
Submitted for publication.

A Compositional Formalization of Connector Wrappers

Bridget Spitznagel
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213
sprite@cs.cmu.edu

David Garlan
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213
garlan@cs.cmu.edu

Abstract

Increasingly systems are composed of parts: software
components, and the interaction mechanisms (connectors)
that enable them to communicate. When assembling sys-
tems from independently developed and potentially mis-
matched parts, wrappers may be used to overcome mis-
match as well as to remedy extra-functional deficiencies.

Unfortunately the current practice of wrapper creation
and use is ad hoc, resulting in artifacts that are often hard to
reuse or compose, and whose impact is difficult to analyze.
What is needed is a more principled basis for creating, un-
derstanding, and applying wrappers. Focusing on the class
of connector wrappers (wrappers that address issues related
to communication and compatibility), we present a means of
characterizing connector wrappers as protocol transforma-
tions, modularizing them, and reasoning about their prop-
erties. Examples are drawn from commonly practiced de-
pendability enhancing techniques.

1. Introduction
Increasingly systems are implemented as compositions

of independently-developed components that must be in-
tegrated into working systems using various interaction
mechanisms, such as remote procedure call, event buses,
pipes, etc. For such systems a serious problem is dealing
with component mismatches that arise when the expecta-
tions of a component do not match those of other compo-
nents or of the environment into which it is placed [4].

For example, a component selected for use in some soft-
ware system may not use the same units of measurement or
the same data format as the rest of the system. Or, a COTS
component may not gracefully tolerate out-of-range input
data produced by other components.

In this setting the traditional approach of directly rewrit-
ing or modifying the software to solve the problem may not
be feasible, since components are often built by third par-
ties, or are sufficiently complex that rewriting them is not
cost-effective.

One widely used technique to deal with this problem is to
use wrappers. Informally a wrapper is new code interposed
between component interfaces and communication mecha-
nisms. The intended effect is to moderate the behavior of
the component in a way that is largely transparent to the
component or the interaction mechanism.

For example, a unit conversion mismatch might be re-
solved by a data conversion wrapper that intercepts data en-
tering or leaving the offending component, and converts it to
the units expected by the rest of the system. Or, in the case
of a component that does not gracefully handle out-of-range
data, a wrapper might be constructed to harden the compo-
nent by rejecting illegal input, allowing only well-tolerated
inputs to reach the component, and thereby increasing the
reliability of the system as a whole [14].

Unfortunately the current practice of wrapper creation
and use is ad hoc and something of a black art. To over-
come a (perhaps unforeseen) difficulty quickly, a one-off
wrapper is written specifically for that problem in that soft-
ware system. Consequently as somewhat random pieces of
code, wrappers are often hard to reuse elsewhere, analyze,
compose with one another, modify, and maintain.

As a result, many important questions that might arise
cannot be answered. For example: How does a specific
wrapper, interposed between a component and a connector,
affect the protocol of that connector? Are existing proper-
ties of the protocol maintained; does a desirable new prop-
erty emerge? Do two potential wrapping efforts interact in
bad ways? Does it matter in which order the wrappers are
applied? Does a wrapper violate the interface expected by
the component that is being wrapped? Does a wrapper re-
quire modifications to the source code of a component?

In principle, such questions could be answered in an
ad hoc fashion themselves, for example, by writing a for-
mal description of the affected part of the system as it would
stand after the incorporation of the wrapper. However this
task would have to be repeated each time another wrapper is
added, and yields no general understanding. Moreover, the
wrappers themselves would still not enjoy the usual desired
properties of reusability, maintainability, and so on.

What is needed is a more principled basis for wrapper

creation and application, ideally providing three desirable
capabilities: First, we would like to be able to specify a
wrapper itself, independent of any particular context of use.
Second, we would like to use this specification to under-
stand things such as impact of its use, its effects on the com-
munication protocol between components, compositional
properties, etc. Third, we would like to be able to relate
the wrapper specification to an implementation using tools
and techniques that help enforce that the implementation
corresponds to the specification.

In this paper we address the first two of these issues for
an important subclass of wrappers, namely connector wrap-
pers.1 As we detail later, these wrappers are used to repair
or augment communication-related properties of a system,
such as the two examples above. As we will show, it is
possible to specify this class of wrappers as modularized
protocol transformations, whose properties can be reasoned
about using standard notations and tools. We give examples
drawn from commonly practiced dependability-enhancing
techniques, show the application of these example wrap-
pers to two connector specifications, demonstrate the ease
of composition of this kind of wrapper specification, and il-
lustrate how analyses can be used to confirm whether the
wrappers actually achieve their intended purpose.

2. Related Work
The widespread use of wrappers (which, in part, moti-

vates this work) has given rise to efforts directed at stan-
dardized support for wrapper insertion. System-level sup-
port mechanisms, usually called interceptors, have become
increasingly available for implementations of some com-
monly used connectors. Interceptors facilitate the insertion
of arbitrary application-level wrapper code. Such code may
be used to enhance fault tolerance [12] and security [3] of
COTS components, or to add instrumentation [8]. However,
by their nature these efforts are specific to a connector im-
plementation and/or set of system libraries; and, generally
speaking, do not address the questions posed in section 1,
which are concerned with what is going on in the wrapper
itself rather than the means of wrapper emplacement.

Our work builds on process algebras such as CSP and
CCS [6, 11]. In particular, it applies to FSP [10] some of
the structure of Wright [1] in order to describe protocols of
software connectors, and to describe connector wrappers as
transformations of these protocols. Wright’s decomposition
of connectors into interfaces (roles) and interactions (glue),
enables explicit identification of the communicating parties
and their obligations, as well as compatibility checks. The
work described in this paper, however, goes beyond that of
previously published work on Wright by further decompos-
ing the connector and promoting reusability of “wrapper”
interaction elements.

