
Submitted for publication.

Discovering Architectures from Running Systems using
Colored Petri Nets

Bradley Schmerl*, Jonathan Aldrich*, David Garlan*, Rick Kazman†, Hong Yan*

School of Computer Science,
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15221
(schmerl|aldrich|garlan|yh)@cs.cmu.edu

Software Engineering Institute
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15221
kazman@sei.cmu.edu

One of the challenging problems for software developers is guaranteeing
that a system as built is consistent with its architectural design. In this
paper we describe a technique that uses run time observations about an
executing system to construct an architectural view of the system. In this
technique we develop mappings that exploit regularities in system
implementation and architectural style. These mappings describe how
low-level system events can be interpreted as more abstract architectural
operations, and are formally defined using Colored Petri Nets. In this
paper we describe a system, called DiscoTect, that uses these mappings,
and we introduce the DiscoSTEP mapping language and its formal
definition in terms of Colored Petri Nets. Two case studies showing the
application of DiscoTect suggest that the tool is practical to apply to
legacy systems and can dynamically verify conformance to a pre-existing
architectural specification.

1 Introduction

A well-defined software architecture is critical for the success of complex software

systems. Such a definition provides a high-level view of a system in terms of its principal

runtime components (e.g., clients, servers, databases), their interactions (e.g., remote

procedure call, event multicast, piped streams), and their properties (e.g., throughputs,

latencies, reliabilities) [Bass03, Perry92, Shaw96]. As an abstract representation of a

system, an architecture permits many forms of high-level inspection and analysis,

allowing the architect to determine if a system’s design will satisfy its critical quality

attributes. Consequently, over the past decade, considerable research and development

 1

Submitted for publication.

has gone into the development of notations, tools, and methods to support architectural

design [Clements 03, Clements01, Medvidovic00].

However, despite considerable progress in developing an engineering basis for software

architecture, a persisting difficult problem is determining whether a system as

implemented has the architecture as designed. Without some form of consistency

guarantees, the validity of any architectural analysis will be suspect, at best, and

completely erroneous, at worst.

Currently two general techniques have been used to determine or enforce relationships

between a system’s software architecture and its implementation. The first is to ensure

consistency by construction. This can be done by embedding architectural constructs in

an implementation language (e.g., as described by Aldrich and colleagues [Aldrich02])

where program analysis tools can check for conformance. Or, it can be done through code

generation, using tools to create an implementation from a more abstract architectural

definition [Shaw95, Taylor96, Vestal96].

Ensuring consistency by construction is effective when it can be applied, since tools can

guarantee conformance. Unfortunately it has limited applicability. In particular, it can

usually be applied only in situations where engineers are required to use specific

architecture-based development tools, languages, and implementation strategies. For

systems that are composed of existing parts, or that require a style of architecture or

implementation outside those supported by generation tools, this approach does not

apply.

The second technique is to ensure conformance by extracting an architecture from a

system’s code, using static code analysis [Jackson99, Kazman99, Murphy95]. When an

 2

Submitted for publication.

implementation is sufficiently constrained so that modularization and coding patterns can

be identified with architectural elements, this technique can work well. Unfortunately,

however, the technique is limited by an inherent mismatch between static, code-based

structures (such as classes and packages), and the runtime structures that are the essence

of most architectural descriptions [Clements03, Garlan02]. In particular, the actual

runtime structures may not even be known until the program executes: clients and servers

may come and go dynamically; components (e.g., Dynamic Linked Libraries) not under

direct control of the implementers may be dynamically loaded; and so forth. Indeed,

determining the actual runtime architectural configuration of a system is, in general,

undecidable.

A third, relatively unexplored, technique is to determine the architecture of a system by

examining its runtime behavior. The key idea is that a system’s execution can be

monitored. Observations about its runtime behavior can then, in principal, be used to

infer its dynamic architecture. This approach has the advantage that it applies to any

system that can be monitored, it gives an accurate image of what is actually going on in

the real system, it can accommodate systems whose architecture changes dynamically,

and it imposes no a priori restrictions on system implementation or architectural style.

However, there are a number of hard technical challenges in making this technique work.

The most serious problem is finding mechanisms to bridge the abstraction gap: in

general, low-level system observations do not map directly to architectural constructs.

For example, the creation of an architectural connector might involve many low-level

steps, and those actions might be interleaved with many other architecturally relevant

actions. Moreover, there is likely no single architectural interpretation that will apply to

 3

Submitted for publication.

all systems: different systems will use different runtime patterns to achieve the same

architectural effect, and, conversely, there are many possible architectural elements to

which one might map the same low-level events.

In this paper, we describe a technique, based on a combination of state-based and

interaction-based modeling, to solve the problem of dynamic architectural discovery for a

large class of systems. The key idea is to provide a framework that allows one to map

implementation styles to architecture styles. This mapping is defined conceptually as a

Colored Petri Net [Jenson94] that are used at runtime to track the progress of the system

and output architectural events when predefined runtime patterns are recognized. Thus

the mapping provides a kind of behavior modeling, where it is used to identify just those

behaviors of a system that are “architecturally significant.” One of the important

additional features of the approach is the ability to reuse such mappings across different

systems. In particular, we exploit regularity in both implementation and architectural

styles so that a single mapping can serve as an architectural extractor for a large

collection of similar systems, thereby reducing the amortized cost of writing the

abstraction mappings, while still providing flexibility.

In the remainder of this paper, we describe the approach in detail, and describing the tool

called DiscoTect, that we have implemented. In Section 2, we discuss related work.

Section 3 presents the DiscoTect approach, including an overview of the DiscoTect

framework, and the DiscoSTEP language used for specifying mappings. We furthermore

present a formal semantics for DiscoSTEP that specifies the semantics in terms of

Colored Petri Nets. We clarify this with a simple example. In Section 4 we briefly discuss

 4

Submitted for publication.

the implementation of DiscoTect. Sections 5 and 6 describe case studies that show the

feasibility of DiscoTect. Finally, in Section 7 we present our conclusions.

2 Related Work

Our work is mostly related to other approaches for dynamic analysis of a system. A

number of techniques and tools have been developed to extract information from a

running system. These include instrumenting the source code to produce trace

information and manipulating runtime artifacts to get the information (e.g., as described

by Balzer and Goldman [Balzer99] and Wells and Pazandak [Wells01]). There are many

technologies available for monitoring systems, and we build on those. However, they do

not by themselves solve the hard problem of mapping from code to more abstract models.

In previous work, we developed an infra-structure doing certain kinds of abstraction

[Garlan03]. However, this approach was limited to observing properties of a system and

reflecting them in a pre-constructed architectural model. In this work, we show how to

create that model.

The work by Dias and Richardson [Dias03] uses an Extensible Markup Language

(XML)-based language to describe runtime events and use patterns to map these events

into high-level events. Analyzing these events to determine architectural structure is not

addressed. In addition, a simple static mapping from low-level system events to high-

level events has limited expressiveness. For example, it cannot handle the case where the

event analyzer initially has an interest in one set of events, but then changes its interest

after the initial events have occurred. Also it doesn’t provide a way of specifying event

correlations or mapping a series of correlated low-level events to a single high-level

event—a crucial capability needed when discovering the architecture of a system. Kaiser

 5

Submitted for publication.

and colleagues use a collection of temporal state machines to perform pattern matching

against runtime events [Kaiser03]. Our approach is similar, but it makes architectural

styles or patterns explicit.

A number of researchers have investigated the problem of presenting dynamic

information to an observer. For example, some researchers present information about

variables, threads, activations, object interactions, and so forth [Reiss03, Walker98,

Walker00, and Zeller01]. Ernst and colleagues show how to dynamically detect program

invariants by examining values computed during a program execution and by looking for

patterns and relationships among them [Ernst01]. This is somewhat different from

detecting architectural structure.

Madhav [Madhav96] describes a system that allows Ada 95 programs to be monitored

dynamically to check conformance to a Rapide architectural specification [Luckham96].

His approach requires the source code to be annotated so that it can be transformed to

produce events to construct the architecture. In contrast, our approach does not require

access to the source code, and it does not rely on explicit architectural construction

directives to be embedded in the code as does the approach used by Aldrich and

colleagues [Aldrich02].

A large body of research has investigated specification of the dynamic behavior of

software architectures. Of the many approaches, some use explicit state machines (e.g., as

described by Allen and Garlan [Allen94] and Vieira and colleagues [Vieira00]). These

approaches, however, do not link architecture to an executing system.

 6

Submitted for publication.

3 DiscoTect

3.1 Technical Challenges

Any approach that supports dynamic discovery of architectures must address three

challenges:

(1) Monitoring: observing a system’s runtime behavior,

(2) Mapping: interpreting that runtime behavior in terms of architecturally

meaningful events, and

(3) Architecture Building: representing the resulting architecture.

