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One of the challenging problems for software developers is guaranteeing 
that a system as built is consistent with its architectural design. In this 
paper we describe a technique that uses run time observations about an 
executing system to construct an architectural view of the system. In this 
technique we develop mappings that exploit regularities in system 
implementation and architectural style. These mappings describe how 
low-level system events can be interpreted as more abstract architectural 
operations, and are formally defined using Colored Petri Nets. In this 
paper we describe a system, called DiscoTect, that uses these mappings, 
and we introduce the DiscoSTEP mapping language and its formal 
definition in terms of Colored Petri Nets. Two case studies showing the 
application of DiscoTect suggest that the tool is practical to apply to 
legacy systems and can dynamically verify conformance to a pre-existing 
architectural specification. 

1 Introduction 

A well-defined software architecture is critical for the success of complex software 

systems. Such a definition provides a high-level view of a system in terms of its principal 

runtime components (e.g., clients, servers, databases), their interactions (e.g., remote 

procedure call, event multicast, piped streams), and their properties (e.g., throughputs, 

latencies, reliabilities) [Bass03, Perry92, Shaw96]. As an abstract representation of a 

system, an architecture permits many forms of high-level inspection and analysis, 

allowing the architect to determine if a system’s design will satisfy its critical quality 

attributes. Consequently, over the past decade, considerable research and development 

  1



Submitted for publication. 

has gone into the development of notations, tools, and methods to support architectural 

design [Clements 03, Clements01, Medvidovic00]. 

However, despite considerable progress in developing an engineering basis for software 

architecture, a persisting difficult problem is determining whether a system as 

implemented has the architecture as designed. Without some form of consistency 

guarantees, the validity of any architectural analysis will be suspect, at best, and 

completely erroneous, at worst. 

Currently two general techniques have been used to determine or enforce relationships 

between a system’s software architecture and its implementation. The first is to ensure 

consistency by construction. This can be done by embedding architectural constructs in 

an implementation language (e.g., as described by Aldrich and colleagues [Aldrich02]) 

where program analysis tools can check for conformance. Or, it can be done through code 

generation, using tools to create an implementation from a more abstract architectural 

definition [Shaw95, Taylor96, Vestal96].  

Ensuring consistency by construction is effective when it can be applied, since tools can 

guarantee conformance. Unfortunately it has limited applicability. In particular, it can 

usually be applied only in situations where engineers are required to use specific 

architecture-based development tools, languages, and implementation strategies. For 

systems that are composed of existing parts, or that require a style of architecture or 

implementation outside those supported by generation tools, this approach does not 

apply. 

The second technique is to ensure conformance by extracting an architecture from a 

system’s code, using static code analysis [Jackson99, Kazman99, Murphy95]. When an 
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implementation is sufficiently constrained so that modularization and coding patterns can 

be identified with architectural elements, this technique can work well. Unfortunately, 

however, the technique is limited by an inherent mismatch between static, code-based 

structures (such as classes and packages), and the runtime structures that are the essence 

of most architectural descriptions [Clements03, Garlan02]. In particular, the actual 

runtime structures may not even be known until the program executes: clients and servers 

may come and go dynamically; components (e.g., Dynamic Linked Libraries) not under 

direct control of the implementers may be dynamically loaded; and so forth. Indeed, 

determining the actual runtime architectural configuration of a system is, in general, 

undecidable. 

A third, relatively unexplored, technique is to determine the architecture of a system by 

examining its runtime behavior. The key idea is that a system’s execution can be 

monitored. Observations about its runtime behavior can then, in principal, be used to 

infer its dynamic architecture. This approach has the advantage that it applies to any 

system that can be monitored, it gives an accurate image of what is actually going on in 

the real system, it can accommodate systems whose architecture changes dynamically, 

and it imposes no a priori restrictions on system implementation or architectural style.  

However, there are a number of hard technical challenges in making this technique work. 

The most serious problem is finding mechanisms to bridge the abstraction gap: in 

general, low-level system observations do not map directly to architectural constructs. 

For example, the creation of an architectural connector might involve many low-level 

steps, and those actions might be interleaved with many other architecturally relevant 

actions. Moreover, there is likely no single architectural interpretation that will apply to 
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all systems: different systems will use different runtime patterns to achieve the same 

architectural effect, and, conversely, there are many possible architectural elements to 

which one might map the same low-level events.  

In this paper, we describe a technique, based on a combination of state-based and 

interaction-based modeling, to solve the problem of dynamic architectural discovery for a 

large class of systems. The key idea is to provide a framework that allows one to map 

implementation styles to architecture styles. This mapping is defined conceptually as a 

Colored Petri Net [Jenson94] that are used at runtime to track the progress of the system 

and output architectural events when predefined runtime patterns are recognized. Thus 

the mapping provides a kind of behavior modeling, where it is used to identify just those 

behaviors of a system that are “architecturally significant.” One of the important 

additional features of the approach is the ability to reuse such mappings across different 

systems. In particular, we exploit regularity in both implementation and architectural 

styles so that a single mapping can serve as an architectural extractor for a large 

collection of similar systems, thereby reducing the amortized cost of writing the 

abstraction mappings, while still providing flexibility. 

In the remainder of this paper, we describe the approach in detail, and describing the tool 

called DiscoTect, that we have implemented. In Section 2, we discuss related work. 

Section 3 presents the DiscoTect approach, including an overview of the DiscoTect 

framework, and the DiscoSTEP language used for specifying mappings. We furthermore 

present a formal semantics for DiscoSTEP that specifies the semantics in terms of 

Colored Petri Nets. We clarify this with a simple example. In Section 4 we briefly discuss 
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the implementation of DiscoTect. Sections 5 and 6 describe case studies that show the 

feasibility of DiscoTect. Finally, in Section 7 we present our conclusions. 

2 Related Work 

Our work is mostly related to other approaches for dynamic analysis of a system. A 

number of techniques and tools have been developed to extract information from a 

running system. These include instrumenting the source code to produce trace 

information and manipulating runtime artifacts to get the information (e.g., as described 

by Balzer and Goldman [Balzer99] and Wells and Pazandak [Wells01]). There are many 

technologies available for monitoring systems, and we build on those. However, they do 

not by themselves solve the hard problem of mapping from code to more abstract models. 

In previous work, we developed an infra-structure doing certain kinds of abstraction 

[Garlan03]. However, this approach was limited to observing properties of a system and 

reflecting them in a pre-constructed architectural model. In this work, we show how to 

create that model. 

The work by Dias and Richardson [Dias03] uses an Extensible Markup Language 

(XML)-based language to describe runtime events and use patterns to map these events 

into high-level events. Analyzing these events to determine architectural structure is not 

addressed. In addition, a simple static mapping from low-level system events to high-

level events has limited expressiveness. For example, it cannot handle the case where the 

event analyzer initially has an interest in one set of events, but then changes its interest 

after the initial events have occurred. Also it doesn’t provide a way of specifying event 

correlations or mapping a series of correlated low-level events to a single high-level 

event—a crucial capability needed when discovering the architecture of a system. Kaiser 
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and colleagues  use a collection of temporal state machines to perform pattern matching 

against runtime events [Kaiser03]. Our approach is similar, but it makes architectural 

styles or patterns explicit. 

A number of researchers have investigated the problem of presenting dynamic 

information to an observer. For example, some researchers present information about 

variables, threads, activations, object interactions, and so forth [Reiss03, Walker98, 

Walker00, and Zeller01]. Ernst and colleagues show how to dynamically detect program 

invariants by examining values computed during a program execution and by looking for 

patterns and relationships among them [Ernst01]. This is somewhat different from 

detecting architectural structure.  

Madhav [Madhav96] describes a system that allows Ada 95 programs to be monitored 

dynamically to check conformance to a Rapide architectural specification [Luckham96]. 