We also make use of the idea, drawn from software archi-
tecture, of treating a software connector as a separate first-

1We address the third issue in [19].

class entity [17], on a par with software components.
Mismatch resolution, a problem that gives rise to some

wrappers, has also been tackled in software architecture.
When two mismatched components are unable to commu-
nicate via existing connectors, one alternative to wrappers
is to construct or modify a connector to resolve the mis-
match [18]. Another technique, Flexible Packaging [2],
separates the component’s functionality (ware) from its as-
sumptions about the communication infrastructure (packag-
ing); mismatches in packaging can then be overcome by re-
placing the ware’s packaging with one that is a better match
for the rest of the system. The flexible packaging approach
is elegant, but lack of adoption by component providers
makes it unlikely to replace practitioners’ use of wrappers
in the immediate future.

Also related to this work is protocol synthesis, which
deals with a protocol’s composition from (or decomposi-
tion into) simpler protocols. Ensemble [20] enables the
construction of an adaptive protocol composed of stacked
micro-protocol modules. The x-Kernel [13] project has also
used micro-protocol composition to design and implement
a dynamic architecture for flexible protocols that take ad-
vantage of operating system support for efficient layering.
Conduits+ [7] also provides a framework for network pro-
tocol software, with a focus on reuse aided by design pat-
terns; layered protocols are composed from conduits (soft-
ware components with two distinct “sides”) and information
chunks (which flow through the conduits). The work de-
scribed here has a somewhat different goal: to describe the
impact of application-level wrapper code on a pre-existing
protocol, rather than to construct a fresh protocol (and cor-
responding connector implementation) from scratch.

3. Overview of Approach

Informally a wrapper is new code interposed between
component interfaces and infrastructure support. The intent
of the code is to alter the behavior of the component with
respect to the other components in the system, without ac-
tually modifying the component or the infrastructure itself.

An important class of wrappers are those that are primar-
ily designed to affect the communication between compo-
nents. We refer to these as connector wrappers. Connector
wrappers encompass a wide range of behaviors, including
things such as changing the way data is represented during
communication, the protocols of interaction, the number of
parties that participate in the interaction, and the kind of
communication support that is offered for things like moni-
toring, error handling, security, and so on.

Moreover, since connector wrappers focus on modifying
the behavior of shared communication infrastructure, they
are not inherently specific to the particular components be-
ing wrapped. As a result, they have a greater potential for
reuse and generalization. For example, a connector wrapper
that adapts a communication to use encrypted data could be
reused between many components.

2

3.1. Goals
Our goal is to provide a more formal, disciplined ap-

proach to connector wrapper design (and indirectly imple-
mentation), so that we can understand their behavior and
other properties. Specifically, there are three important
classes of properties that we would like to analyze:
� Soundness: Having introduced a wrapper (or sequence

of wrappers), does the resulting communication mech-
anism still work? Does a wrapper introduce new dead-
locks, failure modes or race conditions?

� Transparency: Does a wrapper change the interface of
the communicating parties? Since the goal of wrappers
is to avoid directly modifying the components in a sys-
tem, transparency is an important feature to verify.

� Compositionality: What are the compositional and al-
gebraic properties of a set of wrappers? This includes
issues such as commutativity (can the ordering of two
wrappers be exchanged?), inverses (does one wrap-
per undo the effects of another?), idempotence (does
it matter if we apply the same wrapper twice?), and
other more specific properties of a composition of sev-
eral wrappers.

3.2. Protocol Transformation
To address questions like these, our approach is to define

a connector wrapper formally as a protocol transformation.
In effect, a wrapper converts the protocol defining one con-
nector into a new protocol defining the altered connector.
The basic operations that comprise a protocol transforma-
tion may include redirecting, recording and replaying, in-
serting, replacing, and discarding particular events.

Building on past work in this area, we adopt an approach
based on process algebras [6, 11]. Process algebras provide
a way to talk about patterns of events, and are supported by a
number of useful analysis tools. In particular, we use FSP2.
(Other process algebras would have worked equally well:
we chose FSP because it is simple enough for non-experts
to use but can still provide a useful set of analyses, such
as whether a connector protocol will deadlock or whether a
safety or liveness property is violated.)

To describe a connector protocol in FSP, we use an ap-
proach similar to Wright [1]. A connector is defined as a
set of processes: there is one process for each interface or
“role” of the connector, plus one process for the “glue” that
describes how all the roles are bound together. These n+ 1
processes are placed in parallel with the roles relabelled.
Checks are performed on the resulting composite processes
using tools such as model checkers.

2A quick reference for some FSP operators is given in Table 1; for
further information see [10]. Processes describe actions (events) that oc-
cur in sequence, and choices between event sequences. Each process has
an alphabet of the events that it is aware of (and either engages in or re-
fuses to engage in). When composed in parallel, processes synchronize on
shared events: if processes P and Q are composed in parallel as Pk Q,
events that are in the alphabet of only one of the two processes can occur
independently of the other process, but an event that is in both processes’

a ! P Action Prefix
a ! P j b ! Q Choice
P k Q Parallel Composition
label:P Process Labelling
P/fnew/oldg Relabelling
Pnfhiddeng Hiding
when (n<T) a ! P Guarded Action
P+ fa,b,cg Alphabet Extension
STOP, ERROR predefined processes

Table 1. FSP Quick Reference

Caller = (call ! return ! Caller).
Definer = (call ! return ! Definer).
Glue = (caller.call ! definer.call ! Glue

j definer.return ! caller.return ! Glue).
kProcCall = (caller:Caller k definer:Definer k Glue).