In this paper, we are primarily concerned with the second problem of bridging the

abstraction gap between system observations and architectural effects. There are a

number of issues that make this a hard problem. First, mappings between low-level

system observations and architectural events are not usually one-to-one. Many low-level

events may be completely irrelevant. More importantly, a given abstract event, such as

creating a new architectural connector, might involve many runtime events, such as

object creation and lookup, library calls to runtime infrastructure, initialization of data

structures, and so forth. Conversely, a single implementation event might represent a

series of architectural events. For example, executing a procedure call between two

objects might signal the creation of a new connector and its attachment to the runtime

ports of the respective architectural components. This implies the need for a technique

that can keep track of intermediate information about mappings to an architectural model.

Second, architecturally relevant actions are typically interleaved in an implementation.

For example, at a given moment, a system might be midway through creating several

 7

Submitted for publication.

components and their connectors. This implies that any attempt to recognize architectural

events must be able to cope with concurrent intermediate states.

Third, there is no single gold standard for indicating what implementation patterns

represent specific architectural events. Different implementations may choose different

techniques for creating the same abstract architectural element. Consider the number of

ways that one might implement pipes, for example. Indeed, one might even find multiple

implementation approaches in the same system. Moreover, for the purposes of

architectural discovery, there is no single architectural style or pattern that can be used

for all systems. For example, the use of sockets might be used to represent many different

types of connectors. Therefore, we need a flexible way to associate different

implementation styles with architectural styles.

3.2 The DiscoTect Approach

To address these concerns, we have adopted the approach illustrated in Figure 1. Events

captured from a running system are first filtered to select the subset of system

observations that must be considered. The resulting stream of events is then fed to the

DiscoTect Engine. The DiscoTect Engine takes in a specification of the mapping, written

in a language called DiscoSTEP (Discovering Structure Through Event Processing). The

DiscoTect engine constructs a Colored Petri Net from the mapping to recognize

interleaved patterns of runtime events and, when appropriate, to produce a set of

architectural operations as outputs. Those operations are then fed to an Architecture

Builder that incrementally creates an architectural model, which can then be displayed to

a user or processed by architecture analysis tools. We now elaborate each of the three

main components in turn:

 8

Submitted for publication.

Figure 1. The DiscoTect Architecture

Running
System

DiscoTect Engine

Arch
Builder

Architectural
Model

DiscoSTEP
Source Code

DiscoSTEP
Compiler

Probes

High-Level Events

Low-Level Events

1. DiscoSTEP Mapping Specification. We have developed a language, called

DiscoSTEP that allows the specification of mappings between low-level and

architecture events. The execution of these mappings is defined using Colored

Petri Nets – we provide a translation from DiscoSTEP mappings to Colored Petri

Nets. This translation is defined in 3.5.

2. DiscoTect Runtime Engine. The run-time engine takes, as inputs, events from

the running program and a DiscoSTEP specification and runs the DiscoSTEP

specification to produce architecture events. System runtime events are first

intercepted and converted into XML (Extensible Markup Language) [XML]

streams by Probes. The resulting stream of events is then fed to the DiscoTect

Runtime Engine which uses the DiscoSTEP specification to recognize interleaved

patterns of runtime events and, when appropriate, outputs a set of architectural

events.

 9

Submitted for publication.

3. Architecture Builder. The architecture builder takes architectural events and

incrementally constructs an architectural description, which can then be displayed

to a user or processed by other architecture analysis tools.

3.3 DiscoSTEP Language Requirements

To handle the variability of implementation strategies and possible architectural styles of

interest, we provide a language to define new mappings. Given a set of implementation

conventions (which we will refer to as an implementation style) and a vocabulary of

architectural element types and operations (which we refer to as an architectural style

[Allen96]), we create a description in a language called DiscoSTEP. This description

captures the way in which runtime events should be interpreted as operations on elements

of the architectural style. Thus each pair of implementation style and architectural style

must have its own mapping. However, a significant benefit of our approach is that these

mappings can be reused across programs that are implemented in the same style.

To dynamically discover architectures from running systems, DiscoTect needs to be

instructed how to interpret system-level runtime events so that it can generate

corresponding high-level events and eventually to reconstruct the architectures. Such

instructions are given by event mapping specifications written in our DiscoSTEP

language. The event processing language needs to address a number of concerns.

First, mappings between low-level system observations and architectural events are not

usually one-to-one. Many low-level events may be completely irrelevant to the

architecture discovery process. More importantly, a given abstract event, such as creating

a new architectural connector, might involve many runtime events, such as object

creation and lookup, library calls to some run time infrastructure, initialization of data

 10

Submitted for publication.

structures, etc. Conversely, a single implementation event might represent a series of

architectural events. For example, executing a procedure call between two objects might

signal the creation of a new connector, and its attachment to the run time ports of the

respective architectural components. This implies that a language providing a simple one-

to-one (event to event) mapping is not sufficient. Therefore, the language needs to allow

M-N mappings between events, and needs to be able to keep track of information from

one event so that the information can be used in subsequent stages to recognize

architectural events.

Second, architecturally relevant actions are typically interleaved in an implementation.

For example, at a given moment, a system might be midway through creating several

components and their connectors. This implies that any attempt to recognize architectural

events must be able to cope with concurrent intermediate states.

Third, given a set of implementation conventions and a vocabulary of architectural

element types and operations, we need to be able to provide a mapping specification that

captures the way in which runtime events following the implementation style should be

interpreted as operations on elements of the architectural style. In this way, we can build

a library containing mappings between implementation style and architectural style pairs.

A significant benefit for this is that these mappings can be reused across programs that

are implemented in the same style.

Fourth, complex systems often involve more than a single implementation style and

architectural style. This requires the event processing language to provide an easy way to

assemble code units each of which handles the mapping for a specific implementation

and architectural style pair.

 11

Submitted for publication.

3.4 Informal Introduction to DiscoSTEP

DiscoSTEP specifies how to map the system-level events to architectural-level events. To

discover the architecture of a system, a program written in the DiscoSTEP language is

compiled into byte code and fed to the DiscoTect engine. The DiscoTect engine

processes the runtime events generated by the running system and generates architectural

events on the fly. The architectural events can be further consumed by an architectural

builder to construct the architecture.

A DiscoSTEP specification has three main ingredients:

1. Events. To allow DiscoTect to be flexible with respect to the types of events it

can consume and produce, a DiscoSTEP specification imports XML Schema

definitions of events.

2. Rules. Rules specify how to map a series of system events into architectural

events.

3. Compositions. To complete a DiscoSTEP specification, compositions of rules are

defined that allow complex sequences of events to be constructed.

 In this section, we informally describe these three components. We then use a simple

example to illustrate how they form a language to instruct event handling.

3.4.1 Events

3.4.1.1 Representation

An event is a message that indicates something has happened. A running software system

involves many kinds of events including method calls, CPU utilization, network

 12

Submitted for publication.

bandwidth consumption, memory usage, and etc. We call those events runtime events.

Our system deploys probes to collect runtime events. A probe can be a program that

monitors the running system’s resource consumption, such like network, memory and

CPU utilization. It can also be code fragments injected into the target system using

certain tracing technique, for example AspectJ [Kiczales01], AspectC++ [Spinczyk02].

In addition to runtime events that provide us the forensics evidence for tracing and

profiling the running system, we define another type of events called architectural events.

Architectural events are generated by our discovery system based on reasoning about

runtime events. They are then consumed by an architecture builder to construct the

system architecture. In some sense, architecture discovery is a data mining process in

which a large number of runtime events are processed to generate architectural events

that outline the system.

Both runtime events and architectural events need to be represented in machine-readable

form. Instead of forcing event representation into a fixed format, we adopt XML to

specify events and use XML schema as the type system to check if an event has a valid

form/type. For example, the following XML schema defines events that indicate method

calls:

<element name="call">
 <complexType>
 <attribute name=”method_name” type=”string” />
 <attribute name=”callee_id” type=”string” />
 <attribute name=”return_id” type=”string” />
 </complexType>
</element>

Figure 2. Defining Event Schema for use in DiscoSTEP.

 13

Submitted for publication.

This XML schema specifies the format of a “call” event: A well-formed “call” event

should have the name “call” and can have all or part of the following attributes: the name

of the method, the object id (an unique identification assigned to an instance at runtime)

of the method callee, and the object id of the method return. Below is an example of a

“call” event:

<call method_name=”java.net.ServerSocket.accept”
 callee_id=”19efb05”
 return_id=”1d1acd3” />

Figure 3. An example “call” event.

By adopting XML we get the flexibility of customizing events, and by employing XML

schema as the type system, we obtain the capability of type checking events to make sure

they meet constraints specified by schema.

We reiterate that the structure of these events is not assumed by DiscoSTEP, but rather

are specified along with the DiscoSTEP mapping. Therefore, if it is important to the

mapping to know the calling object, this can be specified in the event and manipulated by

the DiscoSTEP specification. (Of course, the monitoring infrastructure used would need

to be able to provide enough information to form this event.)