His approach requires the source code to be annotated so that it can be transformed to 

produce events to construct the architecture. In contrast, our approach does not require 

access to the source code, and it does not rely on explicit architectural construction 

directives to be embedded in the code as does the approach used by Aldrich and 

colleagues [Aldrich02]. 

A large body of research has investigated specification of the dynamic behavior of 

software architectures. Of the many approaches, some use explicit state machines (e.g., as 

described by Allen and Garlan [Allen94] and Vieira and colleagues [Vieira00]). These 

approaches, however, do not link architecture to an executing system. 
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3 DiscoTect  

3.1 Technical Challenges 

Any approach that supports dynamic discovery of architectures must address three 

challenges:  

(1) Monitoring: observing a system’s runtime behavior,  

(2) Mapping: interpreting that runtime behavior in terms of architecturally 

meaningful events, and  

(3) Architecture Building: representing the resulting architecture.  

In this paper, we are primarily concerned with the second problem of bridging the 

abstraction gap between system observations and architectural effects. There are a 

number of issues that make this a hard problem. First, mappings between low-level 

system observations and architectural events are not usually one-to-one. Many low-level 

events may be completely irrelevant. More importantly, a given abstract event, such as 

creating a new architectural connector, might involve many runtime events, such as 

object creation and lookup, library calls to runtime infrastructure, initialization of data 

structures, and so forth. Conversely, a single implementation event might represent a 

series of architectural events. For example, executing a procedure call between two 

objects might signal the creation of a new connector and its attachment to the runtime 

ports of the respective architectural components. This implies the need for a technique 

that can keep track of intermediate information about mappings to an architectural model. 

Second, architecturally relevant actions are typically interleaved in an implementation. 

For example, at a given moment, a system might be midway through creating several 
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components and their connectors. This implies that any attempt to recognize architectural 

events must be able to cope with concurrent intermediate states. 

Third, there is no single gold standard for indicating what implementation patterns 

represent specific architectural events. Different implementations may choose different 

techniques for creating the same abstract architectural element. Consider the number of 

ways that one might implement pipes, for example. Indeed, one might even find multiple 

implementation approaches in the same system. Moreover, for the purposes of 

architectural discovery, there is no single architectural style or pattern that can be used 

for all systems. For example, the use of sockets might be used to represent many different 

types of connectors. Therefore, we need a flexible way to associate different 

implementation styles with architectural styles. 

3.2 The DiscoTect Approach 

To address these concerns, we have adopted the approach illustrated in Figure 1. Events 

captured from a running system are first filtered to select the subset of system 

observations that must be considered. The resulting stream of events is then fed to the 

DiscoTect Engine. The DiscoTect Engine takes in a specification of the mapping, written 

in a language called DiscoSTEP (Discovering Structure Through Event Processing). The 

DiscoTect engine constructs a Colored Petri Net from the mapping to recognize 

interleaved patterns of runtime events and, when appropriate, to produce a set of 

architectural operations as outputs. Those operations are then fed to an Architecture 

Builder that incrementally creates an architectural model, which can then be displayed to 

a user or processed by architecture analysis tools. We now elaborate each of the three 

main components in turn: 
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Figure 1. The DiscoTect Architecture 
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1. DiscoSTEP Mapping Specification. We have developed a language, called 

DiscoSTEP that allows the specification of mappings between low-level and 

architecture events. The execution of these mappings is defined using Colored 

Petri Nets – we provide a translation from DiscoSTEP mappings to Colored Petri 

Nets. This translation is defined in 3.5. 

2. DiscoTect Runtime Engine. The run-time engine takes, as inputs, events from 

the running program and a DiscoSTEP specification and runs the DiscoSTEP 

specification to produce architecture events. System runtime events are first 

intercepted and converted into XML (Extensible Markup Language) [XML] 

streams by Probes. The resulting stream of events is then fed to the DiscoTect 

Runtime Engine which uses the DiscoSTEP specification to recognize interleaved 

patterns of runtime events and, when appropriate, outputs a set of architectural 

events. 
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3. Architecture Builder. The architecture builder takes architectural events and 

incrementally constructs an architectural description, which can then be displayed 

to a user or processed by other architecture analysis tools. 

3.3 DiscoSTEP Language Requirements 

To handle the variability of implementation strategies and possible architectural styles of 

interest, we provide a language to define new mappings. Given a set of implementation 

conventions (which we will refer to as an implementation style) and a vocabulary of 

architectural element types and operations (which we refer to as an architectural style 

[Allen96]), we create a description in a language called DiscoSTEP. This description 

captures the way in which runtime events should be interpreted as operations on elements 

of the architectural style. Thus each pair of implementation style and architectural style 

must have its own mapping. However, a significant benefit of our approach is that these 

mappings can be reused across programs that are implemented in the same style. 

To dynamically discover architectures from running systems, DiscoTect needs to be 

instructed how to interpret system-level runtime events so that it can generate 

corresponding high-level events and eventually to reconstruct the architectures. Such 

instructions are given by event mapping specifications written in our DiscoSTEP 

language.  The event processing language needs to address a number of concerns.  

First, mappings between low-level system observations and architectural events are not 

usually one-to-one. Many low-level events may be completely irrelevant to the 

architecture discovery process. More importantly, a given abstract event, such as creating 

a new architectural connector, might involve many runtime events, such as object 

creation and lookup, library calls to some run time infrastructure, initialization of data 
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structures, etc. Conversely, a single implementation event might represent a series of 

architectural events. For example, executing a procedure call between two objects might 

signal the creation of a new connector, and its attachment to the run time ports of the 

respective architectural components. This implies that a language providing a simple one-

to-one (event to event) mapping is not sufficient. Therefore, the language needs to allow 

M-N mappings between events, and needs to be able to keep track of information from 

one event so that the information can be used in subsequent stages to recognize 

architectural events.  

Second, architecturally relevant actions are typically interleaved in an implementation. 

For example, at a given moment, a system might be midway through creating several 

components and their connectors. This implies that any attempt to recognize architectural 

events must be able to cope with concurrent intermediate states. 

Third, given a set of implementation conventions and a vocabulary of architectural 

element types and operations, we need to be able to provide a mapping specification that 

captures the way in which runtime events following the implementation style should be 

interpreted as operations on elements of the architectural style. In this way, we can build 

a library containing mappings between implementation style and architectural style pairs. 

A significant benefit for this is that these mappings can be reused across programs that 

are implemented in the same style.  

Fourth, complex systems often involve more than a single implementation style and 

architectural style. This requires the event processing language to provide an easy way to 

assemble code units each of which handles the mapping for a specific implementation 

and architectural style pair. 
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3.4 Informal Introduction to DiscoSTEP 

DiscoSTEP specifies how to map the system-level events to architectural-level events. To 

discover the architecture of a system, a program written in the DiscoSTEP language is 

compiled into byte code and fed to the DiscoTect engine. The DiscoTect engine 

processes the runtime events generated by the running system and generates architectural 

events on the fly. The architectural events can be further consumed by an architectural 

builder to construct the architecture. 

A DiscoSTEP specification has three main ingredients: 

1. Events. To allow DiscoTect to be flexible with respect to the types of events it 

can consume and produce, a DiscoSTEP specification imports XML Schema 

definitions of events.  

2. Rules. Rules specify how to map a series of system events into architectural 

events. 

3. Compositions. To complete a DiscoSTEP specification, compositions of rules are 

defined that allow complex sequences of events to be constructed. 

 

 In this section, we informally describe these three components. We then use a simple 

example to illustrate how they form a language to instruct event handling. 

3.4.1 Events 

3.4.1.1 Representation 

An event is a message that indicates something has happened. A running software system 

involves many kinds of events including method calls, CPU utilization, network 
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bandwidth consumption, memory usage, and etc. We call those events runtime events. 

Our system deploys probes to collect runtime events. A probe can be a program that 

monitors the running system’s resource consumption, such like network, memory and 

CPU utilization. It can also be code fragments injected into the target system using 

certain tracing technique, for example AspectJ [Kiczales01], AspectC++ [Spinczyk02]. 