Figure 1. Simple Procedure Call

Formally, for a connector with roles R1 : : :Rn and glue
G, the semantics of the connector is given by Expression 1.

R1k : : :k Rnk G (1)

To illustrate, Figure 1 shows a simple procedure-call
connector. The connector has two roles, Caller and Definer.
Each engages in a call event followed by a return event.
In the parallel process ProcCall, the role processes exe-
cute concurrently with the Glue process, synchronizing on
shared events; here the event labels in each role process
have been prefixed with a label unique to that role (caller or
definer), so each role shares events only with the glue, not
directly with other roles. The glue describes the interaction
of the roles: a call event at the Caller role is followed by a
call at the Definer role, and a return event at the Definer role
is followed by a return at the Caller role. ProcCall can then
be checked for deadlock, without needing any specifica-
tion of the components whose communication it describes.
(Later, the protocol of the component interfaces should be
checked for conformance to the role specifications, which
are effectively standing in for these future components.)

Our protocol transformation takes a connector of the
form given in Equation 1 and, by adding and modifying pro-
cesses in that connector, produces a new connector with the
same general form. The chosen approach (outlined in the
next section) makes it easy to compose, or chain together,
several such transformations, to achieve a complex result
from several simpler modular wrappers.

4. Connector Wrapping
The core of this wrapper-description technique is the in-

terposition of a new process between a role process R and
a glue process G. In an implementation this would corre-
spond informally to the interposition of a new piece of code,
the wrapper.

alphabets cannot occur until both processes are willing to engage in it.

3

First, we decouple R and G from one another; formally
this is done by renaming. Next, we add a new process W
that synchronizes with bothR andG. This wrapper process
W re-links the two decoupled processes by intermediating
between the original and the renamed events. W has the
opportunity to redirect, record/replay, insert, replace, or dis-
card the events communicated between R and G. W may
be parameterized to facilitate reuse in a broader range of
contexts.

LetARG = �(R)\�(G) be the set of events shared byR
andG. The first step is performed by renaming these events
in one of the two processes, ensuring that the two processes
no longer synchronize directly. For the second step, a new
process W is placed in parallel with the role processes and
glue process. W translates between the events in ARG, in
the alphabet of R, and their counterparts in the renamed
alphabet of G. W in parallel withG can be thought of as a
new composite glue process, GW .

We can derive the semantics of the newly wrapped con-
nector, given in Equation 2, by taking the original equa-
tion 1, adding W , and replacing G with f(G), where f(G)
is the relabelled version of G.

R1k : : :k RnkWk f(G) (2)

Some classes of wrappers may also increase the num-
ber of roles; this is done by introducing additional new pro-
cesses with which W synchronizes:

R1k : : :k RnkWk f(G)k Rn+1 : : :k Rn+k (3)

4.1. Benefits
This approach isolates the wrapper from the rest of the

original connector; though the core concept is not difficult
to grasp, the technique can be powerful when used consis-
tently and yields several benefits including composability,
traceability, and reusability.

These wrapper specifications are readily composable; we
can treat Wk f(G) as a new composite glue, and apply a
new wrapper W2 to the W -wrapped connector:

R1k : : :k RnkW2k f2(Wk f(G)) (4)

Traceability is facilitated by the decompositional struc-
ture of the transformed specification, which separates the
effects of a sequence of changes to the protocol so that a
problem detected by a model checker can more easily be
traced back to the change responsible for introducing the
problem. Pinpointing the source of such a problem would
be more difficult with a monolithic specification of the pro-
tocol. Furthermore, the structure in the specification is not
arbitrary but corresponds readily to the structure of the im-
plementation, facilitating traceability of a problem detected
in one of several wrapper processes by a model checker
to the one of several wrappers in the implementation that
would contain a corresponding bug. This correspondence

Caller = (call ! return ! Caller).
Definer = (call ! return ! Definer).
Glue = (caller.call ! definer.call! Glue

j definer.return ! caller.return ! Glue).
Wrap = (caller.call ! wrap.caller.call ! Wrap

j wrap.caller.return ! caller.return ! Wrap).
kWrapPC = (caller:Caller k definer:Definer

k Glue/fwrap.caller/callerg k Wrap).

Figure 2. “No Effect” Wrapper

between wrapper processes and wrapper implementations
can be enforced by implementation generation tools.

Parameterization techniques enable the construction of
reusable wrapper specifications, applicable to a range of
connector specifications. Generalization can be taken fur-
ther3, describing patterns or templates for types of wrap-
pers in terms of their actions (redirect, record/replay, insert,
replace, or discard) on events; this enables automatic gener-
ation of instances of some kinds of wrapper specifications
given a connector specification and a set of inputs includ-
ing the wrapper template and the affected elements of the
connector.

We will illustrate the basic structure of wrapper applica-
tion with three brief examples. These examples will then be
used to show composition of wrappers (section 6). Then we
will demonstrate parameterization of a wrapper and apply it
to a different connector protocol (section 7).

5. Examples
We begin with a trivial wrapper to illustrate the ba-

sic structure of its application to a connector specification.
Then we introduce a connector with two classes of faults
and describe two fault-tolerance wrappers.

5.1. First Wrapper: “No Effect”
Figure 2 shows the representation of a wrapper that does

nothing. Such wrappers can be generated automatically
from the FSP representation of a connector. Though trivial,
this example provides a starting point for the construction
of more complex wrappers.

The intermediary process, Wrap, simply relays events
from the Caller role to the Glue role and vice versa. The
new Wrap is added to the composite process WrapPC, and
all events in the glue that begin with the label caller are re-
labelled to begin with wrap.caller so that the glue and the
caller no longer synchronize directly.