3.4.1.2 Declaration and Import

From the language’s perspective, an event is a value of certain type and the type

corresponds to an element of an XML schema, such as “call” in the above example. We

declare events by binding an event variable with an event type (schema element). But

before that, we need to import the schema from a schema file. Suppose we define the

schema element “call” in a schema file “sys_event.xsd”, the following code segment in

 14

Submitted for publication.

our event processing language imports the schema and declare the variable $e as a “call”

event:

import <sys_event.xsd>
…
call $e;

Figure 4. Importing Event Specifications in DiscoSTEP.

3.4.1.3 Input and Output

Typically our event processing engine takes runtime events as input events and produce

architectural events as output events. For clarity, and for the purposes of checking the

correctness of a DiscoSTEP specification, input and output event types are explicitly

defined before they can be used to declare event variables. For example, the following

code block defines “call” as an input event type and defines “create_component” as an

output event type:

input {
 call;
 …
}
output {
 create_component;
 …
}

Figure 5. Specifying Input and Output Events to a DiscoSTEP rule.

3.4.2 Rules and Compositions

Rules are event handlers that decide what events should be processed and what the

handling strategies are. Rules are composed of inputs, outputs, triggers and actions. Input

and output blocks declare input events that this rule cares about and the output events that

this rule can possibly generate. Triggers are predicates over the input events; actions are

assignments to the output events. When a trigger returns true upon the arrival of input

 15

Submitted for publication.

events, the actions in the corresponding rule are activated to instantiate the output events.

Since events are represented in XML, we borrow a well-defined XML Query language

called XQuery [XQUERY] to describe triggers and actions.

Multiple rules can be assembled into a composition to handle event sequences. In a

composition, rules are connected to each other by a set of input/output bindings.

DiscoTect provides two forms of binding, directional and bidirectional (denoted as -> and

<-> in the concrete syntax). The purpose of a bidirectional binding is to allow rules to fire

on inputs without consuming the event (the event is implicitly reproduced as an output).

This allows, for example, a rule for recognizing ports to generate multiple ports for the

same component. Bidirectional bindings are shorthand for two directional bindings.

 Section 3.4.4 provides concrete examples of rules and compositions.

3.4.3 Informal Runtime Semantics

Informally, DiscoTect runs DiscoSTEP specifications in the following sequence:

1. If an event is received by DiscoTect, associate those events with any rules that

may accept that type of event.

2. For any rule that has a value for each of its inputs, evaluate the trigger.

3. If a trigger matches for a set of input events, execute the action with that set of

events.

4. For output events that are composed with other rules, send the event as an input to

that rule. For output events that are not composed with other rules, emit them

from DiscoTect.

For each rule, an input event can be considered to be a set of events that match that type.

Triggers match up events to be used in the rules. Formally, we model events as colored

 16

Submitted for publication.

tokens (where the color is given by the type), and each rule as a transition. For each

event, a token is generated and put in the corresponding place before a transition. Rules

consume tokens and put them in places after transitions. We discuss this formal definition

in Section 3.5.

3.4.4 An Example DiscoSTEP Specification

To illustrate the concept of events and the use of rules and compositions, we now profile

a simple program written in Java. In doing so we illustrate how to specify events using

DiscoSTEP, and how DiscoTect uses this specification to generate an architectural

description. The example is a simple system that implements a chat server. The chat

server creates a server socket and announces its intention to accept connections. When a

client connects to the waiting server, a new thread (of the type ClientThread) is started,

which forwards all messages from that client to all connected clients. The source code for

this application is presented in Figure 15 of the Appendix.

While this system is extremely simple, it allows us to illustrate the concepts of

DiscoSTEP. In later sections we will describe more complex case studies. In the

remainder of this section, we will specify how we instrumented this system, describe its

DiscoSTEP specification, and discuss how DiscoTect processes this specification to

produce an architectural description.

The architectural description for this system is based on a simple client-server style.

Informally, it is constructed as follows: when the server is created in the program, this

maps to a server type component in the architecture; ClientThreads map to client

components, and the socket connection maps to an architectural connector between each

client and server.

 17

Submitted for publication.

3.4.4.1 Instrumentation

The act of instrumenting a system to produce runtime events is not a novel aspect of

DiscoTect. In fact, where possible, we use off-the-shelf technologies to instrument the

system. In the Java-based systems that we have studied, we have used AspectJ to define

instrumentation aspects that are weaved into the compiled bytecode of the Java programs.

These aspects emit events when methods of interest are entered or exited, and when

objects are constructed.

The aspects can reflectively retrieve information about the runtime environment of, for

example, a call, to ascertain the calling object, the instance of the object that was called,

the argument values and types that were passed to the method, the method signature, etc.

The aspects are written to emit XML elements that conform to a schema expected by

DiscoTect. For example, to instrument the ChatServer, we weaved in aspects to emit

events when methods were called and when objects were constructed.

3.4.4.2 Runtime Events

Two types of runtime events were collected from this running system: call events and init

events. A call event is reported when a method is invoked. Similarly, an object

instantiation produces an init event. Take the following two events for example:

 <init constructor_name=”ServerSocket” instance_id=”10”>

 <call method_name=”ServerSocket.accept”
 callee_id=”10” return_id=”11” />

An init event is generated when

 ServerSocket ss = new ServerSocket(1111)

 18

Submitted for publication.

is executed; a call event is triggered by an execution of a method call. For example, the

call event above is emitted by the following statement execution.

 Socket socket = ss.accept()

Because multiple ClientThreads can run concurrently, some of the runtime events, such

as InputStream.read and OutputStream.write, show up in random order and hence

may be interleaved with each other.

A fuller trace of the events that we retrieved when running the program is available in

Appendix A. These events can be fed into DiscoTect either in real time or off-line, after

the program has completed running.

3.4.4.3 DiscoSTEP Program

A DiscoSTEP program that specifies how to handle the interleaved events between the

client and the server was specified to formally capture how to map system events into

architectural events. The full DiscoSTEP program for this example is given in Appendix

B; in this section we discuss some of the rules and how these are combined with the event

trace to produce the architecture. DiscoTect takes the runtime events from the ChatServer

to produce architectural events that construct a Client Server style representation of the

system.

Figure 6 shows a fragment of a DiscoSTEP program that includes two rules, and how

they are composed. The CreateServer rule constructs and architecture Server component.

It takes the input event under inspection to be an init event named $e. The output events

include the string event $server_id and the create_component event

$create_server. The condition for triggering this rule is that the constructor_name

attribute of $e contains the string “ServerSocket”. If the rule is triggered, the following

 19

Submitted for publication.

action is taken: $server_id is assigned the id of the object constructed in the init event,

and an architecture event that constructs a server component named with the id of the

newly created instances is assigned to $create_server.

Figure 6rule CreateServer {
 input { init $e; }
 output { string $server_id; create_component $create_server; }
 trigger {? contains($e/@constructor_name, “ServerSocket”) ?}
 action = {?
 let $server_id := $e/@instance_id;
 let $create_server :=
 <create_component name=”{$server_id}”
 type=”ServerT” />;
 }
}
rule ConnectClient {
 input { call $e; string $server_id; }
 output {
 create_component $create_client;
 create_connector $create_cs_connection;
 string $client_id;
 }
 trigger {?
 contains($e/@method_name, “ServerSocket.accept”)
 and $e/@callee_id = $server_id
 ?}
 action = {?
 let $client_id := $e/@return_id;
 let $create_client :=
 <create_client name=”{$client_id}” type=”ClientT” />;
 let $create_cs_connection :=
 <create_connector name=concat($client_id,”-“,$server_id)
 type=”CSConnectorT”
 end1=”{$server_id}” end2=”{$client_id}” />;
 ?}
}
composition {
 CreateServer.$server_id -> ConnectClient.$server_id;
 …
}

Figure 6. The DiscoSTEP rule to create a Server component.

 20

Submitted for publication.

The $server_id output from the CreateServer rule is fed to the ConnectClient rule,

which has two inputs: $e and $server_id. Once the these inputs are received by

ConnectClient, the trigger will check to see if any call events are calls to

ServerSocket.accept. If so, output events $client_id, $create_client and

$create_cs_connection are assigned appropriate values to construct both client

component and the connector connecting it with the previously created server component.

Instead of being specific to this particular ChatServer program, our client server event

processing program is generic enough to be applicable to any client server applications

implemented with the same style (with, at the most, some minor changes in the triggers).

Both the compositions and the rules are well encapsulated. Rules are self-contained

specifications, communicating with each other via inputs and outputs; compositions

function as glue that assemble the rules. We can reuse compositions by applying them to

a different system, and reuse rules by assembling them with a different composition (and

adding new rules if necessary).

3.4.5 Satisfying the Requirements

In this section we revisit the requirements for DiscoSTEP that we introduced in Section

3.3 and discuss how DiscoSTEP meets these requirements.

- Allow M-N mappings between events. Since a DiscoSTEP rule can have an

arbitrary number of inputs and outputs, this requirement is simply met by

DiscoSTEP.

