
Using Re�nement to Understand
Architectural Connection

David Garlan

Department of Computer Science

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The predominant use of re�nement is to relate speci�cations of a system
at two levels of abstraction. In this paper we describe a di�erent ap-
plication of re�nement. We consider the problem of specifying reusable
architectural connectors and the associated need to have formal rules for
instantiating them for a speci�c system. We show that it is possible to use
notations like CSP for these speci�cations and then to adapt the notion
of process re�nement to provide the rules for instantiation. We further
show that these rules are sound with respect to deadlock freedom.

1 Introduction

The predominant use of re�nement is to relate speci�cations of a system at
two levels of abstraction. Typically an abstraction of a system is made more
concrete in a lower-level speci�cation that is closer to an implementation. In
the extreme, the lower-level speci�cation is some kind of machine-executable
language.

For most systems of re�nement a set of re�nement rules provide the formal
basis for deciding when one description is a legal re�nement of another. The
general idea behind all of these rules is that the lower-level description must
have behavior that is consistent with the promised behavior of the more abstract
description, but that it is free to make speci�c choices where the higher-level
description has left that choice open.

While the use of re�nement for developing correct implementations is cer-
tainly a good application of this general idea, it is not the only one. In this
paper we illustrate a quite di�erent application. We consider the problem of
specifying reusable architectural connectors and the associated need to have
formal rules for instantiating them in a speci�c system. As we will show, it is
possible to use notations like CSP for these speci�cations and then to adapt the
notion of process re�nement to provide the rules for instantiation. We further
show that the choice of re�nement is not only intuitively appealing for this
application, but also allows us to prove that certain important properties of
the connector are maintained at the point of instantiation.

In the remainder of this paper we �rst outline the problem that motivates
this work. Next we show how connector types can be de�ned as a collection
of interacting protocols written in a language like CSP. Then we consider the
problem of instantiating these connectors and show how process re�nement

1

can be adapted as a solution. Finally, we show that this notion of re�nement
allows us to guarantee preservation of deadlock freedom in the presence of
instantiation.

2 Architectural Speci�cation

For large systems the overall system structure { or software architecture {
becomes a critical design problem. Most systems of any size typically are
presented in terms of a set of high-level interacting components. For example, a
management information application may consist of a central database accessed
by a set of applications which are accessed through a shared user interface.

The ubiquitous use of architectural concepts is highlighted by the typical
informal documentation associated with system description. Usually a system
is pictured as a boxes and lines diagram in which the boxes represent the main
computational components and the lines represent interactions between those
components. The prose that accompanies these �gures uses phrases like \pipe
and �lter system", \client-server organization", "blackboard architecture", and
\layered organization" to describe common idiomatic architectural patterns {
or architectural styles [5].

For some domains architectural conventions have become standardized in a
way that permits descriptions of architecture in terms of speci�c components
and connectors. We are all familiar with the canonical architecture for a com-
piler. But other application-speci�c architectures (sometimes called \reference
architectures") are becoming increasingly important to industry as a vehicle
for design and code reuse, interoperability, standardization, and automated de-
velopment support [8, 7, 4]. These systems gain their power by exploiting a set
of design constraints and conventions that dictate such things as global system
organization, and provide a common vocabulary of design elements (such as
parsers and protocol layers).

While architectural description is crucial for large-scale software develop-
ment, the relative informality of most architectural descriptions seriously limits
their utility. It is often di�cult to know precisely what is meant by terms such
as \client-server". It is usually impossible to analyze the descriptions or to
infer non-trivial properties from them. It is impossible to compare di�erent
architectural alternatives. It is hard to check that an implementation respects
the constraints implied by an architectural description.

What is needed is a way to specify software architectures. Such a form
of speci�cation should allow a natural mapping of the informal notions into
a more precise notation. In particular, it should be able to give meanings to
boxes and lines diagrams and account for the idiomatic uses of architectural
terms. It should also permit the designer to reuse general concepts from one
architectural description to another. Further, it should allow one to check
whether an architectural description is consistent, in the sense that the parts
work well together.