In addition to runtime events that provide us the forensics evidence for tracing and 

profiling the running system, we define another type of events called architectural events. 

Architectural events are generated by our discovery system based on reasoning about 

runtime events. They are then consumed by an architecture builder to construct the 

system architecture. In some sense, architecture discovery is a data mining process in 

which a large number of runtime events are processed to generate architectural events 

that outline the system. 

Both runtime events and architectural events need to be represented in machine-readable 

form. Instead of forcing event representation into a fixed format, we adopt XML to 

specify events and use XML schema as the type system to check if an event has a valid 

form/type. For example, the following XML schema defines events that indicate method 

calls: 

<element name="call"> 
 <complexType> 
  <attribute name=”method_name” type=”string” /> 
  <attribute name=”callee_id” type=”string” /> 
  <attribute name=”return_id” type=”string” /> 
 </complexType> 
</element> 

Figure 2. Defining Event Schema for use in DiscoSTEP. 
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This XML schema specifies the format of a “call” event: A well-formed “call” event 

should have the name “call” and can have all or part of the following attributes: the name 

of the method, the object id (an unique identification assigned to an instance at runtime) 

of the method callee, and the object id of the method return. Below is an example of a 

“call” event: 

<call method_name=”java.net.ServerSocket.accept”  
  callee_id=”19efb05” 
  return_id=”1d1acd3” /> 

Figure 3. An example “call” event. 

By adopting XML we get the flexibility of customizing events, and by employing XML 

schema as the type system, we obtain the capability of type checking events to make sure 

they meet constraints specified by schema. 

We reiterate that the structure of these events is not assumed by DiscoSTEP, but rather 

are specified along with the DiscoSTEP mapping. Therefore, if it is important to the 

mapping to know the calling object, this can be specified in the event and manipulated by 

the DiscoSTEP specification. (Of course, the monitoring infrastructure used would need 

to be able to provide enough information to form this event.) 

3.4.1.2 Declaration and Import 

From the language’s perspective, an event is a value of certain type and the type 

corresponds to an element of an XML schema, such as “call” in the above example. We 

declare events by binding an event variable with an event type (schema element). But 

before that, we need to import the schema from a schema file. Suppose we define the 

schema element “call” in a schema file “sys_event.xsd”, the following code segment in 
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our event processing language imports the schema and declare the variable $e as a “call” 

event: 

import <sys_event.xsd> 
… 
call $e; 

Figure 4. Importing Event Specifications in DiscoSTEP. 

3.4.1.3 Input and Output 

Typically our event processing engine takes runtime events as input events and produce 

architectural events as output events. For clarity, and for the purposes of checking the 

correctness of a DiscoSTEP specification, input and output event types are explicitly 

defined before they can be used to declare event variables. For example, the following 

code block defines “call” as an input event type and defines “create_component” as an 

output event type: 

input { 
 call; 
 … 
} 
output { 
 create_component; 
 … 
} 

Figure 5. Specifying Input and Output Events to a DiscoSTEP rule. 

3.4.2 Rules and Compositions 

Rules are event handlers that decide what events should be processed and what the 

handling strategies are. Rules are composed of inputs, outputs, triggers and actions. Input 

and output blocks declare input events that this rule cares about and the output events that 

this rule can possibly generate. Triggers are predicates over the input events; actions are 

assignments to the output events. When a trigger returns true upon the arrival of input 
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events, the actions in the corresponding rule are activated to instantiate the output events. 

Since events are represented in XML, we borrow a well-defined XML Query language 

called XQuery [XQUERY] to describe triggers and actions.  

Multiple rules can be assembled into a composition to handle event sequences. In a 

composition, rules are connected to each other by a set of input/output bindings. 

DiscoTect provides two forms of binding, directional and bidirectional (denoted as -> and 

<-> in the concrete syntax). The purpose of a bidirectional binding is to allow rules to fire 

on inputs without consuming the event (the event is implicitly reproduced as an output). 

This allows, for example, a rule for recognizing ports to generate multiple ports for the 

same component. Bidirectional bindings are shorthand for two directional bindings. 

 Section 3.4.4 provides concrete examples of rules and compositions. 

3.4.3 Informal Runtime Semantics 

Informally, DiscoTect runs DiscoSTEP specifications in the following sequence: 

1. If an event is received by DiscoTect, associate those events with any rules that 

may accept that type of event. 

2. For any rule that has a value for each of its inputs, evaluate the trigger. 

3. If a trigger matches for a set of input events, execute the action with that set of 

events. 

4. For output events that are composed with other rules, send the event as an input to 

that rule. For output events that are not composed with other rules, emit them 

from DiscoTect. 

For each rule, an input event can be considered to be a set of events that match that type. 

Triggers match up events to be used in the rules. Formally, we model events as colored 

  16



Submitted for publication. 

tokens (where the color is given by the type), and each rule as a transition. For each 

event, a token is generated and put in the corresponding place before a transition. Rules 

consume tokens and put them in places after transitions. We discuss this formal definition 

in Section 3.5. 

3.4.4 An Example DiscoSTEP Specification 

To illustrate the concept of events and the use of rules and compositions, we now profile 

a simple program written in Java.  In doing so we illustrate how to specify events using 

DiscoSTEP, and how DiscoTect uses this specification to generate an architectural 

description. The example is a simple system that implements a chat server. The chat 

server creates a server socket and announces its intention to accept connections. When a 

client connects to the waiting server, a new thread (of the type ClientThread) is started, 

which forwards all messages from that client to all connected clients. The source code for 

this application is presented in Figure 15 of the Appendix.  

While this system is extremely simple, it allows us to illustrate the concepts of  

DiscoSTEP.  In later sections we will describe more complex case studies. In the 

remainder of this section, we will specify how we instrumented this system, describe its 

DiscoSTEP specification, and discuss how DiscoTect processes this specification to 

produce an architectural description. 

The architectural description for this system is based on a simple client-server style. 

Informally, it is constructed as follows: when the server is created in the program, this 

maps to a server type component in the architecture; ClientThreads map to client 

components, and the socket connection maps to an architectural connector between each 

client and server.  
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3.4.4.1 Instrumentation 

The act of instrumenting a system to produce runtime events is not a novel aspect of 

DiscoTect. In fact, where possible, we use off-the-shelf technologies to instrument the 

system. In the Java-based systems that we have studied, we have used AspectJ to define 

instrumentation aspects that are weaved into the compiled bytecode of the Java programs.  

These aspects emit events when methods of interest are entered or exited, and when 

objects are constructed.  

The aspects can reflectively retrieve information about the runtime environment of, for 

example, a call, to ascertain the calling object, the instance of the object that was called, 

the argument values and types that were passed to the method, the method signature, etc. 

The aspects are written to emit XML elements that conform to a schema expected by 

DiscoTect. For example, to instrument the ChatServer, we weaved in aspects to emit 

events when methods were called and when objects were constructed. 

3.4.4.2 Runtime Events 

Two types of runtime events were collected from this running system: call events and init 

events. A call event is reported when a method is invoked. Similarly, an object 

instantiation produces an init event. Take the following two events for example:  

 <init constructor_name=”ServerSocket” instance_id=”10”> 
 
 <call method_name=”ServerSocket.accept”  
   callee_id=”10” return_id=”11” /> 
 

An init event is generated when  

 ServerSocket ss = new ServerSocket(1111) 
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is executed; a call event is triggered by an execution of a method call. For example, the 

call event above is emitted by the following statement execution. 

 Socket socket = ss.accept() 
 

Because multiple ClientThreads can run concurrently, some of the runtime events, such 

as InputStream.read and OutputStream.write, show up in random order and hence 

may be interleaved with each other. 