If the wrap events in WrapPC are hidden from observers
by means of the hiding operator, and the labelled transi-
tion system drawn by LTSA (Labelled Transition System
Analyzer, a tool provided with FSP) is compared to the de-
piction of the original connector, it becomes apparent by

3Owing to space considerations, this technique will not be covered in
this paper.

4

Caller = (call ! TryCall),
TryCall = (return ! Caller j err ! Caller).

Definer = (call ! return ! Definer j crash ! END) nfcrashg.
Glue = (caller.call ! TryCall

j definer.return ! caller.return ! Glue),
TryCall = (definer.call ! Glue j caller.err ! Glue).

kFaultyRPC = (caller:Caller k definer:Definer k Glue).

Figure 3. Procedure Call with Timeouts

inspection that the two are equivalent. Equivalence can be
checked more formally by treating one version as a safety
property of the other version.

5.2. Another Connector

The remaining examples of wrappers will embody com-
mon dependability enhancements. In order to illustrate their
application, we introduce a connector in which the caller
occasionally receives errors (Figure 3).

The FaultyRPC connector is subject to timeout errors that
can occur whenever the caller is attempting to contact the
definer.4 The timeouts are represented by the glue’s choice
of the caller.err event. These timeouts may be transient
in nature, perhaps due to problems in the communications
channel, or may be due to the permanent silent failure of the
definer component.5

The task of a dependability-enhancing wrapper for this
connector is to hide the errors from the caller: it must be
possible for a err-unaware caller not merely to avoid dead-
lock but also to make progress.

We will apply two wrappers to this connector: one that
hides transient faults, and one that hides the failure of the
definer. Transient faults can be masked by re-sending the
request that had timed out. (This technique is in common
practice; examples, such as retransmission in TCP [15],
abound.) To mask the component failure, one possible tech-
nique is to provide a more reliable6 backup, to be used when
a failure is diagnosed. (This technique is a stripped-down
instance of a general well-known method for introducing
redundancy, which includes recovery blocks and N-version
programming [9].)

5.3. Second Wrapper: “Retry”

We begin with a wrapper that will retry indefinitely, and
then show how it may be revised to retry only a finite num-
ber of times. The wrapper intercepts any timeout error sent

4Timeouts when the definer is replying to the caller can also be mod-
elled by adding another choice branch to the glue.

5The possibility of subsequent recovery of the failed component can be
modelled, but is not included in this example for simplicity. Also, although
a non-transient failure could also be due to a failure in the communications
channel (such as being severed by a backhoe), for this example we will
model only the failure of the component.

6It may be lacking in other key qualities such as performance, for which
the primary may be generally preferred, as in [16].

to the client, and send out a new call event to the glue (to be
relayed to the definer) instead: see Figure 4.

The structure of the composite RetryRPC is essentially
identical to that of the WrapPC already seen (Figure 2).
The RetryAll process is very similar to the previous no-effect
Wrap process, with the addition of a new choice branch trig-
gered by the retry.caller.err sent by the glue.7

This wrapper illustrates interception and replacement of
events without change to the interfaces of the connector.
Wrappers can also enable the addition of new participants
(roles) to the communication, as shown in a subsequent ex-
ample.

5.3.1 Checking Results

Having applied this wrapper to our faulty connector, we
would like to know several things: Is the result sound, or
will it deadlock? Is the wrapper transparent to the caller
role, or has it changed the interface? Have errors been
hidden from the caller role? Does the caller role always
make progress, or (as we expect) can the system become
wedged? We can use the LTSA model checker to confirm
that RetryRPC is deadlock-free as well as to answer the re-
maining questions.

To confirm that the caller’s interface need not change,
we restate the original caller role as an FSP “safety prop-
erty”. A safety property has two parts: first, a process that
constrains event ordering of legal events; second, a set of
illegal events. LTSA will show a safety violation and event
trace, if the legal event ordering is not followed.

To confirm that errors will not reach the caller role,
we write the NoErrors safety property shown in Figure 5.
Here event ordering is unconstrained and there is one ille-
gal event, caller.err. LTSA will show a safety violation and
event trace, if an illegal event can occur.

To confirm that the caller will make progress in the
case of a failed definer, we define the “progress property”
CallerOk, a set of events. The system is making progress
when at least one of these events occurs infinitely often. In
this example, just as we expect, LTSA reports a progress
violation and the trace shows the failure of the definer.

5.3.2 Revising the Wrapper

Figure 6 shows a revised wrapper that re-sends at most 3
times in a row, using a parameterized local process that is
incremented on each retry (and is reset on each non-error
branch). It can be substituted for the RetryAll wrapper pre-
viously shown.

Retransmission masks one of the two kinds of errors to
which the FaultyRPC connector is subject. The finite-retry

7Wrapper processes such as this one may also be generated automati-
cally using tools that we are developing; first by generating the no-effect
wrapper particular to the desired connector and then by modifying the no-
effect wrapper according to a connector-independent template, e.g. adding
a choice branch as seen here.

5

Caller = (call ! return ! Caller).
Definer = (call ! return ! Definer

j crash ! END) nfcrashg.
Glue = (caller.call ! TryCall

j definer.return ! caller.return ! Glue),
TryCall = (definer.call ! Glue j caller.err ! Glue).

RetryAll = (caller.call ! retry.caller.call ! RetryAll
j retry.caller.return ! caller.return ! RetryAll
j retry.caller.err ! retry.caller.call ! RetryAll).

kRetryRPC = (caller:Caller k definer:Definer
k Glue/fretry.caller/callerg k RetryAll).

