work is in addition to the process of building any appli-
cable supporting infrastructure. Moreover, once built these environments tend to be difficult to
evolve, reuse, and adapt to new problems or domains unless they were originally and explicitly
designed to support these modifications

Along with the Architecture-Based Languages and Environments (ABLE) group at Carnegie
Mellon, I have been exploring a different approach to capturing and using architectural design
expertise in software architecture design environments. This approach provides a customizable
architectural design environment and a framework for capturing architectural design expertise
using architectural styles and design rules. Once specified, these styles and design rules can be
used to configure the generic architecture design environment, customizing the environment to
support design done according to the styles and rules. Much of the infrastructure required for cre-
ating a style-specific architectural design environment – both the conceptual foundations and
implementation artifacts – can then be reused when building a new environment. Further, the
environment can be readily and inexpensively adapted to support new and different styles of
design and enforce appropriate design rules.

The position that I am arguing then, is that the difficulty, cost, and time required to build use-
ful architectural design environments can be greatly reduced by providing software architects
with a standard framework for capturing architectural design expertise, along with a configurable
architectural design environment that can be incrementally customized with this design expertise.
In particular, this framework needs to extend beyond the notion of architectural style to include
support for the specification and enforcement of style-independent design rules.

2 Capturing and using design expertise

In the remainder of this paper I will provide a brief overview of an approach to capturing
design expertise and supporting the lightweight, incremental customization of architectural design
environments to make use of this expertise. For the purposes of architectural design tool custom-
ization, the following complementary mechanisms are useful for capturing design expertise.

Capturing Design Expertise in Customized Software Architecture Design Environments

• Architectural styles capture broad properties, vocabulary, and configuration constraints
that apply to all instances of a family of systems.

• Design rules capture more fine-grained guidelines, rules, and constraints that are most
useful if expressed independent of an architectural style. Although styles can specify
design rules that apply to all instances of the style, the scope of design rules can be less
broad than a complete style. Design rules can be applied to individual design instances or
even individual elements within a specific design.

2.1 Style-based capture of design expertise

 The architectural style construct provides the conceptual framework for capturing design
expertise and customizing the original Aesop architectural design environment [4]. Broadly, an
architectural style specifies the vocabulary of design elements that can be used when designing in
that style, composition constraints that specify topological and type constraints, and analyses that
can be performed to evaluate emergent properties of a design. Table 1 provides a brief overview
of the vocabulary, composition constraints, and analyses available for three different styles that
Aesop supports. For a more detailed and formal treatment of architectural style see [1].

2.2 Limitations of a pure style-based approach

Our experience building styles and using Aesop indicates that styles are a reasonably effec-
tive way to capture broad design expertise and make use of that expertise to customize architec-
tural design environments. It has also become apparent, however, that the effectiveness of styles
for capturing fine-grained, context dependent design expertise is limited. Specifically, supporting
only the style construct for capturing design expertise has the following three drawbacks:

1) Styles are heavyweight, monolithic, and inflexible. Because styles capture a lot of inter-
related design expertise that has (hopefully) been shown to work appropriately together,
modification of a style can have significant consequences beyond the point of modifica-
tion. The tight intermingling of vocabulary, composition constraints, and analyses also
makes it difficult to reuse pieces of a style definition in the creation of a new style.

a. For a detailed formal description of the Pipe-and-Filter style see [2].

b. For a full description of the Real-Time Producer/Consumer style see [6].

Style Design Vocabulary Composition Constraints Design Analyses

Generic (null) generic components
and connectors

Any (component, component)
pair can be attached with any
connector.

• formal specifications
consistency check

 (Wright language)

Pipe-and-Filtera filter components and
pipe connectors

(filter.output to filter.input) is the
only valid attachment pair. The
filters must be attached by a pipe.

• compilation,
• throughput analysis
• no cycles

Real-Time
Producer/
Consumerb

process, device, and
resource components.

async-msg-pass and
synchronous-msg-pass
connectors

(process, process) and (device,
process) pairs can only be
attached with async-msg-pass
connectors. (process, resource)
pairs require sync. connectors.

• message-typechecking
• schedulability analysis
• processing rate calculation
• repair heuristics

Table 1: Vocabulary, constraints and analyses for three selected architectural styles supported by Aesop.

Capturing Design Expertise in Customized Software Architecture Design Environments

2) The range of expressibility of design expertise is limited. A style specification defines
invariant aspects of all systems built in the given style. As a result, if a particular piece of
design expertise can not be readily expressed as a system invariant then it is difficult to
make use of that piece of expertise in the style. Specifying design heuristics, for example,
can be difficult or impossible.

3) All vocabulary and composition rules have a scope of one complete style. Styles pro-
vide little assistance for capturing or using design expertise that applies either across mul-
tiple styles, to only a context-dependent subset of the elements in a design, or that varies in
applicability over time. As a result it is difficult to allow architects to use their judgement
in relaxing or overriding rules as they find appropriate. Likewise, adding localized con-
straints to a design requires adapting the style itself.