A fuller trace of the events that we retrieved when running the program is available in 

Appendix A. These events can be fed into DiscoTect either in real time or off-line, after 

the program has completed running. 

3.4.4.3 DiscoSTEP Program 

A DiscoSTEP program that specifies how to handle the interleaved events between the 

client and the server was specified to formally capture how to map system events into 

architectural events. The full DiscoSTEP program for this example is given in Appendix 

B; in this section we discuss some of the rules and how these are combined with the event 

trace to produce the architecture. DiscoTect takes the runtime events from the ChatServer 

to produce architectural events that construct a Client Server style representation of the 

system.  

Figure 6 shows a fragment of a DiscoSTEP program that includes two rules, and how 

they are composed. The CreateServer rule constructs and architecture Server component. 

It takes the input event under inspection to be an init event named $e. The output events 

include the string event $server_id and the create_component event 

$create_server. The condition for triggering this rule is that the constructor_name 

attribute of $e contains the string “ServerSocket”. If the rule is triggered, the following 
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action is taken: $server_id is assigned the id of the object constructed in the init event, 

and an architecture event that constructs a server component named with the id of the 

newly created instances is assigned to $create_server. 

Figure 6rule CreateServer { 
 input { init $e; } 
 output { string $server_id; create_component $create_server; } 
 trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 
 action = {?  
  let $server_id := $e/@instance_id; 
     let $create_server :=  
   <create_component name=”{$server_id}” 
       type=”ServerT” />;  
 } 
} 
rule ConnectClient { 
 input { call $e; string $server_id; } 
 output {  
  create_component $create_client;  
       create_connector $create_cs_connection; 
       string $client_id;  
 } 
 trigger {? 
  contains($e/@method_name, “ServerSocket.accept”) 
   and $e/@callee_id = $server_id  
 ?} 
 action = {? 
  let $client_id := $e/@return_id; 
  let $create_client :=  
   <create_client name=”{$client_id}” type=”ClientT” />;  
  let $create_cs_connection :=  
   <create_connector name=concat($client_id,”-“,$server_id) 
     type=”CSConnectorT”  
    end1=”{$server_id}” end2=”{$client_id}” />;  
 ?} 
} 
composition { 
 CreateServer.$server_id -> ConnectClient.$server_id; 
 … 
} 

Figure 6. The DiscoSTEP rule to create a Server component. 
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The $server_id output from the CreateServer rule is fed to the ConnectClient rule, 

which has two inputs: $e and $server_id. Once the these inputs are received by 

ConnectClient, the trigger will check to see if any call events are calls to 

ServerSocket.accept. If so, output events $client_id, $create_client and 

$create_cs_connection are assigned appropriate values to construct both client 

component and the connector connecting it with the previously created server component. 

Instead of being specific to this particular ChatServer program, our client server event 

processing program is generic enough to be applicable to any client server applications 

implemented with the same style (with, at the most, some minor changes in the triggers).  

Both the compositions and the rules are well encapsulated. Rules are self-contained 

specifications, communicating with each other via inputs and outputs; compositions 

function as glue that assemble the rules. We can reuse compositions by applying them to 

a different system, and reuse rules by assembling them with a different composition (and 

adding new rules if necessary). 

3.4.5 Satisfying the Requirements 

In this section we revisit the requirements for DiscoSTEP that we introduced in Section 

3.3 and discuss how DiscoSTEP meets these requirements. 

- Allow M-N mappings between events. Since a DiscoSTEP rule can have an 

arbitrary number of inputs and outputs, this requirement is simply met by 

DiscoSTEP.  

- Keep track of information for use in subsequent stages. Input events and output 

events are essentially data structures that can be passed from one rule to the next. 
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These data structures are used to store and accumulate information that can be 

passed between rules. Compositions define how this state is passed between rules. 

- Cope with concurrent states. The informal execution semantics defined in Section 

3.4.3 describe how input events are propagated to each rule that can accept an 

event of that type. In this way, these events can start multiple execution threads for 

rules to cope with concurrent states. A rule will wait until it gets a set of input 

events that match a trigger before firing. In this way, interleaved threads of 

“conversation” can be disentangled.   

- Allow the assembly of code unit. Though not described in detail in this paper, the 

abstract syntax of DiscoSTEP specifies that a composition itself may have input 

and output events, as well as subcompositions. In this way, compositions can be 

combined hierarchically to form more complex mappings. So, for example, it is 

possible to take a composition that identifies mapping between the usage of files 

in a system to a data repository architectural style, and combine that with a 

mapping that recognizes the construction of a pipe-filter architecture to define the 

mapping for a pipe-filter system that retrieves and stores data in files. 

In toto, meeting the above requirements means that DiscoSTEP meets the final 

requirement: to provide a mapping specification that captures the way in which runtime 

events following the implementation style should be interpreted as operations on 

elements of the architectural style. This requirement is met by specifying a DiscoSTEP 

mapping. 
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3.5 Formal Definition of DiscoSTEP 

To define the execution semantics of a DiscoSTEP program, and to formally explain how 

the mappings are interpreted, we use Colored Petri Nets [Jenson94]. In [Yan04] we 

informally described the semantics of DiscoTect mappings in terms of state machines.  

However, this semantics was awkward because of the need to retain multiple active states 

in the state machine in order to model the concurrency in the model. We believe that 

Colored Petri Nets are the most appropriate formalism for describing the semantics of 

DiscoSTEP mappings because their tokens provide a rich way of representing the 

concurrent states of the system.  

In this section we formally describe the DiscoSTEP language. We begin by describing an 

abstract syntax of DiscoSTEP, which is suitable for formal specifications and proofs, 

followed by typechecking rules that ensure a DiscoSTEP program is meaningful.  We 

then describe DiscoSTEP’s semantics through rewriting rules that transform a 

DiscoSTEP program into a Colored Petri Net. 

3.5.1 DiscoSTEP Abstract Syntax 

The concrete syntax for DiscoSTEP, which we have been using up to this point, is given 

in Figure 17 of Appendix A. Although this syntax is easily readable, its lack of structure 

makes it poorly suited for formal analysis, including rules for defining DiscoSTEP’s type 

system and semantics.  Therefore, we describe an Abstract Syntax for DisocSTEP that is 

more amenable to formal specifications.  

Conceptually, a DiscoSTEP program is a 3-tuple (Tin, Tout, Cmain).  Here, Tin and Tout 

represent the sets of input and output events declared in the input and output clauses of a 

DiscoSTEP program.  Without loss of generality, we assume that a DiscoSTEP program 
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is made up of one top-level component Cmain. We further decompose component 

declarations C into rules, as follows: 

- A composition C is a tuple: 

 o iC = (c, R, C', (v , v ))  

where c is a name uniquely identifying the composition in the program.  We 

represent a sequence with an overbar, so that 1R = R ...Rn  is the set of rules 

defining the behavior of C; C'  is the set of sub-compositions of C; and 

o i(v ,v )  is a set of connections, each of which connects an output variable vo 

of some rule ∈jR R and some input variable vi of some rule ∈kR R . 

- A rule R is a tuple: 

 in in out out in out inR = (r, (v , t ), (v , t ), pred(v ), (v , exp(v )))  

where r is a name uniquely identifying the rule in the program; inv  and outv  

are input and output variables of the rule; ∈in int T  and ∈out outt T  are the type 

of the input and output variables inv  and outv , respectively; inpred(v )  is an 

XQuery predicate that may only use variables from the set of input variables, 

and out in(v , exp(v ))  is an assignment of XQuery expressions over the set of 

input variables inv  to the output variables outv . 

We do not directly model the semantics of XQuery, as they are defined elsewhere 

[W3C04].  We also assume that all variable and rule names are globally unique. 
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3.5.2 Type Checking 

Not every DiscoSTEP program allowed by the syntax in the previous section makes 

sense. For example, one could write a composition that connects an output of a certain 

type to an input of a different type without breaking the syntax.  We use a set of 

typechecking rules to ensure that a DiscoSTEP program is well-typed.  A well-typed 

DiscoSTEP program has sensible runtime behavior. 