Figure 4. Applying RetryAll

property NoErrors = STOP+ fcaller.errg.
progress CallerOk = fcaller.returng
kRetryRPC = (caller:Caller k definer:Definer

k Glue/fretry.caller/callerg k Retry
k NoErrors).

Figure 5. Safety and Progress

Caller = (call ! return ! Caller).
Definer = (call ! return ! Definer j crash ! END) nfcrashg.
Glue = (caller.call ! TryCall

j definer.return ! caller.return ! Glue),
TryCall = (definer.call ! Glue j caller.err ! Glue).

const T = 3
Retry = Retry[0],

Retry[n:0..T] = (caller.call ! retry.caller.call ! Retry[0]
j retry.caller.return ! caller.return ! Retry[0]
j when (n<T) retry.caller.err ! retry.caller.call ! Retry[n+1]
j when (n==T) retry.caller.err ! caller.err ! Retry[0]).

kRetryRPC = (caller:Caller k definer:Definer
k Glue/fretry.caller/callerg k Retry).

Figure 6. Applying Retry

wrapper produces a wrapped connector that is subject only
to errors that are (probably) symptoms of a failed definer.
We show later how this connector can be wrapped in turn
to mask definer failure. Such chaining is common practice
in fault tolerance, to achieve a greater coverage of possible
failure situations by using a combination of several tech-
niques drawn from broad classes (such as detection, diag-
nosis, containment, masking, compensation, and repair [5];
classifications vary but in general are ordered from the less
drastic, lighter weight to the last-ditch, heavier weight tech-
niques and are used in that order). This practice further mo-
tivates our compositional approach.

5.4. Third Wrapper: “Failover”
In order to mask the potential failure of the definer, we

introduce component redundancy, which requires adding
a new participant in the communication. The wrapper in
this example (Figure 7) triggers the switch from primary

Caller = (call ! return ! Caller).
Definer = (call ! return ! Definer j crash ! END) nfcrashg.
Glue = (caller.call ! TryCall

j definer.return ! caller.return ! Glue),
TryCall = (definer.call ! Glue j caller.err ! Glue).

Backup = (call ! return ! Backup).
BGlue = caller.call ! definer.call ! BGlue

j definer.return ! caller.return ! BGlue).
Failover = (caller.call ! pri.caller.call ! Failover

j pri.caller.return ! caller.return ! Failover
j pri.caller.err ! bk.caller.call ! ToBk),

ToBk = (caller.call ! bk.caller.call ! ToBk
j bk.caller.return ! caller.return ! ToBk).

kFailoverRPC = (caller:Caller k pri.definer:Definer k pri:Glue
k bk.definer:Backup k bk:BGlue k Failover).

Figure 7. Applying Failover

kReOver = (caller:Caller k pri.definer:Definer
k pri:(Glue/fretry.caller/callerg k Retry)
k bk.definer:Backup k bk:BGlue k Failover).

Figure 8. Composing Retry and Failover

to backup and performs the subsequent redirection of calls
from the caller component to the backup. The local process
ToBk, defined within the Failover process, redirects calls to
the backup.8

6. Composition
Now we have wrappers that embody two reliability-

enhancing techniques, each suited to one of the failure
modes of the original faulty connector. Naturally we wish
to compose the two wrappers. Our incremental approach
makes this straightforward. Had we taken another approach
to specifying wrapped connectors, such as simply modify-
ing the existing glue processes rather than placing a new
intermediary process beside them, the results of applying a
single wrapper might have appeared simpler, but composi-
tion of wrappers would be quite difficult.

To compose these two wrappers, the reference to the
Glue process in FailoverRPC is replaced with the enhanced
“glue” of RetryRPC, as in Figure 8.

These two wrappers are not commutative (readily evident
as the replacement of the Glue in RetryRPC with the en-
hanced “glue” of FailoverRPC yields a non-equivalent state
machine in LTSA), thus it is important to get the order of
application right; fortunately it is fairly intuitive to translate

8Note that we have modeled the simple case in which the primary never
recovers. Slight modification of Failover would be required to handle the
case in which the primary may eventually recover: just as the Failover pro-
cess has a trigger to switch to ToBk, ToBk could be givena trigger to switch
back to the primary, or if the primary’s recovery is also silent, ToBk could
employ a counter (similar to the Retry process) and periodically attempt
use of the primary.

6

property NoErrors = STOP+ fcaller.errg.
progress CallerOk = fcaller.returng
kReOver = (caller:Caller k pri.definer:Definer

k pri:(Glue/fretry.caller/callerg k Retry)
k bk.definer:Backup k bk:BGlue
k Failover k NoErrors).

Figure 9. Safety and Progress, Revisited

kReReOver = (caller:Caller k pri.definer:Definer
k pri:(Glue/fretry.caller/callerg k Retry)
k bk.definer:Backup
k bk:(Glue/fretry.caller/callerg k RetryAll)
k Failover).

Figure 10. Retry and RetryAll and Failover

set C = fcallerg
set D = fdefinerg
set COut = fcallg
set CIn = freturng
set NewLabel = fwrapg
Wrap = ([r:C].[e:COut] ! [NewLabel].[r].[e] ! Wrap

j [NewLabel].[r:C].[e:CIn] ! [r].[e] ! Wrap).
kWrapPC = (caller:Caller k definer:Definer

k Glue/f[NewLabel].[r:C]/[r]g k Wrap).

Figure 11. Parameterized “No Effect”

the desired effect “try x; if that’s not enough, try y” into the
right order “wrap with x, then wrap the composite with y”.

Consider again the questions posed in section 5.3.1. By
reusing the NoErrors and CallerOk safety and progress prop-
erties, as shown in Figure 9, we confirm that errors are still
hidden from the caller role, and furthermore that the caller
will now make progress.