2.3 Supporting incremental customization with design rules

To address these limitations I have been developing a lighter-weight framework for capturing
design expertise that supports the incremental specification and enforcement of design rules
within an environment but independent of a style. This new framework allows a designer to
attach design rules to either design instances or (possibly singleton) sets of components and con-
nectors within a specific design. By making the scoping of design rules more flexible and their
specification much more modular than that of a complete style, an architect can add, remove, and
disable design rules as appropriate for various stages and types of design.

Consider the example of an architect building a transaction processing system in a client-
server style. He knows that the primary server will be able to handle no more than ten transac-
tions per second. By specifying this as an independent design rule (and assuming that he has
other tools specified to calculate the transaction rate) he can have the environment confirm that
this constraint is being maintained as he creates and modifies the design. Enforcing this particular
design rule over the complete style would probably be inappropriate because it would then require
all designs created with that style to insure that the maximum transaction rate for the selected type
of server was never exceeded. This particular rule is context-sensitive and varies in applicability
from design to design.

A further example illustrates the claim that if design environments are to provide useful
design guidance then there must be a role for design heuristics and suggestions that an architect
can choose to ignore without invalidating the design. Consider the case of an architect working
within an RPC-based client-server style where performance is sometimes, but not always, a sig-
nificant concern. An appropriate design rule might be “first minimize cross-machine connections
then minimize cross-process connections where possible.” By specifying a design rule that
watches the ratios of cross-machine and cross-process RPC connections to local procedure call
connections (or, better yet, reusing a previously specified design rule) and associating that rule
only with the performance critical pieces of the system, an architect can make simple modifica-
tions to the environment on the fly that address design concerns local to that instance. Because
the design rule specification is independent of the style definition, the style definition does not
need to be modified. As a result, other portions of the system remain unaffected by this additional
constraint.

Capturing Design Expertise in Customized Software Architecture Design Environments

2.4 Implications for future research

Work is currently in progress on adapting Aesop to support the incremental specification and
enforcement of style-independent design rules. Work to date has revealed the following four
research issues as critical to the success of the undertaking:

1) Developing appropriate design rule representations. The representations used for specify-
ing design rules must appear natural and flexible to the architects specifying the rules. Further,
they must support the concise expression of the design rule and be extensible to deal with rules
that were not originally envisioned by the environment creators. The initial approach used in
Aesop has been to encapsulate these rules in declarative, predicate-based textual expressions.

2) Providing unobtrusive and efficient enforcement of design rules. Policies for detecting and
dealing with violations of the design rules should be independent of the rule specifications. To
make the design environment enjoyable to use, checking that design rules hold and flagging
violations should not significantly slow the user’s interaction with the environment. This
requires an efficient framework for incrementally evaluating design rules.

3) Scalability and reuse concerns. A complex design environment might need to support hun-
dreds of design rules concurrently, many of which will be reused across environments and
designs. Highly modular design rule representations should both help the system scale in the
number of design rules it can manage and support reuse of the rules.

4) Managing interacting and possibly conflicting design rules. Because a style is a self-con-
tained entity, it should not contain conflicting design rules. Once the environment has been
opened up to support the enforcement of arbitrary design rules, however, it is quite possible
that multiple design rules will place conflicting requirements on a design. One approach to
dealing with this problem is to associate a priority with each rule and, in the case of a tie,
request that the architect decide which rule(s) to obey and which to relax.

3 References
[1] Gregory Abowd, Robert Allen, and David Garlan. Using Style to Understand Descriptions of Software Archi-

tecture. In Proceedings of SIGSOFT ‘93: Foundations of Software Engineering, Software Engineering Notes
18(5), pages 9-20. ACM Press, December 1993.

[2] Robert Allen and David Garlan, Towards Formalized Software Architecture, Carnegie Mellon University Tech-
nical Report CMU-CS-TR-92-163, July 1992.

[3] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, Marty Sirkin. The GenVoca Model of
Software System Generators. IEEE Software, September 1994, pp. 89 - 94.

[4] David Garlan, Robert Allen, and John Ockerbloom. Exploiting Style in Architectural Design Environments, in
Proc. of SIGSOFT ‘94 Symposium on the Foundations of Software Engineering, Dec. 1994.

[5] Proceedings of the First International Workshop on Architectures for Software Systems, Edited by David
Garlan. April, 1995.

[6] Kevin Jeffay. The Real-Time Producer/Consumer Paradigm: A Paradigm for the Construction of Efficient, Pre-
dictable Real-Time Systems, in Proc. of the 1993 ACM/SIGAPP Symposium on Applied Computing, pp 796-
804, Indianapolis, IN, Feb. 1993, ACM Press.

[7] James Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[8] Mary Shaw, Robert Deline, Daniel Klein, Theodore Ross, David Young, and Gregory Zelesnik. Abstractions for
Software Architecture and Tools to Support Them. IEEE Trans. on Software Engineering, April 1995.