- Keep track of information for use in subsequent stages. Input events and output

events are essentially data structures that can be passed from one rule to the next.

 21

Submitted for publication.

These data structures are used to store and accumulate information that can be

passed between rules. Compositions define how this state is passed between rules.

- Cope with concurrent states. The informal execution semantics defined in Section

3.4.3 describe how input events are propagated to each rule that can accept an

event of that type. In this way, these events can start multiple execution threads for

rules to cope with concurrent states. A rule will wait until it gets a set of input

events that match a trigger before firing. In this way, interleaved threads of

“conversation” can be disentangled.

- Allow the assembly of code unit. Though not described in detail in this paper, the

abstract syntax of DiscoSTEP specifies that a composition itself may have input

and output events, as well as subcompositions. In this way, compositions can be

combined hierarchically to form more complex mappings. So, for example, it is

possible to take a composition that identifies mapping between the usage of files

in a system to a data repository architectural style, and combine that with a

mapping that recognizes the construction of a pipe-filter architecture to define the

mapping for a pipe-filter system that retrieves and stores data in files.

In toto, meeting the above requirements means that DiscoSTEP meets the final

requirement: to provide a mapping specification that captures the way in which runtime

events following the implementation style should be interpreted as operations on

elements of the architectural style. This requirement is met by specifying a DiscoSTEP

mapping.

 22

Submitted for publication.

3.5 Formal Definition of DiscoSTEP

To define the execution semantics of a DiscoSTEP program, and to formally explain how

the mappings are interpreted, we use Colored Petri Nets [Jenson94]. In [Yan04] we

informally described the semantics of DiscoTect mappings in terms of state machines.

However, this semantics was awkward because of the need to retain multiple active states

in the state machine in order to model the concurrency in the model. We believe that

Colored Petri Nets are the most appropriate formalism for describing the semantics of

DiscoSTEP mappings because their tokens provide a rich way of representing the

concurrent states of the system.

In this section we formally describe the DiscoSTEP language. We begin by describing an

abstract syntax of DiscoSTEP, which is suitable for formal specifications and proofs,

followed by typechecking rules that ensure a DiscoSTEP program is meaningful. We

then describe DiscoSTEP’s semantics through rewriting rules that transform a

DiscoSTEP program into a Colored Petri Net.

3.5.1 DiscoSTEP Abstract Syntax

The concrete syntax for DiscoSTEP, which we have been using up to this point, is given

in Figure 17 of Appendix A. Although this syntax is easily readable, its lack of structure

makes it poorly suited for formal analysis, including rules for defining DiscoSTEP’s type

system and semantics. Therefore, we describe an Abstract Syntax for DisocSTEP that is

more amenable to formal specifications.

Conceptually, a DiscoSTEP program is a 3-tuple (Tin, Tout, Cmain). Here, Tin and Tout

represent the sets of input and output events declared in the input and output clauses of a

DiscoSTEP program. Without loss of generality, we assume that a DiscoSTEP program

 23

Submitted for publication.

is made up of one top-level component Cmain. We further decompose component

declarations C into rules, as follows:

- A composition C is a tuple:

 o iC = (c, R, C', (v , v))

where c is a name uniquely identifying the composition in the program. We

represent a sequence with an overbar, so that 1R = R ...Rn is the set of rules

defining the behavior of C; C' is the set of sub-compositions of C; and

o i(v ,v) is a set of connections, each of which connects an output variable vo

of some rule ∈jR R and some input variable vi of some rule ∈kR R .

- A rule R is a tuple:

 in in out out in out inR = (r, (v , t), (v , t), pred(v), (v , exp(v)))

where r is a name uniquely identifying the rule in the program; inv and outv

are input and output variables of the rule; ∈in int T and ∈out outt T are the type

of the input and output variables inv and outv , respectively; inpred(v) is an

XQuery predicate that may only use variables from the set of input variables,

and out in(v , exp(v)) is an assignment of XQuery expressions over the set of

input variables inv to the output variables outv .

We do not directly model the semantics of XQuery, as they are defined elsewhere

[W3C04]. We also assume that all variable and rule names are globally unique.

 24

Submitted for publication.

3.5.2 Type Checking

Not every DiscoSTEP program allowed by the syntax in the previous section makes

sense. For example, one could write a composition that connects an output of a certain

type to an input of a different type without breaking the syntax. We use a set of

typechecking rules to ensure that a DiscoSTEP program is well-typed. A well-typed

DiscoSTEP program has sensible runtime behavior.

Figure 7 shows the typechecking rules for DiscoSTEP, presented in a form that is

standard in the programming language literature. Most of the rules have one or more

premises, written above the line; if all of these are valid, then we can conclude that the

conclusion, written below the line, holds.

Figure 7. The full set of type inference rules for DiscoSTEP.

 ok ok ok
T-COMP

 ok
R C R C 1 2

R C 1 2

Γ R Γ C' Γ ,Γ (v , v)
Γ ,Γ (c,R, C', (v , v))

├ ├ ├

├

×

T-RULEin in out out in in out

in in out out in out in in out

Γ =v : t , v : t Γ pred(v) : bool Γ exp(v):t

Γ (r, (v , t), (v , t), pred(v), (v , exp(v))) : T T

├ ├

├

1 2

1 2

v :T Γ v :T Γ
T-CONN

Γ (v , v) ok
∈ ∈

├

The premises and conclusions are judgments of the form Γ stating that a

composition C is well-formed given a list Γ mapping variables in scope to their types

(and similar for rules R and connections (v1,v2)).

 C ok├

The first rule states that a connection between variables v1 and v2 is ok if the typing

assumptions Γ tell us that they have the same type T. Thus this rule would prohibit ill-

formed connections as described above.

 25

Submitted for publication.

The second rule states that a rule R is ok if we compute a set of typing assumptions Γ

from the types of the input and output variables, and if using those assumptions we can

use XQuery’s type system to conclude that the predicate expression has a boolean type

and that the output expression for each output variable vout has the type tout of that

variable. We do not model XQuery’s type system directly, as this is defined elsewhere,

but we assume the presence of a judgment form Γ stating that XQuery

expression e has type T given assumptions Γ [W3C04].

 e : T├

A CP-net is a tuple CPN = (Σ, P, T, A, N, Col, G, E, I) where:
(i) Σ is a finite set of non-empty types, also called color sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:

• P ∩ T = P ∩ A = T ∩ A = Ø.
(v) N is a node function. It is defined from A into P × T ∪ T × P.
(vi) Col is a color function. It is defined from P into Σ.
(vii) G is a guard function. It is defined from T into expressions such that:

• ∀t ∈ T: [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ].
(viii) E is an arc expression function. It is defined from A into expressions such
that:

• ∀a ∈ A: [Type(E(a)) = Col(p) ∧ Type(Var(E(a))) ⊆ Σ]
where p is the place of N(a).
(ix) I is an initialization function. It is defined from P into closed expressions
such that:

• ∀p ∈ P: [Type(I(p)) = Col(p)].

Figure 8. The definition of Colored Petri Nets, from [Jensen94].

The final rule states that a composition is ok if all of its constituent rules, sub-

compositions, and connections are ok. The connections are typechecked using the

combined typing assumptions of all the constituent rules and sub-compositions, since in

fact the connections might reference any variables in those parts.

 26

Submitted for publication.

3.5.3 Translational Semantics of the DiscoSTEP

According to [Jensen 94], a CP-net has the definition presented in Figure 8. The

translation semantics of the DiscoSTEP language define how to convert a DiscoSTEP

program into a CP-net.

Figure 9 gives the full set of translational semantics for mapping between DiscoSTEP

and a CP-net, given as a set of functions from a piece of DiscoSTEP syntax to one of the

elements of the CP-net. The rules may be applied recursively to form the corresponding

sets in the CP-net definition. For example, the first rule in

Figure 9 gives instructions on how to form the set T of types in a CP-net. If the function

is applied to a DiscoSTEP rule, then it is the union of all types used in the rule. If it is

applied to a composition, then it returns the union of the sets of types that result from

applying the function recursively to all the rules and sub-compositions defined in the

composition. Thus, for rule CreateServer in Figure 6 the function

GetType(CreateServer) returns the colors init, create_server, and string.

Two pieces of notation are used in the rules. First, the notation � 1 2[v v] e means, for

each pair (v1, v2), choose one as a canonical representative for the pair and replace the

other with the canonical representative in e. This unification is used in the getPlace rule

and others to ensure that only one place is created for each connected pair of variables in

the source text. Second, to construct the names of arcs in the CP-net, we concatenate the

name of a rule and a variable together with the :: operator, as in vin::r.

 27

Submitted for publication.

Taken together, the CP-net for a given composition in outC = (c,R, C', (v , v)) is formed

using the following translation rule:

Figure 9. The Translational Functions for Mapping between DiscoSTEP and CP-net.