Finally, this example assumes no transmission dropouts
between the caller and the backup definer (BGlue will not
generate errors on its own). To eliminate the unrealistic
BGlue, we can replace it with an unreliable glue that has
been wrapped with the RetryAll wrapper (Figure 10).

7. Parameterizing for Reuse
The wrapper processes in the preceding examples are

hardcoded for the specific connector that they wrap. It is
preferable to write more generalized and reusable wrapper
processes via parameterization, so that they can be applied
in a different context to a different connector type. We now
see how to generalize the earlier examples to accomplish
this in a straightforward way, and apply the result to a dif-
ferent connector.

7.1. Revisiting “No Effect”
Figure 11 shows how generalization can be performed

for the simple “no effect” wrapper. To apply the wrapper to

set C = fcallerg
set COut = fcallg
set CIn = freturng
set CErr = ferrg
set L = fretryg
set CInit = fcallg
const T = 3
Retry = hide[e:CInit] ! Retry[0][e],

Retry[n:0..T][olde:COut] =
([r:C].[e:COut] ! [L].[r].[e] ! Retry[0][e]
j [L].[r:C].[e:CIn] ! [r].[e] ! Retry[0][olde]
j when (n<T) [L].[r:C].[e:CErr]

! [L].[r].[olde] ! Retry[n+1][olde]
j when (n==T) [L].[r:C].[e:CErr]

! [r].[e] ! Retry[0][olde])nfhideg.
kRetryRPC = (caller:Caller k definer:Definer

k Glue/f[L].[r:C]/[r]g k Retry).

Figure 12. Parameterized Retry)

a connector, we must fill in the italicized regions, defining
several global variables: the set C of “caller” roles, the set
COut of events that callers may initiate, the events CIn that
callers may receive, and a one-element set NewLabel con-
taining the label to tag the glue and the wrapper with. In the
Wrap process, values of variables are drawn from these sets
and are bound within a sequence.

For example in the first line of Wrap, for the first event,
any value of r drawn from C is acceptable, and any value of
e drawn from COut. In this application, each set has only
one element, so the only corresponding event is caller.call.
The next event in the sequence will prefix the [r].[e] event
(bound to caller.call) with a label drawn from the one-
element set NewLabel. The result is wrap.caller.call.

Similarly, in the composite process WrapPC, the re-
labelling of the Glue can be parameterized to ensure it
matches the labels used in the Wrap process; the label drawn
from NewLabel will be added to the beginning of each event
prefixed with any label in C. The final lines of the figure
show the pattern for the composite process of a wrapped
connector that uses this wrapper; the italicized roles should
be filled in with the names of the actual roles.

7.2. Revisiting “Retry”
Parameterization of the Retry wrapper, shown in Fig-

ure 12, is similar. This wrapper must remember which event
the caller attempted to transmit, so that that specific event
can be repeated. Note the set CInit, used to initialize the
cached event. Due to limitations of FSP syntax, a hidden
event is used to select an element of CInit to provide the
initial value for the second parameter of Retry[0..T][COut]
since non-numeric values cannot be expressed directly in
this circumstance. This value is not used unless an error is
received before the caller has sent an event (which cannot
happen in the example connectors shown here).

7

range M = 0..5
Client = (open ! Run),

Run = (request ! result[v:M] ! Run j hide ! Close),
Close = (close ! END) nfhideg.

Server = (open ! Run),
Run = (request ! hide[e:M] ! result[e] ! Run

j close ! END) nfhideg.
Glue = (client.open ! server.open ! Glue

j client.request ! server.request ! Glue
j server.result[v:M] ! client.result[v] ! Glue
j client.close ! server.close ! END).
j client.request ! client.err ! Glue
j client.close ! client.err ! Glue

kConn = (client:Client k server:Server k Glue).

Figure 13. Another Connector

set C = fclientg
set COut = fopen, request, closeg
set CIn = fresult[v:M]g
set CErr = ferrg
set L = fretryg
set CInit = fopeng
kRetryRPC = (client:Client k server:Server

k Glue/f[L].[r:C]/[r]g k Retry).

Figure 14. Applying Parameterized Retry

7.3. Applying to a New Connector
Figure 13 shows a new example connector. Here oper-

ation must begin with an open event, and end with a close
event. During normal operation the client makes requests,
and the server responds with a range of numeric values.
Only the server can choose the returned value, and only the
client can choose when to close. Timeouts may occur when
the client is attempting to send requests or to close the con-
nection. This connector will deadlock, since the client role
is not expecting an error. The deadlock is eliminated when
we apply the parameterized retry wrapper of Figure 12.

Figure 14 shows the elements that must be filled in to
apply the Figure 12 wrapper to the Figure 13 connector.

The Retry pattern can also be applied to connectors with
more than two roles, such as a client-server connector with
multiple client roles. However, if the glue process con-
strains the behavior of the role processes (perhaps by al-
lowing or disallowing nesting of calls), the wrapper process
must cooperate in enforcing this constraint. In the approach
we have been using this is achieved by patterning the wrap-
per on the results of exposing only a subset of events (those
engaged in by the roles that will be adjacent to the wrapper)
in the glue process, similar to the “no effect” wrapper.

7.4. Detecting Errors
Mistakes in the construction and application of param-

eterized wrappers can still be caught by the safety and

set C = fcallerg
set COut = fcallg
set CIn = freturn, errg
set CErr = ferrg
Caller = . . .
Definer = (call ! return ! Definer j crash ! END) nfcrashg.
Glue = (caller.call ! TryCall

j definer.return ! caller.return ! Glue),
TryCall = (definer.call ! Glue j caller.err ! Glue).