It is important to note that this is not simply a problem of being able to
specify a given system at a high level of abstraction. Rather, what is required
is a building block approach to system speci�cation. Concepts like \client-
server" and \pipe connection" should become reusable speci�cations that can
be incorporated into speci�c systems. This requirement is crucial to support the

de�nition of architectural styles and reference architectures, which allow new
products to be designed around a common vocabulary and set of conventions
about system organization.

But the approach advocated here raises a number of fundamental questions:
What does it mean to specify a reusable architectural building block? What
does it mean to use (or \instantiate") one of these? What are the rules for
checking that a use is consistent with its de�nition? What signi�cant properties
do these checks guarantee? In the following sections we provide partial answers
to these questions.

3 The Wright Architectural Description
Language

The approach that we will adopt is the following. We view the architecture of
a system as a con�guration of components and connectors. A component is the
locus of computation, while a connector describes the interactions that can take
place between a set of components. Components have a set of interaction points,
or ports through which they interact with their environment. Connectors link
the ports of two or more connectors. To specify a system we �rst de�ne a set of
component and connector types.1 Second, we declare instances of these types
and indicate how they are combined in a bipartite graph.

To make this concrete, we have developed the Wright architectural de-
scription language for describing software architectures.2 Figure 1 illustrates
how a simple client-server system would be described in Wright. In this sys-
tem there are two component types: Client and Server. Here each components
has a single port (although, in general a component might have many ports).
Additionally with each component type we provide a component speci�cation
that speci�es its function. (For the purposes of this paper, we will not concern
ourselves with this speci�cation).

In the �gure we also declare a single connector type. A connector type is
de�ned by a set of roles and a glue speci�cation. The roles describe the expected
local behavior of each of the interacting parties. In the above example, the
client-server connector has a client role and a server role. As we will soon see,
the client role might describe the client's behavior as a sequence of alternating
requests for service and receipts of the results. The server role might describe
the server's behavior as the alternate handling of requests and return of results.
The glue speci�cation describes how the activities of the client and server roles
are coordinated. It would say that the activities must be sequenced in the
order: client requests service, server handles request, server provides result,
client gets result.

The �gure also includes a declaration of a set of component and connector
instances. These de�ne the actual entities that will appear in the con�guration.
In the example, there is a single server (s), a single client (c), and a single C-
S-connector instance (cs).

To provide a system de�nition, component and connector instances are
combined by indicating which component ports are attached as (or instanti-

1Or better yet, import them from an existing library of architectural elements.
2The name refers to the architect Frank Lloyd Wright.

System SimpleExample
Component Server

port provide
[provide protocol]

spec [Server speci�cation]
Component Client

port request
[request protocol]

spec [Client speci�cation]
Connector C-S-connector

role client
[client protocol]

role server
[server protocol]

Glue [glue protocol]
Instances

s: Server
c: Client
cs: C-S-connector

Attachments
s.provide as cs.server;
c.request as cs.client

end SimpleExample.

Figure 1: A Simple Client-Server System

ate) which connector roles. In the example the client request and server provide
ports are \attached as" the client and server roles respectively. This means that
the connector cs coordinates the behavior of the ports c.request and s.provide.
In a larger system, there might be other instances of C-S-connector that de�ne
interactions between other ports.

4 Specifying Connectors

The most interesting aspect ofWright is its approach to specifying connectors.
The roles of a connector describe the possible behaviors of each participant in
the interaction, while the glue describes how these behaviors are combined to
form a communication.

4.1 Notation

Our approach is to describe these behaviors as interacting protocols de�ned in
a subset of CSP [6]. (In what follows, we will assume some familiarity with
CSP.) The subset of CSP that we adopt is the use of events, and processes
built out of primitives (e.g., STOP) and pre�xing (!), deterministic choice (),
and non-deterministic choice (u). We also allow names to be associated with
a (possibly recursive) process expression.