∅ ∅∪

� ∪ �

in in out out in out in in out

1 2 1 2 1 2

fun GetInit(r, (v , t), (v , t), pred(v), (v , exp(v))) = (v ,) (v ,)

| GetInit(c, R, C', (v , v)) = [v v]GetInit(R) [v v]GetInit(C')

� ∪ �

in in out out in out in out in

1 2 1 2 1 2

fun GetAction(r, (v , t), (v , t), pred(v), (v , exp(v))) = (r :: v , exp(v))

| GetAction(c, R, C', (v , v)) = [v v]GetAction(R) [v v]GetAction(C')

� ∪ �

in in out out in out in in

1 2 1 2 1 2

fun GetGuard(r, (v , t), (v , t), pred(v), (v , exp(v))) = (r, pred(v))

| GetGuard(c, R, C', (v , v)) = [v v]GetGuard(R) [v v]GetGuard(C')

∪

� ∪ �

in in out out in out in in out

1 2 1 2 1 2

fun GetColor(r, (v , t), (v , t), pred(v), (v , exp(v))) = (v , t) (v , t)

| GetColor(c, R, C', (v , v)) = [v v]GetColor(R) [v v]GetColor(C')

∪

� ∪ �

in in out out in out in

in in out out

1 2 1 2 1 2

fun GetNode(r, (v , t), (v , t), pred(v), (v , exp(v))) =

(v :: r, (v , r)) (r :: v , (r, v))

| GetNode(c,R, C', (v , v)) = [v v]GetNode(R) [v v]GetNode(C')

∪

� ∪ �

in in out out in out in in outfunGetArc(r, (v , t), (v , t),pred(v), (v , exp(v)))=v ::r r::v

1 2 1 2 1 2| GetArc(c,R, C', (v , v)) = [v v]GetArc(R) [v v]GetArc(C')

∪

� ∪ �

in in out out in out in in out

1 2 1 2 1 2

funGetPlace(r,(v , t),(v , t),pred(v),(v , exp(v)))=v v

|GetPlace(c,R,C', (v , v))=[v v]GetPlace(R) [v v]GetPlace(C')

∪
in in out out in out in

1 2

funGetTransition(r, (v , t), (v , t),pred(v),(v , exp(v)))=r

|GetTranstion(c,R,C', (v , v))=GetTransition(R) GetTransition(C')

∪

∪
in in out out in out in in out

1 2

fun GetType(r, (v , t), (v , t), pred(v), (v , exp(v))) = t t

| GetType(c, R, C', (v , v)) = GetType(R) GetType(C')

P=GetPlace(C) T=GetTransition(C)
A=GetArc(C) N=GetNode(C) Col=GetColor(C)
G=GetGuard(C) E=GetAction(C) I=GetInit(C)

C (, P, T, A, N, Col, G, E, I)

Σ = GetType(C), ,
, ,

, ,
Σ6

translation is done.

 28

Submitted for publication.

3.5.4 Formally Modeling the Example

The ChatServer DiscoSTEP program uses the following types: string, init, call,

create_component, create_connector, and update_component. By applying

GetType, we obtain can derive the color sets for the CP-net as:

Σ = {string, init, call, create_component,

create_connector, update_component }.

The next step is to obtain the set of transitions for the CP-net. By applying

GetTransition, the six rules are translated into six corresponding CP-net transitions:

T = {CreateServer, ConnectClient, ClientIO,

ClientRead, ClientWrite, UpdateServer}

C
lie

n
tI

O

$server_id

C
lie

n
tR

ea
d

$client_id

C
o
n
n
ec

tC
lie

n
t

C
re

at
eS

er
ve

r

C
lie

n
tW

ri
te

U
p
d
at

eS
er

ve
r

$e

$e

$e

$e

$create server

$create_cs_connector

$create_client
$update_client

$update_client

$update_server

Figure 10. CP-net Places, Arcs and Node functions translated from inputs and outputs.

$e

$activity_type

By applying GetPlace, GetArc, and GetNode, the inputs and outputs are translated into

CP-net places, arcs and node functions. Using GetGuard and GetAction, the triggers

and actions are translated into CP-net guards defined from transitions into predicates, and

arc expressions defined from arcs to XQuery expressions.

 29

Submitted for publication.

Figure 10 shows the resulting net. Note that the backward arcs from, for example, the

ClientRead transition to the $client_id place are formed through the unification process

described above, because the $client_id output of ConnectClient is bound to the inputs

of more than one rule (ClientIO, ClientRead, and ClientWrite).

4 Implementation of DiscoTect

Recall from Section 3 that to provide a general framework for discovering architectures,

we need to solve three challenges. In this section, we discuss our implementation for each

of these challenges.

Monitoring: We use various existing probing technologies to extract monitoring events.

In this section, we will illustrate the use of AspectJ [Kiczales01], to handle low-level

monitoring of object creation, method invocation, etc. We provide a library that allows

aspects to produce system events formatted as XML strings which are placed on a JMS

event bus to be consumed by DiscoTect.

Mapping: The implementation of the DiscoTect Engine follows the design in Section 4.

During initialization, the Engine parses the DiscoSTEP definition and activates the

transitions. Then it keeps scanning the event stream sent from the probes, producing

colored tokens for each event. A token is placed in the corresponding place that can

accept that color. Once there is a token at each of the input places of a transition, the

guard for that transition is evaluated. If a guard condition is satisfied, the actions for that

transition are evaluated and the corresponding tokens placed on the output places of the

transition.

Architecture Building: We represent architectures using the Acme architecture

description language [Garlan00] (although we are not restricted to this language; in

 30

Submitted for publication.

principle any architecture description language could serve in this capacity). Operations

on Acme architectures are defined in a library that provides operations that form building

blocks of architectural actions. To connect to our existing architectural tools, DiscoTect

produces architectural events formatted as XML strings that are forwarded by the

AcmeStudio Remote Control plugin, communicating over Java RMI, to incrementally

construct the architecture. AcmeStudio [Schmerl04] is an architecture development

environment that is primarily used for constructing architectures at design time. The

analysis capabilities of AcmeStudio can then be used to check the architecture with

respect to its style, or conduct analyses such as performance or schedulability.

5 AAMS Case Study

In this section we present a case study to determine the run time architecture of AAMS, a

simulation test-bed for experimenting with mobile system architectural design decisions

[Kazman03]. The test-bed allows users to specify usable system resources, tasks and

scheduling strategies, and simulates the running of the mobile system. We chose AAMS

because it represents a fairly complex real world application (approximately 28KLOC),

and the runtime architectural view of the system is well documented. This allows us to

compare our discovery result with their documentation. This comparison illustrates the

use of applying our technique to discover deviations between the architecture discovered

by DiscoTect and the documented design architecture of AAMS. Furthermore, we can

use this case study to illustrate how we developed and refined the state machines to

produce the final architecture.

 31

Submitted for publication.

Figure 11 shows the (informal) runtime architecture of AAMS as presented in [Kazman

03]; the following description of the runtime is also based on the description in this paper.

The Simulation Controller forms a simulation from a description of resources and tasks,

their configuration, user activities and events, and information that it reads from a set of

configuration and script files. The Simulation Controller also takes commands from the

Simulation GUI, to control runtime parameters and feedback. It then processes each

simulation frame to generate the actual performance of the system. Each component in

the application and resource layers simulates its own operation. A set of services for File

Task

Script File

Resource
Simulation
Controller

Simulation
ControllerGUI

event event

Application

Executive

Action Component
Monitor

Logging

Error
Reporting

Publish/
Subscribe

Simulation Support
Component Event Local

Legend:

USER Envit Scheduler

Task Task Task

Network MEM CPU

Resource

File

Figure 11. Documented runtime view of AAMS

 32

Submitted for publication.

I/O, Error Reporting and Logging are available via publish/subscribe to any simulated

object.

5.1 Design of AAMS DiscoSTEP program

In this section we present the steps taken to produce the DiscoSTEP program to discover

the AAMS architecture model. Typically, writing these programs is a process of starting

with fairly generic rules to discover components and connections, and then refining these

rules to produce architectures corresponding to a particular style. For this case study we

used a specialization of a publish/subscribe style that distinguishes participating

components as tasks, resources, etc. These extra component types are based on the

description of AAMS found in [Kazman03].

To develop the final DiscoSTEP program, we first produced rules that merely observed

object creation and interaction (through procedure calls). We then refined this set of rules

to classify objects into their architectural counterparts (e.g., Resource, Task, etc.).

Up to this point, we had not discovered anything about the publish/subscribe part of the

architecture. The preliminary discovery results informed us that all the resource and task

components interact with an object of the PubSub class using two procedure calls named

publish and subscribe. We conjectured that the system implements publish/subscribe by

creating a PubSub object and invoking its two methods. This led us to design a state

machine for this portion of the architecture. This state machine creates an EventBus

connector when it notices the instantiation of a PubSub object in the implementation.