Backup = (call ! return ! Backup).
BGlue = (caller.call ! definer.call ! BGlue

j definer.return ! caller.return ! BGlue).
Failover = ([r:C].[e:COut] ! pri.[r].[e] ! Failover

j pri.[r:C].[e:CIn] ! [r].[e] ! Failover
j pri.[r:C].[CErr] ! bk.[r].call ! ToBk),

ToBk = ([r:C].[e:COut] ! bk.[r].[e] ! ToBk
j bk.[r:C].[e:CIn] ! [r].[e] ! ToBk).

kFailoverRPC = (caller:Caller k pri.definer:Definer k pri:Glue
k bk.definer:Backup k bk:BGlue k Failover).

Figure 15. Parameterized Failover

progress analyses described earlier. This becomes increas-
ingly useful as wrappers are composed and the specification
size increases.

For example, Figure 15 shows a plausible mistake in the
application of a parameterized Failover. The event err is
listed in the set of events that are acceptable as input to the
caller; this would allow some error events to be relayed to
the caller, at the whim of the Failover process. This mistake
is caught by the NoErrors property (used to check that the
wrapper does its intended job, as seen earlier in Figure 5),
no matter whether the caller process accepts err, as in Fig-
ure 3, or ignores err, as in Figure 7. Once diagnosed, the
problem can be resolved by removing err from CIn.

7.5. In Review
The initial examples of wrappers were hard-wired and

could only be used for one particular connector specifica-
tion. In implementation, this would correspond to particu-
lar pieces of code that could be applied in systems where a
particular connector implementation is used (such as a Java
RMI connector, an example of an RPC-style connector), but
could not be applied to some other arbitrary connector im-
plementation (such as a Unix pipe, or even a different im-
plementation of RPC).

Here in section 7 we have shown how to write parame-
terized wrappers that are applicable to, and reusable across,
multiple connector types. This generalization is straight-
forward to accomplish. The parameterized wrappers are
not difficult to apply to connector specifications. Further-
more, even if a mistake is made, it can be readily detected
(as shown in 7.4).

In implementation, this generalization into parameter-
ized wrapper patterns, which are then applied to particu-

8

lar connector types, could correspond to the use of a tool
or “wizard” that is prompted with a wrapper pattern plus a
small amount of information about a connector, This tool
would then generate an instance of a wrapper implemen-
tation suitable for that particular connector implementation
(which may be a CORBA connector, a Java Message Ser-
vice connector, etc.). We use this approach in [19].

8. Discussion

An important consideration when producing a formal
specification, or a family of formal specifications (as we
have proposed), is the resulting engineering properties of
the formal artifact. Our approach has two important proper-
ties: compositionality and traceability. Here composition-
ality refers to the ability to combine wrappers to create a
more complex composite wrapper, as in Figure 8. Trace-
ability refers to the ability to determine where something
“came from”, so that if a problem is discovered, its source
can be located in a particular section of the model, and the
corresponding affected section of the implementation can
be determined, and vice versa.

As we have demonstrated in the example of section 6,
this wrapper specification technique exhibits ease of com-
position. The effects of event redirection, insertion, replace-
ment, deletion, etc., are achieved by interposing a new pro-
cess, rather than by actually editing an existing process. As
a result composition of the wrappers is straightforward. To
apply an existing wrapper it is only necessary to classify
events into a small number of sets and to perform a renam-
ing on the glue. (It is naturally also easy to remove a wrap-
per.) If layers of enhancement were added instead by, for
example, performing directives that state how to mutate the
glue process into a monolithic enhanced glue process (such
as, after each event e of type T , add a new event f(e)),
either automatically or by hand, the result would become
increasingly difficult to modify further, and removal of an
arbitrary enhancement would not be straightforward.

Traceability between the protocol specification and the
implementation is promoted by the essential similarity of
their respective structures. When wrappers are actually im-
plemented, it is generally as a layer of enhancements inter-
posed between the component interface and the communi-
cation infrastructure; this interposition may be supported by
interceptors or system-level trickery, but in any case leaves
the component and the infrastructure essentially undigested
and unchanged. By using a similar wrapping technique in
the protocol specification, its structure remains similar to
the structure of the implementation (implementation wrap-
pers correspond to wrapper processes in the specification),
enabling the tracing of attributes from a substructure of one
to the corresponding substructure of the other.

It is worth noting that, while there are many contexts in
which wrappers must ideally achieve a transparent effect,
in other cases it is desirable for information available to one
wrapper to be exposed to a subsequent wrapper (when or-

dinarily this information would deliberately be concealed).
Often this can be achieved, without adversely impacting
any intervening wrappers, by using parameterization that
is already in place. For example9, consider a system with
three high-performance Definer components and one slow
but reliable Backup component. We apply the parameter-
ized Retry and Failover wrappers to each of three FaultyRPC
connectors. Now we wish to apply a new LoadBalancer
wrapper which, given a caller.call event, redirects it to one
of the three wrapped connectors and thus, ultimately, to ei-
ther the corresponding Definer or the single Backup com-
ponent. Clearly it would be wise to expose the failure of a
component to LoadBalancer so that it has the opportunity
to refrain from using it. This can be done by adding a tag
to [r].[e] in the Failover process, and extending the set CIn of
any wrappers between Failover and LoadBalancer to include
these tagged events.

Finally, one important question is, can this formalism
correspond to implementation as hinted at in section 7.5?
To what extent can it be related back to the “real world”?
To answer this question is beyond the scope of this paper,
but in other work [19], transformation patterns are encoded
as operations on stub generation tools. For example we have
shown how to create and apply transformation patterns that
are very similar to the kinds of wrappers described here.
Using the stub generation tools, implementations of these
transformations have been generated for Java RMI, a com-
monly used RPC-style connector implementation, and this
work has been extended to Java Message Service, an event-
style connector.