In addition to this standard CSP notation we adopt three notational con-
ventions. First, we use the symbol

p
to represent a successfully terminating

process. This is the process that engages in the success event,
p
, and then

stops. (In CSP, this process is called SKIP.) Formally,
p def

=
p ! STOP.

Second, we allow the introduction of scoped names, as follows:

P = (let Q = expr1 in R)

Third, as in CSP, we allow events and processes to be labeled. The event e
labeled with label l is written l :e. The operator \:" allows us to label all of the
events in a process, so that l : P is the same process as P but with each of its
events labeled. For our purposes we use the variant of this operator that does
not label

p
. (The reason for this will become clear later.) We use the symbol

� to represent the set of all unlabeled events.
The subset of CSP that we have chosen makes the process descriptions

\�nite-state". Later we explain our rationale for this decision. However, most
of the discussion that follows would carry forward without modi�cation if we
used a more complete subset of CSP.

4.2 Connector Description

To describe a connector type we provide process descriptions for each of its
roles and its glue. As a simple example, consider the client-server connector,
introduced informally in Section 4.2. Ignoring transmission of data, this is how
it might be written using the notation just outlined.

connector Pipe =
role Writer = write!Writer u close!p
role Reader =
let ExitOnly = close!p
in let DoRead = (read!Reader read-eof!ExitOnly)
in DoRead u ExitOnly

glue = let ReadOnly = Reader.read!ReadOnly
Reader.read-eof!Reader.close!p
Reader.close!p

in let WriteOnly = Writer.write!WriteOnly Writer.close!p
in Writer.write!glue

Reader.read!glue
Writer.close!ReadOnly
Reader.close!WriteOnly

Figure 2: A Pipe Connector

connectorService =
role Client = request! result ! Client u p
role Server = invoke! return ! Server

p

glue = Client.request! Service.invoke!Service.return!
Client.result!glue

p

The Server role describes the communication behavior of the Server. It is
de�ned as a process that repeatedly accepts an invocation and then returns;
or it can terminate with success instead of being invoked. Because we use
the alternative operator () the choice of invoke or

p
is determined by the

environment of that role (which, as we will see, is the other roles and the glue).

The Client role describes the communication behavior of the user of the ser-
vice. Similar to Server, it is a process that can call the service and then receive
the result repeatedly, or terminate. However, because we use the decision op-
erator (u) in this case, the choice of whether to call the service or to terminate
is determined by the role process itself. Comparing the two roles, note that
the two choice operators allow us to distinguish formally between situations in
which a given role is obliged to provide some services | the case of Server |
and the situation where it may take advantage of some services if it chooses |
the case of Client).

The glue process coordinates the behavior of the two roles by indicating
how the events of the roles work together. Here glue allows the Client role to
decide whether to call or terminate and then sequences the remaining three
events and their data.

As more substantive example, Figure 2 illustrates the de�nition of an in�nite
pipe connector type. The complexity of this de�nition arises from the need to
account for the possibility that either role may decide to stop. If the writer
stops, the reader must be prepared to accept an \end of �le" marker.

4.3 Connector Semantics

Intuitively, the roles of a connector act as independent processes constrained
only by the glue, which orchestrates the interactions between the roles. For-
mally, the meaning of a connector is the parallel composition of its role and
glue processes, where we arrange things so that the alphabets of the roles do
not intersect and the alphabet of the glue includes the union of the events of
the roles.