Once this has been done, an EventTaker role is created when DiscoTect notices a call to

the publish method of the PubSub object, and a Publish port on the component

corresponding to the call, and attaches them. Similarly PubSub.subscribe leads to the

 33

Submitted for publication.

creation of an EventSender role on the EventBus providing the method, the creation of a

Subscribe port in the component requesting the method, and the creation of the

attachment.

5.2 The Discovered Architecture

Applying the above state machine to a running instance of AAMS yields the architectural

model in Figure 12. (We have laid out this model to enable easier comparison with the

view in Figure 11.) By comparison with Figure 11, we uncovered four types of

discrepancies between the documented architectural view and our discovered one.

1. Isolated, extraneous components/connectors. The result shows two EventBus

connectors, one of which is isolated from the other parts of the system. It indicates

that one instance is instantiated but never used. Code optimization should resolve

this discrepancy.

2. Additional connections between components. Figure 12 does not show any

connections between the controller component and simulation components such as

tasks and schedulers. Nor does it inform us that some of the support components

(Logger and Reporting) also subscribe to the event bus. Ignoring those “backdoor”

connections makes the architectural view less accurate; moreover, it might

compromise architectural analysis where all meaningful interactions between

components should be considered. For example, in evaluating the performance of a

publish/subscribe infrastructure, the existence of hidden communication channels

could invalidate deadlock analysis.

3. Misplaced connections between components. The discovered architecture shows a

very different File I/O scheme: instead of the GUI reading three files (c.f. Figure

 34

Submitted for publication.

Figure 12. The Discovered Architecture of AAMS.

11), the controller reads two files. This discrepancy could cause errors during

evolution if the AAMS system was to work in a distributed environment. The

evolution might require that the file reading components run on the same computer

as that containing the files. The documented architecture would suggest that

Simulator GUI is the component that should stay with the files, when in fact it is

the Controller component according to the implementation.

4. Missing components/connectors. Two of the components (USER and Environment)

recorded in the document do not show up in the architecture.

To confirm that DiscoTect discovered the actual architecture of the implementation, and

to understand the discrepancies, we conferred with the AAMS developers. They agreed

that DiscoTect produced a more complete and correct architectural description than their

diagram, and had uncovered some errors in their coding. However, the missing USER

 35

Submitted for publication.

Bean Container

TxBean

Bean
Communication

Db Access

Session Beans Entity Beans

Account
Bean

Session
Bean Entity Bean

Legend

AccountContoller
Bean

Database
Bean Container

Customer
Bean

CustomerContoller
Bean

TxContoller
Bean

Database

Figure 13. Documented architectural view of Duke’s Bank Application

and Environment components are due to the fact that these represent user interaction, and

are not actual components in the implementation.

6 EJB Case Study

In this section we present a second case study to determine the run-time architecture of

the Duke’s Bank Application – a simple EJB (Enterprise JavaBeans) banking application

created by Sun Microsystems as a demonstration of EJB functionality. Duke’s Bank

allows bank customers to access their account information and transfer balances from one

account to another. It also provides an administration interface for managing customers

and accounts. We use this case study to demonstrate how the architecture of an EJB

application can be discovered using DiscoTect. We chose this system because its

architecture is well documented in Sun Microsystems’ J2EE (Java2 Platform, Enterprise

 36

Submitted for publication.

Edition) tutorial [J2EE], which enables us to compare the actual discovered architecture

with the one presented in the documentation.

We wrote an aspect which injected advice to object instantiations, method calls and field

modifications. We compiled the Duke’s Bank application along with the aspect, using an

AspectJ compiler instead of Sun’s javac, so that system execution events were traced as

the application ran.

Figure 13 gives a high-level view of how the components interact in the Duke’s Bank

system as presented in [J2EE]. The EJB application has three session beans:

AccountControllerBean, CustomerControllerBean, and TxControllerBean (Tx stands for

a business transaction, such as transferring funds). These session beans provide a client's

view of the application's business logic. For each business entity represented in the

simplified banking model, the application has a matching entity bean: AccountBean,

CustomerBean, and TxBean. The business methods of the AccountControllerBean

session bean manage the account-customer relationship and get the account information

using AccountBean and CustomerBean entity beans. CustomerControllerBean provides

methods for creating, removing and updating customers through CustomerBean entity

beans. The TxControllerBean session bean handles bank transactions. It accesses

AccountBean entity beans to verify the account type and to set the new balance, and

accesses TxBean to keep records of the transactions.

6.1 Design of the EJB State Machine

In this section we present the steps taken to produce the DiscoTect state machine to

discover the Duke’s Bank architecture. For this case study we used a specialization of an

EJB style that distinguishes participating components as entity beans, session beans, bean

 37

Submitted for publication.

containers, database etc. These component types are based on the EJB specification found

in [EJB].

As we did in the previous case study, we first produced primitive rules that merely

observed object interaction and creation (through procedure calls and object

instantiations). We then refined these rules to classify objects into their architectural

counterparts (e.g., Beans, Bean Containers, Database etc.) by checking the class

constructor names. For example, we created a SessionContainer object when its

constructor had the name of “SessionContainer”. The relationships between the beans,

the bean containers and the database were captured in the following way: according to the

EJB specification, the beans are maintained by their corresponding containers, so we

connected the beans with the containers controlling them by observing the procedure

calls made by the containers to manage the life cycles of the beans; knowing that

database access was implemented using JDBC (Java Database Connectivity) [JDBC], we

monitored the standard JDBC APIs to uncover the connections between the beans and the

database; the interactions between the beans were also monitored and represented as

connectors linking them together.

6.2 The Discovered Architecture

Applying the state machine just described to a running instance of Duke’s Bank yields

the architectural model in Figure 10. We have organized the layout this model for better

comprehensibility. We can make the following observations based on this process.

 38

Submitted for publication.

Figure 14. Discovered architecture of Duke’s Bank

1. Reflection of runtime instances. Besides showing the bean and the containers, the

discovered result also details each bean and container instance created at runtime.

The capacity of tracing the individual bean and container instances is useful for

further performance analysis and fault diagnosis. In addition the relatively complex

m to n relationships between beans and bean containers are revealed.

2. Verification of Bean Interplay. The interactions between the beans shown in Figure

14 are consistent with those described in the architecture shown in Figure 13: there

are communication channels between AccountControllerBean and AccountBean,

AccountControllerBean and CustomerBean, CustomerControllerBean and

 39

Submitted for publication.

CustomerBean, TxControllerBean and TxBean, TxControllerBean and

AccountBean.

3. Discrepancies in Database Access. Figure 13 does not show any connections

between the session beans and the database, which implies that all database access

goes through the entity beans. This is consistent with Sun’s EJB specification

[EJB]. However a “database write” connector appeared in the discovered

architecture. Further source code analysis (performed manually) confirmed that

AccountControllerBean does directly write to the database. As discussed in the

previous section, identifying communication “backdoor” connections like this is

useful for architectural analysis and to ensure architectural conformance.

7 Conclusions and Future Work

In this paper we described an approach to “discovering” the architecture of a running

system that uses a set of pattern recognizers that convert monitored system observations

into architecturally-meaningful events. The key idea is to exploit implementation

regularities and knowledge of the architectural style that is being implemented to create a

mapping that can be applied to any system that conforms to the implementation

conventions, to yield a view in that architectural style. The mapping itself defines a novel

form of behavior specification (realized as a Colored Petri Net) that relates low-level

events to architecturally-significant actions. The power of Petri Nets is used to model the

current threads of event recognition, allowing us to disentangle the interleaved sequences

of low-level events that contribute to higher-level architectural behavior.

There are a number of advantages of this approach. First, it can be applied to any system

that can be monitored at runtime. In our case, we have demonstrated two case studies

 40

Submitted for publication.

written in Java, but we have recently experimented successfully with the use of AspectC

to extract run-time information from C and C++ programs. In general, any monitoring

environment that allows us to capture object creation, method invocation, and instance

variable assignment will serve as a sufficient foundation for our run-time monitoring.

Second, by simply substituting one mapping description for another, it is possible to

accommodate different implementation conventions for the same architectural style, or

conversely to accommodate different architectural styles for the same implementation

conventions. For example, although not described in this paper, we have been able to

successfully discover the Pipe/Filter architecture of a system implemented using different

pipe conventions.

There are, however, several inherent weaknesses to the approach. The first is that it only

works if an implementation obeys regular coding conventions. Completely ad hoc bodies

of code are unlikely to benefit from the technique. Second, it only works if one can

identify a target architectural style, so that the mapping “knows” the output vocabulary.

Third, as with any analysis based on runtime observations, it suffers from the problem

that you can only analyze what is actually executed. Hence, questions like “is there any

execution that might violate a set of style constraints” cannot be directly answered using

this method. Fourth, the DiscoSTEP mapping needs to be created via an iterate-and-test

paradigm, and hence the results are somewhat dependent on the skill of the creator of the

recognizer. Thus our techniques are best viewed as one of several technologies that an

architect must have in his arsenal of architecture conformance checking tools. For

example, we believe that DiscoTect can be effectively combined with static analysis tools

such as Dali [Kazman99] or Armin [O’Brien03] to provide complementary kinds of

 41

Submitted for publication.

analysis, whereby runtime observations can be combined with statically-extracted facts.