Figure 7 shows the typechecking rules for DiscoSTEP, presented in a form that is 

standard in the programming language literature.  Most of the rules have one or more 

premises, written above the line; if all of these are valid, then we can conclude that the 

conclusion, written below the line, holds. 

Figure 7. The full set of type inference rules for DiscoSTEP. 

 ok     ok     ok
T-COMP

 ok
R C R C 1 2

R C 1 2

Γ R Γ C' Γ ,Γ (v , v )
Γ ,Γ (c,R, C', (v , v ))

├ ├ ├

├
 

×

        
T-RULEin in out out in in out

in in out out in out in in out

Γ =v : t , v : t Γ pred(v ) : bool Γ exp(v ):t

Γ (r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) : T T

├ ├

├
 

1 2

1 2

v :T Γ  v :T Γ
T-CONN

Γ (v , v ) ok
∈ ∈

├
 

The premises and conclusions are judgments of the form Γ stating that a 

composition C is well-formed given a list Γ mapping variables in scope to their types 

(and similar for rules R and connections (v1,v2)). 

 C ok├

The first rule states that a connection between variables v1 and v2 is ok if the typing 

assumptions Γ tell us that they have the same type T.  Thus this rule would prohibit ill-

formed connections as described above. 

  25



Submitted for publication. 

The second rule states that a rule R is ok if we compute a set of typing assumptions Γ 

from the types of the input and output variables, and if using those assumptions we can 

use XQuery’s type system to conclude that the predicate expression has a boolean type 

and that the output expression for each output variable vout has the type tout of that 

variable.  We do not model XQuery’s type system directly, as this is defined elsewhere, 

but we assume the presence of a judgment form Γ  stating that XQuery 

expression e has type T given assumptions Γ [W3C04]. 

 e : T├

A CP-net is a tuple CPN = (Σ, P, T, A, N, Col, G, E, I) where: 
(i) Σ is a finite set of non-empty types, also called color sets. 
(ii) P is a finite set of places. 
(iii) T is a finite set of transitions. 
(iv) A is a finite set of arcs such that: 

• P ∩ T = P ∩ A = T ∩ A = Ø. 
(v) N is a node function. It is defined from A into P × T ∪ T × P. 
(vi) Col is a color function. It is defined from P into Σ. 
(vii) G is a guard function. It is defined from T into expressions such that: 

• ∀t ∈ T: [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ]. 
(viii) E is an arc expression function. It is defined from A into expressions such 
that: 

• ∀a ∈ A: [Type(E(a)) = Col(p) ∧ Type(Var(E(a))) ⊆ Σ] 
where p is the place of N(a). 
(ix) I is an initialization function. It is defined from P into closed expressions 
such that: 

• ∀p ∈ P: [Type(I(p)) = Col(p)]. 
 

Figure 8. The definition of Colored Petri Nets, from [Jensen94]. 

The final rule states that a composition is ok if all of its constituent rules, sub-

compositions, and connections are ok.  The connections are typechecked using the 

combined typing assumptions of all the constituent rules and sub-compositions, since in 

fact the connections might reference any variables in those parts. 
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3.5.3 Translational Semantics of the DiscoSTEP  

According to [Jensen 94], a CP-net has the definition presented in Figure 8. The 

translation semantics of the DiscoSTEP language define how to convert a DiscoSTEP 

program into a CP-net. 

Figure 9 gives the full set of translational semantics for mapping between DiscoSTEP 

and a CP-net, given as a set of functions from a piece of DiscoSTEP syntax to one of the 

elements of the CP-net. The rules may be applied recursively to form the corresponding 

sets in the CP-net definition. For example, the first rule in  

Figure 9 gives instructions on how to form the set T of types in a CP-net. If the function 

is applied to a DiscoSTEP rule, then it is the union of all types used in the rule. If it is 

applied to a composition, then it returns the union of the sets of types that result from 

applying the function recursively to all the rules and sub-compositions defined in the 

composition. Thus, for rule CreateServer in Figure 6 the function 

GetType(CreateServer) returns the colors init, create_server, and string. 

Two pieces of notation are used in the rules.  First, the notation �  1 2[v v ] e  means, for 

each pair (v1, v2), choose one as a canonical representative for the pair and replace the 

other with the canonical representative in e.  This unification is used in the getPlace rule 

and others to ensure that only one place is created for each connected pair of variables in 

the source text.  Second, to construct the names of arcs in the CP-net, we concatenate the 

name of a rule and a variable together with the :: operator, as in vin::r. 
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Taken together, the CP-net for a given composition in outC = (c,R, C', (v , v ))  is formed 

using the following translation rule: 

Figure 9. The Translational Functions for Mapping between DiscoSTEP and CP-net. 

∅ ∅∪

� ∪ �

in in out out in out in in out

1 2 1 2 1 2

fun GetInit(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (v , ) (v , )

| GetInit(c, R, C', (v , v )) = [v v ]GetInit(R) [v v ]GetInit(C')
 

� ∪ �

in in out out in out in out in

1 2 1 2 1 2

fun GetAction(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (r :: v , exp(v ))

| GetAction(c, R, C', (v , v )) = [v v ]GetAction(R) [v v ]GetAction(C')
 

� ∪ �

in in out out in out in in

1 2 1 2 1 2

fun GetGuard(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (r, pred(v ))

| GetGuard(c, R, C', (v , v )) = [v v ]GetGuard(R) [v v ]GetGuard(C')
 

∪

� ∪ �

in in out out in out in in out

1 2 1 2 1 2

fun GetColor(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (v , t) (v , t)

| GetColor(c, R, C', (v , v )) = [v v ]GetColor(R) [v v ]GetColor(C')
 

∪

� ∪ �

in in out out in out in

in in out out

1 2 1 2 1 2

fun GetNode(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) =

(v :: r, (v , r)) (r :: v , (r, v ))

| GetNode(c,R, C', (v , v )) = [v v ]GetNode(R) [v v ]GetNode(C')

 

∪

� ∪ �

in in out out in out in in outfunGetArc(r, (v , t ), (v , t ),pred(v ), (v , exp(v )))=v ::r r::v

1 2 1 2 1 2| GetArc(c,R, C', (v , v )) = [v v ]GetArc(R) [v v ]GetArc(C')
 

∪

� ∪ �

in in out out in out in in out

1 2 1 2 1 2

funGetPlace(r,(v , t ),(v , t ),pred(v ),(v , exp(v )))=v v

|GetPlace(c,R,C', (v , v ))=[v v ]GetPlace(R) [v v ]GetPlace(C')
 

∪
in in out out in out in

1 2

funGetTransition(r, (v , t ), (v , t ),pred(v ),(v , exp(v )))=r

|GetTranstion(c,R,C', (v , v ))=GetTransition(R) GetTransition(C')
 

∪

∪
in in out out in out in in out

1 2

fun GetType(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = t t

| GetType(c, R, C', (v , v )) = GetType(R) GetType(C')
 

P=GetPlace(C) T=GetTransition(C)
A=GetArc(C) N=GetNode(C) Col=GetColor(C)
G=GetGuard(C) E=GetAction(C) I=GetInit(C)

C ( , P, T, A, N, Col, G, E, I)

Σ = GetType(C), ,
, ,

, ,
Σ6

 

translation is done. 

  28



Submitted for publication. 

3.5.4 Formally Modeling the Example 

The ChatServer DiscoSTEP program uses the following types: string, init, call, 

create_component, create_connector, and update_component. By applying 

GetType, we obtain can derive the color sets for the CP-net as: 

Σ = {string, init, call, create_component,  

create_connector, update_component }. 