De�nition 4.1 The meaning of a connector description with roles R1, R2, . . .,
Rn , and glue Glue is the process:

Glue k (R1:R1 k R2:R2 k . . .k Rn :Rn)

where Ri is the (distinct) name of role Ri , and

�Glue = R1:� [R2:� [. . .[Rn :� [fpg:

�

Here the glue's alphabet is the union of all possible events labeled by the
respective role names (e.g., Client, Server), together with the

p
event. This

allows the glue to interact with each role. In contrast, (except for
p
) the role

alphabets are disjoint and so each role can only interact with the glue. Becausep
is not relabeled, all of the roles and glue can (and must) agree on

p
for any

of the processes to terminate successfully. Thus, successful termination of a
connector is the joint responsibility of the all parties involved.

5 Connector Instantiation

Component ports are also speci�ed by processes: The port process de�nes the
expected behavior of the component at that point of interaction. For example,
the request port of a client that makes a single request and then terminates
successfully might look like:

component =
port Request = request! result ! p

other ports...

To use a connector to de�ne a particular system we must create an instance
of the connector and then \attach" it by associating component ports with the
connector roles. (See Figure 1.) But what does this mean?

At �rst glance it might seem that there should be no problem to solve. If the
port protocols are identical to the role protocols, then we can simply substitute
the ports for the roles in the overall system description.

But, in general, we would not like to require that the port and role protocols
be identical. As a simple example, note that the above port protocol required
only one request for service while the role allows an in�nite number. Similarly,
we can well imagine a client-server connector that allows two kinds of services
to be performed, but that a particular port only requires the use of one. As

another example, a port that writes to a pipe may be designed to continue
forever; in that case its protocol would not involve the close event.

Allowing that we would like to permit the role and port protocols to be dif-
ferent, we note that the port protocol de�nes the concrete interaction behavior
of the component with its environment. Thus, when instantiated, the ports
take the place of the roles in the actual system. It is reasonable, therefore,
to de�ne an instantiated connector as one in which all of its roles have been
replaced by the ports of the components that it connects. Formally,

De�nition 5.1 The meaning of attaching ports P1 . . .Pn as roles R1 . . .Rn of
a connector with glue Glue is the process:

Glue k (R1:P1 k R2:P2 k . . . k Rn :Pn)
�

But this now raises the key question: when is it legal to perform such an
instantiation? We refer to this as the port-role compatibility problem.

As the examples above illustrate, it should be possible for roles not to exhibit
all of the behavior allowed by a connector. On the other hand there are certain
kinds of behavior that a port should not be allowed to exclude. For example, if
a server must be initialized before a request is made, then the port had better
include initialization as part of its promised behavior.

Evidentally what is needed is a de�nition that allows the port to ignore
optional (i.e., nondeterministic choices), while respecting the obligations of the
connector (i.e., deterministic choices). But this is precisely the notion of re�ne-
ment!

Unfortunately it is not possible to use the notion of CSP re�nement directly.
There are two reasons for this. The �rst reason is the technicality that CSP's
v relation assumes that the alphabets of the compared processes are the same.
We can handle this problem simply by augmenting the alphabets of the port and
role processes so that they are identical. This is easily accomplished using the
CSP operator for extending alphabets of processes: P+B extends the alphabet
of process P by the set B . (In this context, P+B = PkSTOPB). We extend
the port's alphabet to that of the role, and vice versa.

The second, and more important, reason is that even if the port and role
have the same alphabet it may be that the port process allows incompatible
behavior, but that this behavior could never arise in the context of the con-
nector to which it is attached. For example, suppose a component port has
the property that it must be initialized before use, but that it will crash if it is
initialized twice. If we put this in the context of a connector that guarantees
that at most one initialization will occur, then the anomalous situation will not
arise.

Thus to evaluate compatibility we need concern ourselves only with the
behavior of the port restricted to the contexts in which the role might �nd
itself. That is, to evaluate the suitability of a port to �ll a given role, it is
su�cient to consider the port's behavior over traces that are allowed by the
role. Technically we can achieve this result by considering the new process
formed by placing the port process in parallel with the deterministic process
obtained from the role. For a role R, we denote this latter process det(R). (For
details, see [2].)