In this way we should be able to achieve a more complete and accurate picture of the as-

built system.

These potential defects also point the way to future research in this area. First, is the area

of system monitoring. As we have mentioned, we have experimented with a number of

existing monitoring technologies for Java, and to some extent C++. However, monitoring

technology for other kinds of implementations and system properties is an active research

area that should continue to provide increasing capabilities in the future that we can

leverage.

Second is the area of codifying the ways in which architectural styles are implemented.

As technology advances, implementation techniques will necessarily change, and it will

be important to augment the set of mappings as that happens. We can envision a large

library of recognizers for common architectural frameworks, available, perhaps, as open

source libraries, which would track the most common architectural frameworks in

practical use.

Third is the area of architectural coverage metrics, similar to coverage metrics for testing.

It would be good, for example, to have some confidence that in running a system with

various inputs, we have exercised a sufficiently comprehensive part of the system to

know what its architecture is.

Fourth, we would like to find a way to make the definition of implementation-

architecture mappings more declarative. While the operational definition of state

machines as the carrier of those mappings is a good first step, we can imagine more

abstract forms of characterization that will be easier to create and analyze.

 42

Submitted for publication.

Fifth, while the approach we have outlined focuses primarily on recognizing architectural

structure, we believe it could be easily extended to architectural behavior. For example,

we can imagine using the same run-time abstraction techniques to check that the

observed interaction between two components conforms to the protocol expected over the

corresponding architectural connector. Similarly we might, observe timing behavior,

which could be compared with an architectural specification of expected performance.

References

[Aldrich02] J. Aldrich, C. Chambers, and D. Notkin. “ArchJava: Connecting Software
Architecture to Implementation,” In Proceedings of the 24th International
Conference on Software Engineering, 2002.

[Allen94] R. Allen, D. Garlan. Formalizing Architectural Connection. In
Proceedings of ICSE 1994.

[Balzer99] R.M. Balzer and N.M Goldman. “Mediating Connectors,” Proceedings of
19th IEEE International Conference on Distributed Computing Systems
Workshop on Electronic Commerce and Web-Based Applications, Austin,
TX, 1999.

[Bass03] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice, 2nd
Edition, Addison-Wesley, 2003.

[Clements01] P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2001.

[Clements02] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond,
Addison Wesley, September 2002.

[Dias03] M. Dias and D. Richardson. “The Role of Event Description on
Architecting Dependable Systems (extended version from WADS).”
Lecture Notes in Computer Science - Book on Architecting Dependable
Systems (Spring-Verlag), 2003.

[EJB] Sun Microsystems. <http://java.sun.com/products/ejb/docs.html>

[Ernst01] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. on Software Engineering, 27(2), 2001.

[Garlan94] D. Garlan, R.J. Allen, and J. Ockerbloom. “Exploiting Style in
Architectural Design,” Proceedings of the ACM SIGSOFT ’94
Symposium on the Foundations of Software Engineering (FSE 94), 1994.

 43

Submitted for publication.

[Garlan00] D. Garlan, R.T. Monroe, and D. Wile. “Acme: Architectural Description
of Component-Based Systems,” Foundations of Component-Based
Systems, Gary T. Leavens and Murali Sitaraman (eds), Cambridge
University Press, 2000.

 [Garlan02] Garlan, D.; Kompanek, A. J.; & Cheng, S.-W. “Reconciling the Needs of
Architectural Description with Object Modeling Notations.” Science of
Computer Programming 44, 1 (July 2002): 23-49.

[Garlan03] D. Garlan, S.-W. Cheng, B. Schmerl. “Increasing System Dependability
through Architecture-based Self-repair”, in Architecting Dependable
Systems, R. de Lemos, C. Gacek, A. Romanovsky (Eds). LNCS 2677,
Springer-Verlag, 2003.

[J2EE] Sun Microsystems <http://java.sun.com/docs/books/j2eetutorial/index.html>

[Jackson99] D. Jackson and A. Waingold. “Lightweight extraction of object models
from bytecode,” In Proceedings of the 1999 International Conference on
Software Engineering, 1999.

[JDBC] Sun Microsystems <http://java.sun.com/products/jdbc>

[Jenson94] K. Jensen. “An Introduction to the Theoretical Aspects of Coloured Petri
Nets.” In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.): A
Decade of Concurrency, Lecture Notes in Computer Science vol. 803,
Springer-Verlag 1994, 230-272.

[Kaiser03] G. Kaiser, J. Parekh, P. Gross, and G. Veletto. “Kinesthetics eXtreme: An
External Infrastructure for Monitoring Distributed Legacy Systems,”
Proceedings of 5th International Active Middleware Workshop, 2003.

[Kazman99] R. Kazman, and S.J. Carriere. “Playing Detective: Reconstructing
Software Architecture from Available Evidence,” Journal of Automated
Software Engineering 6(2), 1999.

[Kazman03] R. Kazman, J. Asundi, J.S. Kim, and B. Sethananda. “A Simulation
Testbed for Mobile Adaptive Architectures,” Computer Standards and
Interfaces, 2003.

[Kiczales01] G. Kiczales, E. Hilsdale, J. Huginin, M. Kersten, J. Palm, W. Griswold.
“Getting Started with AspectJ,” In Communications of the ACM 4(10),
October 2001.

[Luckham96] D.C. Luckham. “Rapide: A Language and Toolset for Simulation of
Distributed Systems by Partial Orderings of Events,” Proceedings of the
DIMACS Partial Order Methods Workshop, 1996.

[Madhav96] N Madhav. “Testing Ada 95 Programs for Conformance to Rapide
Architectures,” Proceedings of Reliable Software Technologies – Ada
Europe 96, 1996.

[Medvidovic00] Medvidovic N., and Taylor R.N., A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering 26(1), pp. 70–93, 2000.

 44

Submitted for publication.

[Murphy95] G.C. Murphy, D. Notkin, and K.J. Sullivan. “Software Reflexion Models:
Bridging the Gap Between Source and High-Level Models,” In
Proceedings of 1995 ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 1995.

[O’Brien03] L. O’Brien, C. Stoermer, “Architecture Reconstruction Case Study,”
Software Engineering Institute Technical Note CMU/SEI-2003-TN-008,
2003.

[Perry92] D. Perry, A. Wolf. “Foundations for the Study of Software Architecture,”
ACM SIGSOFT Software Engineering Notes, 17(4), 1992.

[Reiss03] S. Reiss. “JIVE: Visualizing Java in Action (Demonstration Description),”
Proceedings of 25th International Conference on Software Engineering,
2003.

[Schmerl04] B. Schmerl, and D. Garlan. "AcmeStudio: Supporting Style-Centered
Architecture Development (Demonstration Description)," Proceedings of
the 26th International Conference on Software Engineering, Edinburgh,
Scotland, May 23-28, 2004.

[Shaw95] M. Shaw, R. Deline, D. Klein, T.L. Ross, D.M. Young, G. Zelesnik.
“Abstractions for Software Architecture and Tools to Support Them.”
IEEE Transactions on Software Engineering 21(4), 1995.

[Shaw96] M. Shaw. and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

[Spinczyk02] O. Spinczyk, A. Gal, W. Schroder-Preikschat. “AspectC++: An Aspect-
oriented Extension to the C++ Programming Language,” Proceedings of
the 40th International Conference on Tools Pacific: Objects for Internet,
Mobile, and Embedded Applications, Volume 10, 2002.

[Taylor96] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead, J.E.
Robbins, K.A. Nies, P. Oriezy, and D. Dubrow. “A Component- and
Message-Based Architectural Style for GUI Software,” IEEE Transactions
on Software Engineering 22(6), 1996.

[Vestal96] S. Vestel. “MetaH Programmer’s Manual, Version 1.09.” Technical
Report, Honeywell Technology Center, 1996.

[Vieira01] M. Vieira, M. Dias, D.J. Richardson. “Software Architecture based on
Statechart Semantics,” Proceedings of the 10th International Workshop
on Component Based Software Engineering, 2001.

[Walker98] R.J. Walker, G.C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson,
J. Isaak. “Visualizing Dynamic Software System Information through
High-level Models,” In Proceedings of OOPSLA'98,

[Walker00] R.J. Walker, G.C. Murphy, J. Steinbok, and M.P. Robillard. “Efficient
Mapping of Software System Traces to Architectural Views,” In S.A.
MacKay and J.H. Johnson (eds) In Proceedings of CASCON 2000.

 45

Submitted for publication.

[W3C04] W3C Consortium. “XQuery 1.0 and XPath 2.0 Formal Semantics. W3C
Working Draft 4 April 2005.” http://www.w3.org/TR/2005/WD-xquery-
semantics-20050404/.