The next step is to obtain the set of transitions for the CP-net. By applying 

GetTransition, the six rules are translated into six corresponding CP-net transitions: 

T = {CreateServer, ConnectClient, ClientIO,  

ClientRead, ClientWrite, UpdateServer} 
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Figure 10. CP-net Places, Arcs and Node functions translated from inputs and outputs. 

$e 

$activity_type 

By applying GetPlace, GetArc, and GetNode, the inputs and outputs are translated into 

CP-net places, arcs and node functions. Using GetGuard and GetAction, the triggers 

and actions are translated into CP-net guards defined from transitions into predicates, and 

arc expressions defined from arcs to XQuery expressions.  
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Figure 10 shows the resulting net. Note that the backward arcs from, for example, the 

ClientRead transition to the $client_id place are formed through the unification process 

described above, because the $client_id output of ConnectClient is bound to the inputs 

of more than one rule (ClientIO, ClientRead, and ClientWrite).  

4 Implementation of DiscoTect 

Recall from Section 3 that to provide a general framework for discovering architectures, 

we need to solve three challenges. In this section, we discuss our implementation for each 

of these challenges. 

Monitoring: We use various existing probing technologies to extract monitoring events. 

In this section, we will illustrate the use of AspectJ [Kiczales01], to handle low-level 

monitoring of object creation, method invocation, etc. We provide a library that allows 

aspects to produce system events formatted as XML strings which are placed on a JMS 

event bus to be consumed by DiscoTect. 

Mapping: The implementation of the DiscoTect Engine follows the design in Section 4. 

During initialization, the Engine parses the DiscoSTEP definition and activates the 

transitions. Then it keeps scanning the event stream sent from the probes, producing  

colored tokens for each event. A token is placed in the corresponding place that can 

accept that color. Once there is a token at each of the input places of a transition, the 

guard for that transition is evaluated. If a guard condition is satisfied, the actions for that 

transition are evaluated and the corresponding tokens placed on the output places of the 

transition. 

Architecture Building: We represent architectures using the Acme architecture 

description language [Garlan00] (although we are not restricted to this language; in 
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principle any architecture description language could serve in this capacity). Operations 

on Acme architectures are defined in a library that provides operations that form building 

blocks of architectural actions. To connect to our existing architectural tools, DiscoTect 

produces architectural events formatted as XML strings that are forwarded by the 

AcmeStudio Remote Control plugin, communicating over Java RMI, to incrementally 

construct the architecture. AcmeStudio [Schmerl04] is an architecture development 

environment that is primarily used for constructing architectures at design time. The 

analysis capabilities of AcmeStudio can then be used to check the architecture with 

respect to its style, or conduct analyses such as performance or schedulability. 

5 AAMS Case Study 

In this section we present a case study to determine the run time architecture of AAMS, a 

simulation test-bed for experimenting with mobile system architectural design decisions 

[Kazman03]. The test-bed allows users to specify usable system resources, tasks and 

scheduling strategies, and simulates the running of the mobile system. We chose AAMS 

because it represents a fairly complex real world application (approximately 28KLOC), 

and the runtime architectural view of the system is well documented. This allows us to 

compare our discovery result with their documentation. This comparison illustrates the 

use of applying our technique to discover deviations between the architecture discovered 

by DiscoTect and the documented design architecture of AAMS. Furthermore, we can 

use this case study to illustrate how we developed and refined the state machines to 

produce the final architecture.  
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Figure 11 shows the (informal) runtime architecture of AAMS as presented in [Kazman 

03]; the following description of the runtime is also based on the description in this paper. 

The Simulation Controller forms a simulation from a description of resources and tasks, 

their configuration, user activities and events, and information that it reads from a set of 

configuration and script files. The Simulation Controller also takes commands from the 

Simulation GUI, to control runtime parameters and feedback. It then processes each 

simulation frame to generate the actual performance of the system. Each component in 

the application and resource layers simulates its own operation. A set of services for File 

Task 

Script File 

Resource  
Simulation 
Controller 

Simulation 
ControllerGUI 

event event 

Application 
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Action Component 
Monitor 

Logging 

Error  
Reporting 

Publish/ 
Subscribe 

Simulation Support 
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Task Task Task 
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Figure 11. Documented runtime view of AAMS 
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I/O, Error Reporting and Logging are available via publish/subscribe to any simulated 

object. 

5.1 Design of AAMS DiscoSTEP program 

In this section we present the steps taken to produce the DiscoSTEP program to discover 

the AAMS architecture model. Typically, writing these programs is a process of starting 

with fairly generic rules to discover components and connections, and then refining these 

rules to produce architectures corresponding to a particular style. For this case study we 

used a specialization of a publish/subscribe style that distinguishes participating 

components as tasks, resources, etc. These extra component types are based on the 

description of AAMS found in [Kazman03]. 

To develop the final DiscoSTEP program, we first produced rules that merely observed 

object creation and interaction (through procedure calls). We then refined this set of rules 

to classify objects into their architectural counterparts (e.g., Resource, Task, etc.).  

Up to this point, we had not discovered anything about the publish/subscribe part of the 

architecture. The preliminary discovery results informed us that all the resource and task 

components interact with an object of the PubSub class using two procedure calls named 

publish and subscribe. We conjectured that the system implements publish/subscribe by 

creating a PubSub object and invoking its two methods. This led us to design a state 

machine for this portion of the architecture. This state machine creates an EventBus 

connector when it notices the instantiation of a PubSub object in the implementation. 

Once this has been done, an EventTaker role is created when DiscoTect notices a call to 

the publish method of the PubSub object, and a Publish port on the component 

corresponding to the call, and attaches them. Similarly PubSub.subscribe leads to the 
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creation of an EventSender role on the EventBus providing the method, the creation of a 

Subscribe port in the component requesting the method, and the creation of the 

attachment. 

5.2 The Discovered Architecture 

Applying the above state machine to a running instance of AAMS yields the architectural 

model in Figure 12. (We have laid out this model to enable easier comparison with the 

view in Figure 11.) By comparison with Figure 11, we uncovered four types of 

discrepancies between the documented architectural view and our discovered one.  

1. Isolated, extraneous components/connectors. The result shows two EventBus 

connectors, one of which is isolated from the other parts of the system. It indicates 

that one instance is instantiated but never used. Code optimization should resolve 

this discrepancy.  

2. Additional connections between components. Figure 12 does not show any 

connections between the controller component and simulation components such as 

tasks and schedulers. Nor does it inform us that some of the support components 

(Logger and Reporting) also subscribe to the event bus. Ignoring those “backdoor” 

connections makes the architectural view less accurate; moreover, it might 

compromise architectural analysis where all meaningful interactions between 

components should be considered. For example, in evaluating the performance of a 

publish/subscribe infrastructure, the existence of hidden communication channels 

could invalidate deadlock analysis. 

3. Misplaced connections between components. The discovered architecture shows a 

very different File I/O scheme: instead of the GUI reading three files (c.f. Figure 
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Figure 12. The Discovered Architecture of AAMS. 

11), the controller reads two files. This discrepancy could cause errors during 

evolution if the AAMS system was to work in a distributed environment. The 

evolution might require that the file reading components run on the same computer 

as that containing the files. The documented architecture would suggest that 

Simulator GUI is the component that should stay with the files, when in fact it is 

the Controller component according to the implementation. 

4. Missing components/connectors. Two of the components (USER and Environment) 

recorded in the document do not show up in the architecture.  

To confirm that DiscoTect discovered the actual architecture of the implementation, and 

to understand the discrepancies, we conferred with the AAMS developers. They agreed 

that DiscoTect produced a more complete and correct architectural description than their 

diagram, and had uncovered some errors in their coding.  However, the missing USER 
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Figure 13. Documented architectural view of Duke’s Bank Application 

and Environment components are due to the fact that these represent user interaction, and 

are not actual components in the implementation.  