We are led to the following de�nition of compatibility (where \n" is set
di�erence) :

De�nition 5.2 P compatR (\P is compatible with R")
if R+(�Pn�R) v P+(�Rn�P) k det(R) �
Under these de�nitions, we see that port Request = request ! result ! p

is
compatible with role Client, but that it would not have been if the client had
required an initialization event before a request.

6 Deadlock Freedom

An important goal in de�ning connector types is to be able to provide guar-
antees about the properties of their instances. If this were not possible there
would be little bene�t in having reusable connector types, since we would have
to reestablish the properties of each connector instance whenever it is used.

One such property is deadlock-freedom. Intuitively, a deadlock-free connec-
tor is one in which the roles never get \stuck" in the middle of an interaction,
each role expecting the others to take some action that can never happen. That
is, if one of the connector's roles is prepared to make progress it should be pos-
sible for the connector as a whole to do so. On the other hand, we would like to
allow the possibility that the connector as a whole can terminate successfully.
For example, a client-server connector should allow the client to terminate the
interaction, provided it does so at a point expected by the server. Similarly the
pipe connector should allow termination when the writer closes the pipe.

In terms of our model of connectors, successful termination amounts to a
joint transition (of all the roles and glue) to

p
, the process that announces

success and then stops. (Recall that we have set up our renaming operator so
that

p
can be a shared event of all the roles and the glue). We can make this

formal:

De�nition 6.1 A connector C is deadlock-free if for all (t ; ref) 2 failures(C)
such that ref = �C , then we have tail(t) =

p
. �

As argued above, such a property is only useful if it is preserved across
connector instantiation. That is, we would like to be able to claim that an
instance of a deadlock-free connector remains deadlock-free when instantiated
by compatible ports.

Such a result would, of course, be trivially true if we used ports that were
identical to the roles. But as we have argued above, ports and roles need not
be identical. Less obvious, but equally true, is the fact that if ports are strict
re�nements of the roles then deadlock freedom is also preserved. This follows
from the monotonic nature of process re�nement, which requires the failures
of a re�nement to be a subset of the failures of the process it is re�ning. In
other words, the re�ned process can't refuse to participate in an interaction if
the role could not also have refused.

But we have deliberately chosen a weaker notion of re�nement in order to
provide greater opportunities for reuse of the connector. Because the port need
only be considered a re�nement when restricted to the traces of the role, it is
possible that it may allow potentially deadlocking behavior, even though this
behavior would never occur in the context of the role that it is playing.

Consequently, it is not immediately clear whether deadlock-freedom is pre-
served across compatible port substitutions. In fact, it is not. The problem
arises if the glue permits behaviors outside the range of those de�ned by the
roles of the connector. Suppose, for example, that the glue allows a behav-
ior of the form \. . . R1 : crash ! STOP" and that the event crash is not in
the alphabet of role R1. Then the connector could be deadlock-free (in the
sense de�ned above). Now consider a port that contains the same behavior
(i.e.,. . . R1 : crash ! STOP). It is possible for this port to be compatible with
role R1. But the connector can deadlock if the port is substituted for the role
in that connector.

To avoid this possibility we need to impose further restrictions on the glue.
Speci�cally, we de�ne a conservative connector to be one for which the glue
traces are a subset of the possible interleavings of role traces.

De�nition 6.2 A connector C = Glue k (R1:r1 k R2:r2 k . . .k Rn :rn) is
conservative if traces(Glue) � traces(R1:r1kR2:r2k . . . kRn :rn) �

Armed with this de�nition we can now state the desired result:

Theorem 6.3 If a connector C = Glue k (R1:R1 k R2:R2k . . .k Rn:Rn) is
conservative and deadlock-free, and if for i 2 f1::ng, Pi compat Ri , then
C 0 = Gluek(R1:P1kR2:P2k . . . kRn :Pn) is deadlock-free.