[Wells01] D. Wells and P. Pazandak. “Taming Cyber Incognito: Surveying
Dynamic/Reconfigurable Software Landscapes,” Proceedings of 1st
Working Conference on Complex and Dynamic Systems Architectures,
2001.

[XQuery] W3C <http://www.w3.org/TR/xquery/>

[XML] W3C <http://www.w3.org/XML/>

[Yan04] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman. "DiscoTect: A
System for Discovering Architectures from Running Systems,"
Proceedings of the 26th International Conference on Software Engineering,
Edinburgh, Scotland, May, 2004.

[Zeller01] A. Zeller. “Animating Data Structures in DDD,” In Proceedings of
SIGCSE/SIGCUE Program Visualization Workshop, 2000.

 46

Submitted for publication.

Appendix A

Java code:

public class ChatServer {
 static class ClientThread extends Thread {
 private Socket socket;
 private Vector clients;
 public ClientThread(Socket socket,
 Vector clients) {
 this.socket = socket;
 this.clients = clients;
 clients.addElement(socket);
 }
 public void run() {
 byte[] buf = new byte[1024];
 int len = 0;
 try {
 InputStream is = socket.getInputStream();
 while ((len = is.read(buf)) != -1) {
 // Broadcast the message to
 // all the clients
 for (int i = 0; i < clients.size(); i++) {
 OutputStream os =
 ((Socket) clients.get(i)).
 getOutputStream();
 os.write(buf, 0, len);
 }
 }
 } catch (IOException e) {
 } finally {
 clients.removeElement(socket);
 try {
 socket.close();
 } catch (IOException e) {}
 }
 }
 private static Vector clients = new Vector();
 public ChatServer() {
 ServerSocket ss = new ServerSocket(1111);
 while (true) {
 // Wait for clients to connect
 Socket socket = ss.accept();
 new ClientThread(socket, clients).start();
 }
 }
 public static void main(String[] args)
 throws IOException {
 new ChatServer();
 }
}

Runtime events:
<init constructor_name=”ServerSocket”
 instance_id=”10”>
<call method_name=”ServerSocket.accept”
 callee_id=”10” return_id=”11” …/>
…
<call method_name=”Socket.getInputStream”
 callee_id=”11” return_id=”1000” …/>
<call method_name=”ServerSocket.accept”
 callee_id=”10” return_id=”12” …/>
…
<call method_name=”InputStream.read”
 callee_id=”1000” …/>
<call method_name=”Socket.getOutputStream”
 callee_id=”11” return_id=”1001” …/>
<call method_name=”OutputStream.write”
 callee_id=”1001” …/>
<call method_name=”Socket.getInputStream”
 callee_id=”12” return_id=”1002” …/>
<call method_name=”InputStream.read”
 callee_id=”1002” …/>
<call method_name=”InputStream.read”
 callee_id=”1000” …/>
<call method_name=”Socket.getOutputStream”
 callee_id=”12” return_id=”1003” …/>
<call method_name=”OutputStream.write”
 callee_id=”1003” …/>
…

Figure 15. The Jave code for the ChatServer, and events produced through one run
that are subsequently fed into DiscoTect.

rule CreateServer {
 input { init $e; }
 output { string $server_id; create_component $create_server; }
 trigger {? contains($e/@constructor_name, “ServerSocket”) ?}
 action = {?
 let $server_id := $e/@instance_id;
 let $create_server := <create_component name=$server_id type=”ServerT” />;

 47

Submitted for publication.

 }
}
rule ConnectClient {
 input { call $e; string $server_id; }
 output {
 create_component $create_client;
 create_connector $create_cs_connection;
 string $client_id;
 }
 trigger {?
 contains($e/@method_name, “ServerSocket.accept”) and $e/@callee_id = $server_id
 ?}
 action = {?
 let $client_id := $e/@return_id;
 let $create_client := <create_client name=$client_id type=”ClientT” />;
 let $create_cs_connection :=
 <create_connector name=concat($client_id,”-“,$server_id)
 type=”CSConnectorT” end1=$server_id end2=$client_id />;
 ?}
}
rule ClientIO {
 input { call_event $e; string $client_id; }
 output { string $io_id; }
 trigger {?
 (contains($e/@method_name, “Socket.getInputStream”) or
 contains($e/@method_name, “Socket.getOutputStream”)) and
 $e/@callee_id = $client_id
 ?}
 action {? let $client_id := $e/@return_id; ?}
}

rule ClientRead {
 input { $e : call_event; $io_id : string; $client_id : string; }
 output { $update_client : update_component; $activity_type : string;}
 trigger {? (contains($e/@method_name, “InputStream.read”) and $e/@callee_id = $io_id ?}
 action = {?
 let $update_client :=
 <update_component name=$client_id property=”Read” value=”true” />;
 let $activity_type := “Read”;
 ?}
}
rule ClientWrite {
 input { $e : call_event; $io_id : string; $client_id : string; }
 output { $update_client : update_component; $activity_type : string; }
 trigger {? (contains($e/@method_name, “OutputStream.write”) and $e/@callee_id = $io_id
?}
 action = {?
 let $update_client :=
 <update_component name=$client_id property=”Write” value=”true” />;
 let $activity_type := “Read”;
 ?}
}
rule UpdateServer {
 input { string $server_id; string $activity_type; }
 output { update_component $update_server; }
 trigger {? ($activity_type = “Read”) or ($activity_type = “Write”) ?}
 action = {?
 let $update_server :=
 <update_componnet name=$server_id property=”Activity” value=$activity_type />;
 ?}
}
composition System {
 CreateServer.$server_id -> ConnectClient.$server_id;
 ConnectClient.$client_id -> ClientIO.$client_id;
 ConnectClient.$client_id <-> ClientRead.$client_id;
 ClientIO.$io_id <-> ClientRead.$io_id;

 48

Submitted for publication.

 ConnectClient.$client_id <-> ClientWrite.$client_id;
 ClientIO.$io_id <-> ClientWrite.$io_id;
 ClientWrite.$activity_id -> UpdateServer.$activity_id;
 CreateServer.$server_id <-> UpdateServer.$server_id;
}

Figure 16. The DiscoSTEP program for mapping between a run of the program in
Figure 15 and a simple client-server architecture.

PROGRAM ::=
 IMPORT*; EVENT; (COMPOSITION | RULE) *

IMPORT ::=
 import quoted file name

EVENT ::= event type declarations:
 ‘event’ ‘{‘
 ‘input’ ‘{‘ (ID ‘;’)* ‘}’
 ‘output’ ‘{‘ (ID ‘;’)* ‘}’
 ‘}’

RULE ::= rule declarations:
 ‘rule’ ID ‘{‘ RULEPARTS ‘}’

RULEPARTS1 ::= rule property declarations:
 ‘input’ ‘{‘ (ID VARID ‘;’)* ‘}’
 ‘output’ ‘{‘ (ID VARID ‘;’)* ‘}’
 ‘trigger’ ‘{$’ XPRED ‘$}’
 ‘action’ ‘{$’ XQUERY ‘$}’

COMPOSITION ::= composition declarations:
 ‘composition’ ID ‘{‘ COMPOSITIONPART* ‘}’

COMPOSITIONPART::= composition property declarations:
 MEMBER ‘->’ MEMBER
 MEMBER ‘<->’ MEMBER

MEMBER ::=
 ID ‘.’ VARID |
 ID ‘.’ MEMBER

ID ::= [a-zA-Z][a-zA-Z0-9_]*

VARID ::= [$][a-zA-Z0-9_]*

Figure 17. The concrete syntax of DiscoSTEP.

1 Note that the productions XPRED and XQUERY in the language refer to XQuery Predicates and XQuery

FLWOR expressions, respectively. The grammar for these is defined in [XQuery].

 49

	1 Introduction
	2 Related Work
	3 DiscoTect
	3.1 Technical Challenges
	3.2 The DiscoTect Approach
	3.3 DiscoSTEP Language Requirements
	3.4 Informal Introduction to DiscoSTEP
	3.4.1 Events
	3.4.1.1 Representation
	3.4.1.2 Declaration and Import
	3.4.1.3 Input and Output

	3.4.2 Rules and Compositions
	3.4.3 Informal Runtime Semantics
	3.4.4 An Example DiscoSTEP Specification
	3.4.4.1 Instrumentation
	3.4.4.2 Runtime Events
	3.4.4.3 DiscoSTEP Program

	3.4.5 Satisfying the Requirements

	3.5 Formal Definition of DiscoSTEP
	3.5.1 DiscoSTEP Abstract Syntax
	3.5.2 Type Checking
	3.5.3 Translational Semantics of the DiscoSTEP
	3.5.4 Formally Modeling the Example

	4 Implementation of DiscoTect
	5 AAMS Case Study
	5.1 Design of AAMS DiscoSTEP program
	5.2 The Discovered Architecture

	6 EJB Case Study
	6.1 Design of the EJB State Machine
	6.2 The Discovered Architecture

	7 Conclusions and Future Work
	References
	 Appendix A
	