6 EJB Case Study 

In this section we present a second case study to determine the run-time architecture of 

the Duke’s Bank Application – a simple EJB (Enterprise JavaBeans) banking application 

created by Sun Microsystems as a demonstration of EJB functionality.  Duke’s Bank 

allows bank customers to access their account information and transfer balances from one 

account to another.  It also provides an administration interface for managing customers 

and accounts. We use this case study to demonstrate how the architecture of an EJB 

application can be discovered using DiscoTect. We chose this system because its 

architecture is well documented in Sun Microsystems’ J2EE (Java2 Platform, Enterprise 
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Edition) tutorial [J2EE], which enables us to compare the actual discovered architecture 

with the one presented in the documentation. 

We wrote an aspect which injected advice to object instantiations, method calls and field 

modifications. We compiled the Duke’s Bank application along with the aspect, using an 

AspectJ compiler instead of Sun’s javac, so that system execution events were traced as 

the application ran. 

Figure 13 gives a high-level view of how the components interact in the Duke’s Bank 

system as presented in [J2EE].  The EJB application has three session beans: 

AccountControllerBean, CustomerControllerBean, and TxControllerBean (Tx stands for 

a business transaction, such as transferring funds).  These session beans provide a client's 

view of the application's business logic.  For each business entity represented in the 

simplified banking model, the application has a matching entity bean: AccountBean, 

CustomerBean, and TxBean. The business methods of the AccountControllerBean 

session bean manage the account-customer relationship and get the account information 

using AccountBean and CustomerBean entity beans. CustomerControllerBean provides 

methods for creating, removing and updating customers through CustomerBean entity 

beans. The TxControllerBean session bean handles bank transactions. It accesses 

AccountBean entity beans to verify the account type and to set the new balance, and 

accesses TxBean to keep records of the transactions. 

6.1 Design of the EJB State Machine 

In this section we present the steps taken to produce the DiscoTect state machine to 

discover the Duke’s Bank architecture.  For this case study we used a specialization of an 

EJB style that distinguishes participating components as entity beans, session beans, bean 
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containers, database etc. These component types are based on the EJB specification found 

in [EJB]. 

As we did in the previous case study, we first produced primitive rules that merely 

observed object interaction and creation (through procedure calls and object 

instantiations). We then refined these rules to classify objects into their architectural 

counterparts (e.g., Beans, Bean Containers, Database etc.) by checking the class 

constructor names.  For example, we created a SessionContainer object when its 

constructor had the name of “SessionContainer”. The relationships between the beans, 

the bean containers and the database were captured in the following way: according to the 

EJB specification, the beans are maintained by their corresponding containers, so we 

connected the beans with the containers controlling them by observing the procedure 

calls made by the containers to manage the life cycles of the beans; knowing that 

database access was implemented using JDBC (Java Database Connectivity) [JDBC], we 

monitored the standard JDBC APIs to uncover the connections between the beans and the 

database; the interactions between the beans were also monitored and represented as 

connectors linking them together. 

6.2 The Discovered Architecture 

Applying the state machine just described to a running instance of Duke’s Bank yields 

the architectural model in Figure 10. We have organized the layout this model for better 

comprehensibility. We can make the following observations based on this process.  
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Figure 14. Discovered architecture of Duke’s Bank 

 

1. Reflection of runtime instances. Besides showing the bean and the containers, the 

discovered result also details each bean and container instance created at runtime. 

The capacity of tracing the individual bean and container instances is useful for 

further performance analysis and fault diagnosis. In addition the relatively complex 

m to n relationships between beans and bean containers are revealed. 

2. Verification of Bean Interplay. The interactions between the beans shown in Figure 

14 are consistent with those described in the architecture shown in Figure 13: there 

are communication channels between AccountControllerBean and AccountBean, 

AccountControllerBean and CustomerBean, CustomerControllerBean and 
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CustomerBean,  TxControllerBean and TxBean, TxControllerBean and 

AccountBean. 

3. Discrepancies in Database Access. Figure 13 does not show any connections 

between the session beans and the database, which implies that all database access 

goes through the entity beans. This is consistent with Sun’s EJB specification 

[EJB]. However a “database write” connector appeared in the discovered 

architecture. Further source code analysis (performed manually) confirmed that 

AccountControllerBean does directly write to the database. As discussed in the 

previous section, identifying communication “backdoor” connections like this is 

useful for architectural analysis and to ensure architectural conformance. 

7 Conclusions and Future Work 

In this paper we described an approach to “discovering” the architecture of a running 

system that uses a set of pattern recognizers that convert monitored system observations 

into architecturally-meaningful events. The key idea is to exploit implementation 

regularities and knowledge of the architectural style that is being implemented to create a 

mapping that can be applied to any system that conforms to the implementation 

conventions, to yield a view in that architectural style. The mapping itself defines a novel 

form of behavior specification (realized as a Colored Petri Net) that relates low-level 

events to architecturally-significant actions. The power of Petri Nets is used to model the 

current threads of event recognition, allowing us to disentangle the interleaved sequences 

of low-level events that contribute to higher-level architectural behavior. 

There are a number of advantages of this approach. First, it can be applied to any system 

that can be monitored at runtime. In our case, we have demonstrated two case studies 
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written in Java, but we have recently experimented successfully with the use of AspectC 

to extract run-time information from C and C++ programs.  In general, any monitoring 

environment that allows us to capture object creation, method invocation, and instance 

variable assignment will serve as a sufficient foundation for our run-time monitoring. 

Second, by simply substituting one mapping description for another, it is possible to 

accommodate different implementation conventions for the same architectural style, or 

conversely to accommodate different architectural styles for the same implementation 

conventions.  For example, although not described in this paper, we have been able to 

successfully discover the Pipe/Filter architecture of a system implemented using different 

pipe conventions.  

There are, however, several inherent weaknesses to the approach. The first is that it only 

works if an implementation obeys regular coding conventions. Completely ad hoc bodies 

of code are unlikely to benefit from the technique. Second, it only works if one can 

identify a target architectural style, so that the mapping “knows” the output vocabulary. 

Third, as with any analysis based on runtime observations, it suffers from the problem 

that you can only analyze what is actually executed. Hence, questions like “is there any 

execution that might violate a set of style constraints” cannot be directly answered using 

this method.  Fourth, the DiscoSTEP mapping needs to be created via an iterate-and-test 

paradigm, and hence the results are somewhat dependent on the skill of the creator of the 

recognizer. Thus our techniques are best viewed as one of several technologies that an 

architect must have in his arsenal of architecture conformance checking tools. For 

example, we believe that DiscoTect can be effectively combined with static analysis tools 

such as Dali [Kazman99] or Armin [O’Brien03] to provide complementary kinds of 
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analysis, whereby runtime observations can be combined with statically-extracted facts.  

In this way we should be able to achieve a more complete and accurate picture of the as-

built system. 

These potential defects also point the way to future research in this area. First, is the area 

of system monitoring. As we have mentioned, we have experimented with a number of 

existing monitoring technologies for Java, and to some extent C++. However, monitoring 

technology for other kinds of implementations and system properties is an active research 

area that should continue to provide increasing capabilities in the future that we can 

leverage. 

Second is the area of codifying the ways in which architectural styles are implemented. 

As technology advances, implementation techniques will necessarily change, and it will 

be important to augment the set of mappings as that happens. We can envision a large 

library of recognizers for common architectural frameworks, available, perhaps, as open 

source libraries, which would track the most common architectural frameworks in 

practical use. 

Third is the area of architectural coverage metrics, similar to coverage metrics for testing. 

It would be good, for example, to have some confidence that in running a system with 

various inputs, we have exercised a sufficiently comprehensive part of the system to 

know what its architecture is.  