7 Conclusion and Future Prospects

In this paper we have illustrated how re�nement can be applied to the problem
of specifying software architectures. This work is motivated by the need for
a practical formal basis on which software engineers can develop architectural
designs using common vocabularies of components, connectors, and patterns of
composition.

As a step in that direction we have focused on reusable speci�cations of
architectural connectors. Given such speci�cations, re�nement emerges as nat-
ural way to understand when it is legal to use a connector in a given context.
We have also illustrated that pure re�nement is not su�ciently
exible and
provided a somewhat more permissive de�nition that permits reuse of connec-
tors in a larger number of contexts. We further claimed that this de�nition is
not too loose: it is still possible to guarantee preservation of properties across
connector instantiation.

The speci�c notation used here was a subset of CSP, embedded in the Wright
architectural description language. That subset was deliberately chosen to pro-
duce �nite state processes. As a result, all of the major properties described in
the paper (deadlock-freedom, conservatism, and compatibility) can be checked
automatically by tools such as FDR [3]. In fact, we are incorporating FDR into
an architectural design environment, and plan to use it routinely to check the
properties of connectors and their instantiations.

However, the �nite nature of the examples should not mislead the reader
into thinking that the results apply only in the case of �nite state processes.
Indeed, all of the results carry over to full CSP. Of course, automated checking
is no longer possible in that case. We also believe that the approach outlined in
this paper extends beyond CSP itself. In principle, it should be possible to use

alternative speci�cation languages to de�ne the protocols of connectors. For
example, timed CSP could be used to express timing constraints on interactions
to explain the behavior of such things as server timeouts. The notions of com-
patibility and conservatism would then have to be correspondingly augmented.

Acknowledgements

The results of this paper were developed jointly with Robert Allen. Several of
the examples are adapted from other accounts of this work [1, 2]. The ideas
have bene�ted substantially from comments by Steve Brookes, Daniel Jackson,
Mary Shaw, and Jeannette Wing.

This research was sponsored by the National Science Foundation under
Grant Number CCR-9357792, by the Wright Laboratory, Aeronautical Sys-
tems Center, Air Force Materiel Command, USAF, and the Advanced Re-
search Projects Agency (ARPA) under grant number F33615-93-1-1330, and
by Siemens Corporate Research. The views and conclusions contained in this
document are those of the authors and should not be interpreted as represent-
ing the o�cial policies, either expressed or implied, of Wright Laboratory, the
U.S. Government, or Siemens Corporation.

References

[1] Allen, R. and Garlan, D. Beyond De�nition/Use: Architectural Intercon-
nection. in: Proceedings of the ACM Interface De�nition Language
Workshop. SIGPLAN Notices, Portland, OR, 1994.

[2] Allen, R. and Garlan, D. Formal Connectors. no. CMU-CS-192, Carnegie
Mellon University, 1993. In preparation.

[3] Failures Divergence Re�nement: User Manual and Tutorial. 1.2�.
Formal Systems (Europe) Ltd., Oxford, England, 1992.

[4] Garlan, D. and Delisle, N. Formal Speci�cations as Reusable Frameworks.
in: VDM'90: VDM and Z { Formal Methods in Software Devel-
opment. Springer-Verlag, LNCS 428, Kiel, Germany, 1990, pp. 150{163.

[5] Garlan, D. and Shaw, M. An Introduction to Software Architecture. in:
Advances in Software Engineering and Knowledge Engineering,
Volume I, edited by V.Ambriola and G.Tortora. World Scienti�c Publish-
ing Company, New Jersey, 1993.

[6] Hoare, C. Communicating Sequential Processes. Prentice Hall, 1985.

[7] Open Systems Interconnection Handbook. edited by G. R. McClain.
Intertext Publications McGraw-Hill Book Company, New York, NY, 1991.

[8] Metalla, E. and Graham, M. H. The Domain-Speci�c Software Architecture
Program. no. CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering
Institute, June 1992.