9. Conclusion
This work provides a formal framework for reasoning

about wrappers and their effect on interaction mechanisms
via protocol enhancement. We have illustrated the use
of this technique for dependability-oriented wrappers and
shown how compositionality is achieved, and how analyses
may be used to confirm desired attributes, such as whether
a wrapper preserves existing interfaces while also masking
communication errors. This approach allows practitioners
to break a complex modification into incremental, more eas-
ily understood parts, and reason about wrappers’ effects in
advance of their implementation.

More generally, this work also provides an example of a
formal abstraction or model that has a good engineering ba-
sis, providing not just a means of principled reasoning, but
one that also has an increased degree of compositionality,
checkability, traceability, and maintainability.

An additional contribution of this work is to demonstrate
usefulness of the Wright approach, which separates a con-
nector into interfaces and their interactions.

Several questions were posed in section 3. We have ad-
dressed a number of them, showing how to answer them for

9Thanks are due to an anonymous reader of an earlier draft who sug-
gested this scenario

9

at least the specific examples shown.
� Soundness: Given a connector and a wrapper, we

have shown how to construct a wrapped connector,
on which a model checker can be used to determine
whether the wrapper introduces new deadlocks.

� Transparency: The interfaces of a wrapped connector
can be checked to ensure conformance.

� Compositionality: We show how to compose several
types of wrappers and reason about that composition,
including determination of noncommutativity. Check-
ing other algebraic properties, such as idempotence
and inverses, can be addressed in a manner similar to
transparency conformance checks.

Work is ongoing to complete a set of genericized pro-
tocol transformation patterns comparable, and complemen-
tary, to the common patterns of connector implementation
enhancement described in other work [19]. The examples
given here illustrate the rudiments of the approach, giving
semantics for a subset of the enhancement patterns, and thus
supporting increased understanding of the results of their
application and composition. Our other wrapper specifi-
cations (not included here due to space) include compres-
sion, encryption, logging, authorization, and voting wrap-
pers, dynamic protocol selection and a limited set of proto-
col mismatch-repair wrappers.

10. Acknowledgments
This research has been supported by NSF under grant

CCR-0113810, and by DARPA under contract F30602-00-
2-0616. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of NSF, DARPA, or the U.S. government. We would
like to thank Philip Koopman, Mary Shaw, Jeannette Wing,
and the members of the ABLE group.

References

[1] R. Allen and D. Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, July 1997.

[2] R. DeLine. Resolving Packaging Mismatch. PhD thesis,
Carnegie Mellon, School of Computer Science, 1999. Issued
as CMU Technical Report CMU-CS-99-141.

[3] T. Fraser, L. Badger, and M. Feldman. Hardening COTS
software with generic software wrappers. In IEEE Sympo-
sium on Security and Privacy, pages 2–16, 1999.

[4] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match, or, why it’s hard to build systems out of existing
parts. In Proceedings of the 17th International Conference
on Software Engineering, Seattle, Washington, April 1995.

[5] W. L. Heimerdinger and C. B. Weinstock. A conceptual
framework for system fault tolerance. Technical Report
CMU/SEI-92-TR-33, Carnegie Mellon University, 1992.

[6] C. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[7] H. Hueni, R. E. Johnson, and R. Engel. A framework for net-
work protocol software. Proceedings of OOPSLA’95, pages
358–369, 1995.

[8] G. Hunt and D. Brubacher. Detours: Binary interception
of win32 functions. In Proceedings of the 3rd USENIX
Windows NT Symposium, pages 135–143, Seattle, WA, July
1999.

[9] M. R. Lyu. Software Fault Tolerance. John Wiley and Sons,
1995.

[10] J. Magee and J. Kramer. Concurrency: State Models and
Java Programs. John Wiley and Sons, 1999.

[11] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[12] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Ex-
ploiting the internet inter-ORB protocol interface to provide
CORBA with fault tolerance. In Proceedings of the 3rd
USENIX Conference on Object-Oriented Technologies and
Systems (COOTS). USENIX, 1997.

[13] S. W. O’Malley and L. L. Peterson. A dynamic network
architecture. ACM Transactions on Computer Systems,
10(2):110–143, May 1992.

[14] J. Pan, P. Koopman, D. Siewiorek, Y. Huang, R. Gruber,
and M. L. Jiang. Robustness testing and hardening of
CORBA ORB implementations. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks
(ICDSN/FTCS), pages 141–150, July 2001.

[15] J. Postel. Transmission control protocol. Technical report,
RFC-793, 1981.

[16] L. Sha, J. Goodenough, and B. Pollack. Simplex archi-
tecture: Meeting the challenges of using COTS in high-
reliability systems. Crosstalk, April 1998.

[17] M. Shaw. Procedure calls are the assembly language of sys-
tem interconnection: Connectors deserve first-class status.
In Proceedings of the Workshop on Studies of Software De-
sign, May 1993.

[18] M. Shaw. Architectural issues in software reuse: It’s not just
the functionality, it’s the packaging. In Proceedings of the
Symposium on Software Reuse (SSR’95), April 1995.

[19] B. Spitznagel and D. Garlan. A compositional approach for
constructing connectors. In The Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA’01), pages 148–157,
Royal Netherlands Academy of Arts and Sciences Amster-
dam, The Netherlands, August 2001.

[20] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and
D. Karr. Building adaptive systems using Ensemble. Tech-
nical report, Cornell/TR97-1638, 1997.

10