Fourth, we would like to find a way to make the definition of implementation-

architecture mappings more declarative. While the operational definition of state 

machines as the carrier of those mappings is a good first step, we can imagine more 

abstract forms of characterization that will be easier to create and analyze.  
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Fifth, while the approach we have outlined focuses primarily on recognizing architectural 

structure, we believe it could be easily extended to architectural behavior. For example, 

we can imagine using the same run-time abstraction techniques to check that the 

observed interaction between two components conforms to the protocol expected over the 

corresponding architectural connector. Similarly we might, observe timing behavior, 

which could be compared with an architectural specification of expected performance. 
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Appendix A 

Java code: 
 
public class ChatServer { 
 static class ClientThread extends Thread { 
 private Socket socket; 
   private Vector clients; 
   public ClientThread(Socket socket, 
           Vector clients) { 
     this.socket = socket; 
    this.clients = clients; 
   clients.addElement(socket); 
  } 
 public void run() { 
  byte[] buf = new byte[1024]; 
  int len = 0; 
  try { 
   InputStream is = socket.getInputStream(); 
   while ((len = is.read(buf)) != -1) { 
    // Broadcast the message to  
    // all the clients 
    for (int i = 0; i < clients.size(); i++) { 
     OutputStream os = 
      ((Socket) clients.get(i)). 
      getOutputStream();  
     os.write(buf, 0, len); 
    } 
   } 
  } catch (IOException e) { 
  } finally { 
   clients.removeElement(socket); 
   try { 
    socket.close(); 
    } catch (IOException e) {} 
  } 
 } 
 private static Vector clients = new Vector(); 
 public ChatServer() { 
  ServerSocket ss = new ServerSocket(1111); 
  while (true) { 
   // Wait for clients to connect 
   Socket socket = ss.accept(); 
      new ClientThread(socket, clients).start(); 
    } 
 } 
 public static void main(String[] args)  
   throws IOException { 
  new ChatServer(); 
 } 
} 

Runtime events: 
<init constructor_name=”ServerSocket” 
  instance_id=”10”> 
<call method_name=”ServerSocket.accept” 
  callee_id=”10” return_id=”11” …/> 
… 
<call method_name=”Socket.getInputStream” 
  callee_id=”11” return_id=”1000” …/> 
<call method_name=”ServerSocket.accept” 
  callee_id=”10” return_id=”12” …/> 
… 
<call method_name=”InputStream.read” 
  callee_id=”1000” …/> 
<call method_name=”Socket.getOutputStream” 
  callee_id=”11” return_id=”1001” …/> 
<call method_name=”OutputStream.write” 
  callee_id=”1001” …/> 
<call method_name=”Socket.getInputStream” 
  callee_id=”12” return_id=”1002” …/> 
<call method_name=”InputStream.read” 
  callee_id=”1002” …/> 
<call method_name=”InputStream.read” 
  callee_id=”1000” …/> 
<call method_name=”Socket.getOutputStream” 
  callee_id=”12” return_id=”1003” …/> 
<call method_name=”OutputStream.write” 
  callee_id=”1003” …/> 
… 

 

 

Figure 15. The Jave code for the ChatServer, and events produced through one run 
that are subsequently fed into DiscoTect. 

 

rule CreateServer { 
 input { init $e; } 
 output { string $server_id; create_component $create_server; } 
 trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 
 action = {?  
  let $server_id := $e/@instance_id; 
     let $create_server := <create_component name=$server_id type=”ServerT” />;  
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 } 
} 
rule ConnectClient { 
 input { call $e; string $server_id; } 
 output {  
  create_component $create_client;  
      create_connector $create_cs_connection; 
      string $client_id;  
 } 
 trigger {? 
  contains($e/@method_name, “ServerSocket.accept”) and $e/@callee_id = $server_id  
 ?} 
 action = {? 
  let $client_id := $e/@return_id; 
  let $create_client := <create_client name=$client_id type=”ClientT” />;  
  let $create_cs_connection :=  
   <create_connector name=concat($client_id,”-“,$server_id) 
     type=”CSConnectorT” end1=$server_id end2=$client_id />;  
 ?} 
} 
rule ClientIO { 
 input { call_event $e; string $client_id; } 
 output { string $io_id; } 
 trigger {? 
  (contains($e/@method_name, “Socket.getInputStream”) or 
      contains($e/@method_name, “Socket.getOutputStream”)) and  
     $e/@callee_id = $client_id  
 ?} 
 action {? let $client_id := $e/@return_id; ?} 
} 
 
rule ClientRead { 
 input { $e : call_event; $io_id : string; $client_id : string; } 
 output { $update_client : update_component; $activity_type : string;} 
 trigger {? (contains($e/@method_name, “InputStream.read”) and $e/@callee_id = $io_id ?} 
 action = {? 
  let $update_client :=  
   <update_component name=$client_id property=”Read” value=”true” />; 
   let $activity_type := “Read”;  
 ?} 
} 
rule ClientWrite { 
 input { $e : call_event; $io_id : string; $client_id : string; } 
 output { $update_client : update_component; $activity_type : string; } 
 trigger {? (contains($e/@method_name, “OutputStream.write”) and $e/@callee_id = $io_id 
?} 
 action = {? 
  let $update_client :=  
       <update_component name=$client_id property=”Write” value=”true” />;  
    let $activity_type := “Read”;  
 ?} 
} 
rule UpdateServer { 
 input { string $server_id; string $activity_type; } 
 output { update_component $update_server; } 
 trigger {? ($activity_type = “Read”) or ($activity_type = “Write”) ?} 
 action = {? 
  let $update_server :=  
   <update_componnet name=$server_id property=”Activity” value=$activity_type />;  
 ?} 
} 
composition System { 
 CreateServer.$server_id -> ConnectClient.$server_id; 
 ConnectClient.$client_id -> ClientIO.$client_id; 
 ConnectClient.$client_id <-> ClientRead.$client_id; 
 ClientIO.$io_id <-> ClientRead.$io_id; 
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 ConnectClient.$client_id <-> ClientWrite.$client_id; 
 ClientIO.$io_id <-> ClientWrite.$io_id; 
 ClientWrite.$activity_id -> UpdateServer.$activity_id; 
 CreateServer.$server_id <-> UpdateServer.$server_id; 
} 

Figure 16. The DiscoSTEP program for mapping between a run of the program in 
Figure 15 and a simple client-server architecture. 

 

PROGRAM ::=                                                    
  IMPORT*; EVENT; (COMPOSITION | RULE) * 
 
IMPORT ::=                                                    
 import quoted file name 
 
EVENT ::=                                                                    event type declarations: 
   ‘event’ ‘{‘  
    ‘input’ ‘{‘ (ID ‘;’)* ‘}’  
    ‘output’ ‘{‘ (ID ‘;’)* ‘}’ 
   ‘}’ 
 
RULE ::=                                                 rule declarations: 
   ‘rule’ ID ‘{‘ RULEPARTS ‘}’ 
 
RULEPARTS1 ::=                                                             rule property declarations: 
   ‘input’ ‘{‘ (ID VARID ‘;’)* ‘}’ 
   ‘output’ ‘{‘ (ID VARID ‘;’)* ‘}’ 
   ‘trigger’ ‘{$’ XPRED ‘$}’ 
   ‘action’ ‘{$’ XQUERY ‘$}’ 
    
COMPOSITION ::=                                                         composition declarations: 
   ‘composition’ ID ‘{‘ COMPOSITIONPART* ‘}’ 
 
COMPOSITIONPART::=                                                   composition property declarations: 
   MEMBER ‘->’ MEMBER 
   MEMBER ‘<->’ MEMBER   
 
MEMBER ::= 
   ID ‘.’ VARID | 
   ID ‘.’ MEMBER 
 
ID ::= [a-zA-Z][a-zA-Z0-9_]* 
 
VARID ::= [$][a-zA-Z0-9_]*  
  

Figure 17. The concrete syntax of DiscoSTEP. 

 

 

                                                 

1 Note that the productions XPRED and XQUERY in the language refer to XQuery Predicates and XQuery 

FLWOR expressions, respectively. The grammar for these is defined in [XQuery]. 
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